graph.cc 7.4 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
start  
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
Xin Pan 已提交
15 16 17
#include <algorithm>
#include <unordered_set>

X
start  
Xin Pan 已提交
18
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
19
#include "paddle/fluid/framework/op_proto_maker.h"
20 21
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"
X
start  
Xin Pan 已提交
22 23

namespace paddle {
X
Xin Pan 已提交
24
namespace framework {
X
Xin Pan 已提交
25
namespace ir {
X
Xin Pan 已提交
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
std::vector<std::string> FindDistTrainSendVars(
    const std::vector<ir::Node *> &nodes) {
  std::vector<std::string> send_vars;
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
  for (auto &node : nodes) {
    auto op_vars = node->Op()->InputArgumentNames();
    send_vars.reserve(send_vars.size() +
                      std::distance(op_vars.begin(), op_vars.end()));
    send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
  }
  return send_vars;
}

std::vector<std::string> FindDistTrainRecvVars(
    const std::vector<ir::Node *> &nodes) {
  std::vector<std::string> recv_vars;
  for (auto &node : nodes) {
    auto op_vars = node->Op()->OutputArgumentNames();
    recv_vars.reserve(recv_vars.size() +
                      std::distance(op_vars.begin(), op_vars.end()));
    recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
  }
  return recv_vars;
}

bool IsDistTrainOp(ir::Node *node, const std::vector<std::string> &send_vars,
                   const std::vector<std::string> &recv_vars) {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
    return false;
  }

  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
                    const std::vector<std::string> &rpc_vars) -> bool {
    for (auto &var : opvars) {
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
      if (var.find(".block") != std::string::npos &&
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
        return true;
      }
T
tangwei12 已提交
72 73 74 75 76 77

      if (!(var.find(".block") == std::string::npos &&
            var.find(".pserver") != std::string::npos) &&
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
        return true;
      }
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    }
    return false;
  };

  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
    input_var_names.push_back(input->Name());
  }
  for (ir::Node *output : node->outputs) {
    output_var_names.push_back(output->Name());
  }

  return checker(output_var_names, send_vars) ||
         checker(input_var_names, recv_vars);
}

X
clean  
Xin Pan 已提交
95
Graph::Graph(const ProgramDesc &program) : program_(program) {
96 97 98
  // Make the nodes id start from 0.
  Node::ResetId();

Q
qiaolongfei 已提交
99
  VLOG(3) << "block in program:" << program_.Size();
100 101 102 103 104
  std::unordered_map<std::string, VarDesc *> all_vars;
  for (auto *var : program.Block(0).AllVars()) {
    all_vars.emplace(var->Name(), var);
  }

X
Xin Pan 已提交
105
  std::map<std::string, std::vector<ir::Node *>> var_nodes;
106
  for (auto *op : program.Block(0).AllOps()) {
X
clean  
Xin Pan 已提交
107
    ir::Node *node = CreateOpNode(op);
X
Xin Pan 已提交
108 109
    // For input args, reuse the same var name if it was created before.
    // Otherwise, create a new one.
110 111
    for (auto &each_var_name : op->InputArgumentNames()) {
      ir::Node *var = nullptr;
X
Xin Pan 已提交
112
      if (var_nodes.find(each_var_name) != var_nodes.end()) {
X
Xin Pan 已提交
113
        var = var_nodes.at(each_var_name).back();
X
Xin Pan 已提交
114
      } else if (all_vars.count(each_var_name) != 0) {
X
clean  
Xin Pan 已提交
115
        var = CreateVarNode(all_vars.at(each_var_name));
X
Xin Pan 已提交
116
        var_nodes[each_var_name].push_back(var);
117
      } else {
X
Xin Pan 已提交
118 119 120
        // Operation input var can be optional (dispensable). Which means
        // the operation doesn't really need the var at runtime. In this
        // case, the no-existed var is ready at the beginning.
X
polish  
Xin Pan 已提交
121
        var = CreateEmptyNode(each_var_name, ir::Node::Type::kVariable);
X
Xin Pan 已提交
122
        var_nodes[each_var_name].push_back(var);
123 124 125 126
      }
      node->inputs.push_back(var);
      var->outputs.push_back(node);
    }
X
Xin Pan 已提交
127
    // For output args, always create a new var.
128
    for (auto &each_var_name : op->OutputArgumentNames()) {
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137
      ir::Node *var = nullptr;
      if (all_vars.count(each_var_name) != 0) {
        var = CreateVarNode(all_vars.at(each_var_name));
      } else {
        // Operation output vars can be @EMPTY@. For example, while_grad
        // can have multi @EMPTY@ outputs with no VarDesc.
        // TODO(panyx0718): Add a test.
        var = CreateEmptyNode(each_var_name, ir::Node::Type::kVariable);
      }
X
Xin Pan 已提交
138
      var_nodes[each_var_name].push_back(var);
139 140 141 142
      node->outputs.push_back(var);
      var->inputs.push_back(node);
    }
  }
X
Xin Pan 已提交
143

X
polish  
Xin Pan 已提交
144
  /**
145 146 147 148 149
   * We should handle write after read(WAR) and write after write(WAW) here.
   * Because some of the operators of the program can be executed parallelly.
   * So, to make the program running in the right order, we should add the
   * dependence of WAR and WAW.
   *
X
polish  
Xin Pan 已提交
150 151 152
   *
   * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
   */
X
Xin Pan 已提交
153

X
Xin Pan 已提交
154 155 156 157 158 159 160 161 162 163 164 165
  for (auto &var : var_nodes) {
    auto &versions = var.second;
    if (versions.size() <= 1) continue;

    auto it_new = versions.rbegin();
    auto it_old = versions.rbegin();
    ++it_old;
    for (; it_old != versions.rend(); it_new = it_old, ++it_old) {
      ir::Node *write_op =
          (*it_new)->inputs.empty() ? nullptr : (*it_new)->inputs[0];
      const auto &read_ops = (*it_old)->outputs;

166 167 168 169 170
      PADDLE_ENFORCE(write_op, "The write_op should not be empty.");

      // Add write after write dependence
      ir::Node *upstream_op =
          (*it_old)->inputs.empty() ? nullptr : (*it_old)->inputs[0];
X
Xin Pan 已提交
171 172
      // TODO(zcd): Add a test.
      if (upstream_op && upstream_op != write_op) {
173 174 175 176 177 178 179
        ir::Node *dep_var = CreateControlDepVar();
        write_op->inputs.push_back(dep_var);
        upstream_op->outputs.push_back(dep_var);
        dep_var->outputs.push_back(write_op);
        dep_var->inputs.push_back(upstream_op);
      }

X
Xin Pan 已提交
180 181 182 183 184 185
      for (auto *read_op : read_ops) {
        // Manually add a dependency var from read_op to write_op;
        if (read_op == write_op) {
          // Read Write is the same op.
          continue;
        }
X
Xin Pan 已提交
186 187 188 189 190 191 192 193 194 195 196
        // 2 ops might have been connected via other vars.
        bool has_dep = false;
        for (ir::Node *r_out : read_op->outputs) {
          for (ir::Node *w_in : write_op->inputs) {
            if (r_out == w_in) {
              has_dep = true;
              break;
            }
          }
        }
        if (has_dep) continue;
X
Xin Pan 已提交
197

X
Xin Pan 已提交
198
        ir::Node *dep_var = CreateControlDepVar();
X
Xin Pan 已提交
199 200 201 202 203 204 205
        read_op->outputs.push_back(dep_var);
        dep_var->inputs.push_back(read_op);
        write_op->inputs.push_back(dep_var);
        dep_var->outputs.push_back(write_op);
      }
    }
  }
X
better  
Xin Pan 已提交
206
}
X
Xin Pan 已提交
207 208 209 210

bool IsControlDepVar(const ir::Node &var) {
  return var.Name().find(ir::Node::kControlDepVarName) != std::string::npos;
}
X
Xin Pan 已提交
211
}  // namespace ir
X
Xin Pan 已提交
212
}  // namespace framework
X
start  
Xin Pan 已提交
213
}  // namespace paddle