test_addmm_op.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestAddMMOp(OpTest):
    # test basic
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((100, 1)).astype(self.dtype),
            'X': np.random.random((100, 10)).astype(self.dtype),
            'Y': np.random.random((10, 20)).astype(self.dtype),
        }
        self.outputs = {
            'Out':
            self.inputs['Input'] + np.dot(self.inputs['X'], self.inputs['Y'])
        }

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input', 'X', 'Y'], 'Out')

    def test_check_grad_x(self):
        self.check_grad(['X'], 'Out', no_grad_set=None)

    def test_check_grad_y(self):
        self.check_grad(['Y'], 'Out', no_grad_set=None)

    def test_check_grad_input(self):
        self.check_grad(['Input'], 'Out', no_grad_set=None)


class TestAddMMOpError(unittest.TestCase):
    # test error
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of addmm_op must be Variable.
            input = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, paddle.addmm, input, x1, x2)
            # The input dtype of mul_op must be float32 or float64.
            input = fluid.layers.data(name='input', shape=[4], dtype="int32")
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="int32")
            x4 = fluid.layers.data(name='x4', shape=[4], dtype="int32")
            self.assertRaises(TypeError, paddle.addmm, input, x3, x4)


class TestAddMMOp2(TestAddMMOp):
    # test alpha and beta
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((20, 30)).astype(self.dtype),
            'X': np.random.random((20, 6)).astype(self.dtype),
            'Y': np.random.random((6, 30)).astype(self.dtype),
        }
        self.attrs = {
            'Alpha': 0.1,
            'Beta': 1.0,
        }
        self.outputs = {'Out': self.attrs['Beta'] * self.inputs['Input'] + \
                        self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])}


class TestAddMMOp3(OpTest):
    # test broadcast
    def setUp(self):
        self.op_type = "addmm"
        self.dtype = np.float64
        self.init_dtype_type()
        self.inputs = {
            'Input': np.random.random((1, 100)).astype(self.dtype),
            'X': np.random.random((20, 10)).astype(self.dtype),
            'Y': np.random.random((10, 100)).astype(self.dtype),
        }
        self.attrs = {
            'Alpha': 0.5,
            'Beta': 2.0,
        }
        self.outputs = {'Out': self.attrs['Beta'] * self.inputs['Input'] + \
                        self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input', 'X', 'Y'], 'Out')

    def test_check_grad_x(self):
        self.check_grad(['X'], 'Out', no_grad_set=None)

    def test_check_grad_y(self):
        self.check_grad(['Y'], 'Out', no_grad_set=None)

    def test_check_grad_input(self):
        self.check_grad(['Input'], 'Out', no_grad_set=None)


if __name__ == "__main__":
    unittest.main()