expand_op.cc 4.4 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/expand_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yangyaming 已提交
27 28 29 30 31 32 33 34 35
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
    std::vector<int> expand_times =
        ctx->Attrs().Get<std::vector<int>>("expandTimes");
    auto x_dims = ctx->GetInputDim("X");

    PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()), expand_times.size(),
                      "The number of Attr(expandTimes)'s value must be equal "
                      "to the rank of Input(X).");
Y
yangyaming 已提交
36
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
Y
yangyaming 已提交
37
                      "The rank of Input(X) must not be greater than 6.");
Y
yangyaming 已提交
38 39 40 41

    std::vector<int64_t> out_shape(x_dims.size());
    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_GE(expand_times[i], 1,
Y
yangyaming 已提交
42
                        "Each value of Attr(expandTimes) should not be "
Y
yangyaming 已提交
43 44 45
                        "less than 1.");
      out_shape[i] = x_dims[i] * expand_times[i];
    }
Y
yangyaming 已提交
46 47 48

    ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
    ctx->ShareLoD("X", "Out");
Y
yangyaming 已提交
49 50 51 52 53 54 55
  }
};

class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ExpandOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
yangyaming 已提交
56
    AddInput("X",
Y
yangyaming 已提交
57 58
             "(Tensor, default Tensor<float>) A tensor with rank in [1, 6]."
             "X is the input tensor to be expanded.");
Y
yangyaming 已提交
59
    AddOutput("Out",
Y
yangyaming 已提交
60 61 62 63 64
              "(Tensor, default Tensor<float>) A tensor with rank in [1, 6]."
              "The rank of Output(Out) is same as Input(X) except that each "
              "dimension size of Output(Out) is equal to corresponding "
              "dimension size of Input(X) multiplying corresponding value of "
              "Attr(expandTimes).");
Y
yangyaming 已提交
65
    AddAttr<std::vector<int>>("expandTimes",
Y
yangyaming 已提交
66
                              "Expand times number for each dimension.");
Y
yangyaming 已提交
67
    AddComment(R"DOC(
Y
yangyaming 已提交
68
Expand operator tiles the input by given times number. You should set times
Y
yangyaming 已提交
69
number for each dimension by providing attribute 'expandTimes'. The rank of X
Y
yangyaming 已提交
70 71
should be in [1, 6]. Please notice that size of 'expandTimes' must be same with
X's rank.
Y
yangyaming 已提交
72 73 74 75 76 77 78 79 80
)DOC");
  }
};

class ExpandGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yangyaming 已提交
81 82 83 84 85 86 87 88
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> expand_times =
        ctx->Attrs().Get<std::vector<int>>("expandTimes");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
89 90 91

    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i],
Y
yangyaming 已提交
92 93
                        "Each dimension size of Input(Out@GRAD) should be "
                        "equal to multiplication of crroresponding dimension "
Y
yangyaming 已提交
94
                        "size of Input(X) and Attr(expandTimes) value.");
Y
yangyaming 已提交
95 96
    }

Y
yangyaming 已提交
97 98 99 100 101
    auto x_grad_name = framework::GradVarName("X");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
Y
yangyaming 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad,
            ops::ExpandGradOp);
REGISTER_OP_CPU_KERNEL(expand,
                       ops::ExpandKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    expand_grad, ops::ExpandGradKernel<paddle::platform::CPUPlace, float>);