reduce_op.h 27.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21
#include "paddle/fluid/framework/data_type_transform.h"
22
#include "paddle/fluid/framework/tensor_util.h"
23
#include "paddle/fluid/operators/cast_op.h"
24
#include "paddle/fluid/operators/math/math_function.h"
W
Wu Yi 已提交
25
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
26 27 28
#if defined(__HIPCC__) || defined(__NVCC__)
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#endif
G
guosheng 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
35
    ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, Functor>(              \
36 37
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
38 39
  }

40
using Tensor = framework::Tensor;
41 42 43 44 45 46 47 48 49
using DDim = framework::DDim;

inline void GetShuffledDim(const DDim& src_dims, DDim* dst_dims,
                           const std::vector<int>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
50 51 52 53 54 55
  std::vector<int> regular_reduced_dims = reduced_dims;
  for (size_t i = 0; i < regular_reduced_dims.size(); i++) {
    if (regular_reduced_dims[i] < 0) {
      regular_reduced_dims[i] = src_size + regular_reduced_dims[i];
    }
  }
56
  for (size_t i = 0; i < reduce_size; ++i) {
57 58 59 60
    dst_dims->at(src_size - reduce_size + i) =
        src_dims[regular_reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = regular_reduced_dims[i];
    src_dims_check[regular_reduced_dims[i]] = true;
61 62 63 64 65 66 67 68 69 70 71 72
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static inline std::vector<int> GetReduceDim(const std::vector<int>& dims,
                                            int dim_size, bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e, dim_size,
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size, e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
template <typename DeviceContext, typename OutT>
void GetShuffledInput(const framework::ExecutionContext& context,
                      const Tensor* input, Tensor* shuffled_input,
                      const std::vector<int>& dims) {
  DDim shuffled_dims(input->dims());
  std::vector<int> perm_axis(input->dims().size());
  GetShuffledDim(input->dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  shuffled_input->mutable_data<OutT>(context.GetPlace());

  math::TransposeNormal<DeviceContext, OutT> trans;
  trans(context.template device_context<DeviceContext>(), *input,
        shuffled_input, perm_axis);
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  GetShuffledDim(src_dim, &shuffled_dims, dims, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const framework::ExecutionContext& context,
                    const Tensor* input, Tensor* output,
                    const std::vector<int>& dims, bool keep_dim) {
  //  shuffle the reduced dim to the end
  Tensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(context, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.Resize({unreduced, reduced});
  DDim output_dim = output->dims();
  output->Resize({unreduced});
  ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
      context.template device_context<DeviceContext>(), shuffled_input, output,
      {1}, keep_dim);
  output->Resize(output_dim);
}

template <typename DeviceContext, typename T, typename Functor>
void HandleLargeDimGrad(const framework::ExecutionContext& context,
                        const framework::Tensor* x,
                        const framework::Tensor* out,
                        const framework::Tensor* dout, framework::Tensor* dx,
                        const std::vector<int>& dims) {
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  Tensor shuffled_x;
  GetShuffledInput<DeviceContext, T>(context, x, &shuffled_x, dims);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<DeviceContext, T, 2, Functor>(
      context.template device_context<DeviceContext>(), shuffled_x, *out, *dout,
      dx, {1});
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  Tensor dx_tmp;
  framework::TensorCopy(*dx, context.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
  math::TransposeNormal<DeviceContext, T> trans;
  trans(context.template device_context<DeviceContext>(), dx_tmp, dx,
        origin_axis);
}
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
229 230 231
    }
  }
};
Q
QI JUN 已提交
232
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
233
class ReduceKernel : public framework::OpKernel<T> {
234 235 236 237 238 239 240 241 242
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;

243
    // The dims has full dim, set the reduce_all is True
244
    const int& input_dim_size = context.Input<Tensor>("X")->dims().size();
245 246
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
247 248 249
    for (int i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end() &&
          dims_set.find(i - input_dim_size) == dims_set.end()) {
250 251 252 253 254 255
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    if (out_dtype < 0) {
      auto* cast_input = context.Input<Tensor>("X");
      cast_out_dtype =
          static_cast<framework::proto::VarType::Type>(cast_input->type());
      framework::VisitDataType(
          cast_out_dtype,
          ReduceKernelFunctor<DeviceContext, T, Functor>(
              cast_input, output, dims, keep_dim, reduce_all, context));
    } else {
      Tensor tmp_tensor;
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
      auto* input = context.Input<Tensor>("X");

      tmp_tensor.Resize(input->dims());
      framework::VisitDataType(
          cast_out_dtype,
          CastOpFunctor<DeviceContext, T>(
              input, &tmp_tensor,
              context.template device_context<DeviceContext>()));
      framework::VisitDataType(
          cast_out_dtype,
          ReduceKernelFunctor<DeviceContext, T, Functor>(
              &tmp_tensor, output, dims, keep_dim, reduce_all, context));
    }
  }
};
template <typename DeviceContext, typename OutT, typename Functor>
class BoolReduceKernel : public framework::OpKernel<OutT> {
G
guosheng 已提交
284 285
 public:
  void Compute(const framework::ExecutionContext& context) const override {
286
    bool reduce_all = context.Attr<bool>("reduce_all");
287 288
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
289
    output->mutable_data<OutT>(context.GetPlace());
290 291 292 293

    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");

294 295 296 297 298 299 300 301 302 303 304 305
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);

306 307
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
308 309
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
310 311 312 313
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
314
      functor(place, &x, &out, reduce_dim);
315
    } else {
316 317
      int ndim = input->dims().size();
      int rdim = dims.size();
318
      // comments for accelerating compiling temporarily.
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
G
guosheng 已提交
340 341 342
    }
  }
};
343

344 345
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
346
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
347
 public:
348 349
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
350
    bool reduce_all = context.Attr<bool>("reduce_all");
351 352 353
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
354

355 356 357
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

358 359 360 361 362 363 364 365 366 367 368
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
369 370 371 372 373 374 375 376 377 378 379
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

L
lvmengsi 已提交
380 381 382 383
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;

384 385
    if (reduce_all) {
      auto x = EigenVector<T>::Flatten(*input0);
386 387
      auto x_reduce = EigenVector<T>::Flatten(*input1);
      auto x_reduce_grad = EigenVector<T>::Flatten(*input2);
388 389 390 391 392 393
      auto x_grad = EigenVector<T>::Flatten(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto broadcast_dim =
          Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
      Functor functor;
394
      functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
395 396
              broadcast_dim[0]);
    } else {
397
      int rank = input0->dims().size();
398 399
      switch (rank) {
        case 1:
400 401 402
          ReduceGradFunctor<DeviceContext, T, 1, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
403 404
          break;
        case 2:
405 406 407
          ReduceGradFunctor<DeviceContext, T, 2, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
408 409
          break;
        case 3:
410 411 412
          ReduceGradFunctor<DeviceContext, T, 3, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
413 414
          break;
        case 4:
415 416 417
          ReduceGradFunctor<DeviceContext, T, 4, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
418 419
          break;
        case 5:
420 421 422
          ReduceGradFunctor<DeviceContext, T, 5, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
423 424
          break;
        case 6:
425 426 427
          ReduceGradFunctor<DeviceContext, T, 6, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
428
          break;
429 430 431 432
        default:
          HandleLargeDimGrad<DeviceContext, T, Functor>(context, input0, input1,
                                                        input2, output, dims);
          break;
433
      }
G
guosheng 已提交
434 435
    }
  }
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
      auto in_kernel_type =
          framework::OpKernelType(pre_input->type(), context.GetPlace());
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
456
};
G
guosheng 已提交
457

458 459 460
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
461

462
  void InferShape(framework::InferShapeContext* ctx) const override {
463 464
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
465 466 467
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
468 469 470 471 472 473
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
474

475
    for (size_t i = 0; i < dims.size(); ++i) {
476
      PADDLE_ENFORCE_LT(dims[i], x_rank,
477 478 479 480 481
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
482 483 484 485 486 487
      PADDLE_ENFORCE_GE(dims[i], -x_rank,
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
        ctx->SetOutputDim(
            "Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
514 515 516
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
517 518
      auto out_dims = framework::make_ddim(dims_vector);
      ctx->SetOutputDim("Out", out_dims);
519
      if (dims.size() > 0 && dims[0] != 0) {
520 521 522 523 524
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    if (ctx.Input<paddle::framework::LoDTensor>("X")->dims().size() > 5)
      return framework::OpKernelType(input_data_type, ctx.GetPlace());

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    if (input_data_type == framework::proto::VarType::FP16) {
F
furnace 已提交
543 544 545
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_npu_place(ctx.GetPlace()),
                        true,
546
                        platform::errors::InvalidArgument(
F
furnace 已提交
547
                            "float16 can only be used on GPU or NPU place"));
548 549 550
    }
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
551 552
};

G
Guo Sheng 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

566 567 568
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
569

570
  void InferShape(framework::InferShapeContext* ctx) const override {
571 572 573
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
574 575 576
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
577
    for (size_t i = 0; i < dims.size(); ++i) {
578
      PADDLE_ENFORCE_LT(dims[i], x_rank,
579 580 581 582 583
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
584
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
585 586 587 588 589 590
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
591
    }
592
  }
593 594 595 596

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
J
jakpiase 已提交
597 598 599 600 601
    int in_dtype = ctx.Attr<int>("in_dtype");
    auto input_data_type =
        (in_dtype >= 0) ? static_cast<framework::proto::VarType::Type>(in_dtype)
                        : OperatorWithKernel::IndicateVarDataType(
                              ctx, framework::GradVarName("Out"));
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
#ifdef PADDLE_WITH_MKLDNN
    auto CanMKLDNNReduceGradBeUsed = [&]() {
      auto dx_dims = ctx.Input<Tensor>("X")->dims();

      if (dx_dims.size() > 5) return false;  // max 5D tensor is supported

      return true;
    };
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        CanMKLDNNReduceGradBeUsed()) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
619
  }
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
644 645 646 647 648 649 650 651 652 653
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
654 655
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
656 657
        .SetDefault(false)
        .AsExtra();
658 659
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
660

661 662 663
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
664

665 666
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
667
  }
668 669 670 671

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
672 673
};

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
#if defined(__HIPCC__) || defined(__NVCC__)
template <typename T, template <typename, typename> class ReduceOp>
class ReduceCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    const Tensor* input = context.Input<Tensor>("X");
    Tensor* output = context.Output<Tensor>("Out");
    auto out_dtype = context.Attr<int>("out_dtype");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");

    std::vector<int> reduce_dims =
        GetReduceDim(dims, input->dims().size(), reduce_all);

    gpuStream_t stream = context.cuda_device_context().stream();
    if (out_dtype >= 0) {
      framework::VisitDataTypeSmall(
          static_cast<framework::proto::VarType::Type>(out_dtype),
          TensorReduceFunc<T, ReduceOp>(*input, output, reduce_dims, stream));
    } else {
      TensorReduceFunctorImpl<T, T, ReduceOp>(*input, output, reduce_dims,
                                              stream);
    }
  }
};
#endif

G
guosheng 已提交
701 702
}  // namespace operators
}  // namespace paddle
703

704 705
namespace ops = paddle::operators;

H
hong 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
720 721 722 723 724
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
725 726 727 728
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);