svd_helper.h 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <Eigen/src/Core/util/Constants.h>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/functors.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {
namespace math {
using Tensor = framework::Tensor;
using InTensors = std::vector<const Tensor*>;
using OutTensors = std::vector<Tensor*>;
using OpName = std::string;

template <typename T>
void EigenSvd(const T* X, T* U, T* VH, T* S, int rows, int cols,
              int full = false) {
  auto flag = Eigen::DecompositionOptions::ComputeThinU |
              Eigen::DecompositionOptions::ComputeThinV;
  if (full) {
    flag = Eigen::DecompositionOptions::ComputeFullU |
           Eigen::DecompositionOptions::ComputeFullV;
  }
  Eigen::BDCSVD<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
      svd(2, 2, flag);
  /*NOTE(xiongkun03) Eigen::Matrix API need non-const pointer.*/
  T* input = const_cast<T*>(X);
  auto m = Eigen::Map<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
      input, rows, cols);
  svd.compute(m);
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> V_trans =
      svd.matrixV().transpose();
  memcpy(U, svd.matrixU().data(), svd.matrixU().size() * sizeof(T));
  memcpy(VH, V_trans.data(), V_trans.size() * sizeof(T));
  memcpy(S, svd.singularValues().data(),
         svd.singularValues().size() * sizeof(T));
}

template <typename T>
void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches,
              int full = false) {
  int stride = rows * cols;
  int k = std::min(rows, cols);
  int stride_u = full ? rows * rows : k * rows;
  int stride_v = full ? cols * cols : k * cols;
  for (int i = 0; i < batches; ++i) {
    EigenSvd<T>(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k,
                rows, cols, full);
  }
  return;
}

template <typename T>
struct PowFunctor {
  PowFunctor(const T* input, T* output, int64_t numel, float exp)
      : input_(input), output_(output), numel_(numel), exp_(exp) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    output_[idx] = pow(input_[idx], exp_);
  }
  const T* input_;
  T* output_;
  int64_t numel_;
  float exp_;
};

static std::vector<int> GetBroadcastShape(InTensors ins) {
  // TODO(xiongkun03) check the operators and output
  PADDLE_ENFORCE_EQ(ins.size(), 2, platform::errors::InvalidArgument(
                                       "GetBroadcastShape Receive 2 tensors"
                                       "but got [%d]",
                                       ins.size()));
  auto x_dim = ins[0]->dims();
  auto y_dim = ins[1]->dims();
  std::vector<int> broadcast_shape =
      (x_dim.size() > y_dim.size() ? framework::vectorize<int>(x_dim)
                                   : framework::vectorize<int>(y_dim));
  int rank_min = std::min(x_dim.size(), y_dim.size());
  int rank_x = x_dim.size();
  int rank_y = y_dim.size();
  int final_rank = broadcast_shape.size();
  for (int i = 1; i <= rank_min; ++i) {
    if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    if (x_dim[rank_x - i] == 1) {
      broadcast_shape[final_rank - i] = y_dim[rank_y - i];
      continue;
    }
    if (y_dim[rank_y - i] == 1) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Wrong Input Shape in broadcast operator: "
        "Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
        "shape, but received [%s] (X) vs [%s] (Y).",
        x_dim, y_dim));
  }
  return broadcast_shape;
}

template <typename DeviceContext, typename T>
struct DeviceIndependenceTensorOperations {
  // 1. Device indenpendence, for kernel reuse.
  // 2. Input and output is always tensor type.
  // 3. output Tensor is alway allocated
  // 4. Basic Tensor operator is supported
  // 5. The Reused Operator Kernel should only be considered as
  //    a wrap function
  using NameInTensorMap =
      std::map<std::string, std::vector<const framework::Tensor*>>;
  using NameOutTensor = std::vector<std::string>;

  explicit DeviceIndependenceTensorOperations(
      const framework::ExecutionContext& context)
      : context(context) {}

  framework::Tensor Pow(const framework::Tensor& x, float exp) {
    framework::Tensor out;
    auto for_range = GetForRange(x.numel());
    int numel = x.numel();
    PowFunctor<T> functor(x.data<T>(), out.mutable_data<T>(x.dims(), x.place()),
                          numel, exp);
    for_range(functor);
    return out;
  }
  framework::Tensor Matmul(const framework::Tensor& mat_a,
                           const framework::Tensor& mat_b, bool trans_a = false,
                           bool trans_b = false) {
    framework::AttributeMap attrs;
    attrs["trans_x"] = trans_a;
    attrs["trans_y"] = trans_b;
    NameInTensorMap inputs({{"X", {&mat_a}}, {"Y", {&mat_b}}});
    auto a_dim = mat_a.dims();
    auto b_dim = mat_b.dims();
    std::vector<int> x_vec = framework::vectorize<int>(a_dim);
    x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
    x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
    return CreateOpRunAndReturnTensor("matmul_v2", inputs, attrs, x_vec);
  }
  // transpose the last two dimision
  framework::Tensor Transpose(const framework::Tensor& x) {
    framework::Tensor out;
    auto x_dim = x.dims();
    auto x_vec = framework::vectorize<int>(x_dim);
    int rank = x_vec.size();
    std::swap(x_vec[rank - 1], x_vec[rank - 2]);
    std::vector<int> out_shape = x_vec;
    std::vector<int> axis(rank);
    for (int i = 0; i < rank; ++i) {
      axis[i] = i;
    }
    std::swap(axis[rank - 1], axis[rank - 2]);
    framework::AttributeMap attrs;
    attrs["axis"] = axis;
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("transpose2", inputs, attrs, out_shape,
                                      {"Out", "XShape"});
  }

  framework::Tensor Diag(const framework::Tensor& x, int offset = 0,
                         int padding_value = 0) {
    framework::AttributeMap attrs;
    attrs["offset"] = offset;
    attrs["padding_value"] = padding_value;
    NameInTensorMap inputs({{"X", {&x}}});
    int x_rank = x.dims().size();
    std::vector<int> out_shape;
    if (x_rank == 2) {
      PADDLE_ENFORCE_EQ(x.dims()[0], x.dims()[1],
                        platform::errors::InvalidArgument(
                            "if X is a Matrix, then X must be square"));
      out_shape.push_back(x.dims()[0]);
    } else if (x_rank == 1) {
      out_shape.push_back(x.dims()[0]);
      out_shape.push_back(x.dims()[0]);
    } else {
      PADDLE_THROW(
          platform::errors::InvalidArgument("Rank must less or equal than 2"));
    }
    return CreateOpRunAndReturnTensor("diag_v2", inputs, attrs, out_shape);
  }

  framework::Tensor Add(const framework::Tensor& x,
                        const framework::Tensor& y) {
    InTensors ins({&x, &y});
    framework::AttributeMap attrs;
    attrs["axis"] = -1;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    return CreateOpRunAndReturnTensor("elementwise_add", inputs, attrs,
                                      out_shape);
  }

  framework::Tensor Mul(const framework::Tensor& x,
                        const framework::Tensor& y) {
    InTensors ins({&x, &y});
    framework::AttributeMap attrs;
    attrs["axis"] = -1;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    return CreateOpRunAndReturnTensor("elementwise_mul", inputs, attrs,
                                      out_shape);
  }

  framework::Tensor Sub(const framework::Tensor& x,
                        const framework::Tensor& y) {
    InTensors ins({&x, &y});
    framework::AttributeMap attrs;
    attrs["axis"] = -1;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    return CreateOpRunAndReturnTensor("elementwise_sub", inputs, attrs,
                                      out_shape);
  }

  const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) {
    // don't copy data, only change the dims
    framework::Tensor out;
    out.ShareDataWith(x);
    std::vector<int> out_shape = framework::vectorize<int>(x.dims());
    if (axis >= 0) {
      auto index = (out_shape.begin() + axis);
      out_shape.insert(index, 1);
    } else if (axis < 0) {
      auto index = (out_shape.end() + axis + 1);
      out_shape.insert(index, 1);
    }
    out.Resize(framework::make_ddim(out_shape));
    return out;
  }

  framework::Tensor Zeros(std::vector<int> shape,
                          framework::proto::VarType::Type dtype,
                          float fill_value) {
    framework::AttributeMap attrs;
    attrs["dtype"] = dtype;
    attrs["shape"] = shape;
    attrs["value"] = fill_value;
    NameInTensorMap inputs({});
    return CreateOpRunAndReturnTensor("fill_constant", inputs, attrs, shape);
  }

  framework::Tensor Infinits(std::vector<int> shape,
                             framework::proto::VarType::Type dtype) {
    framework::AttributeMap attrs;
    attrs["dtype"] = dtype;
    attrs["shape"] = shape;
    attrs["str_value"] = std::string("inf");
    NameInTensorMap inputs({});
    return CreateOpRunAndReturnTensor("fill_constant", inputs, attrs, shape);
  }

  framework::Tensor Eye(int n, framework::proto::VarType::Type dtype) {
    auto output = Zeros({n}, dtype, 1);
    auto ret = Diag(output);
    return ret;
  }

  framework::Tensor Slice(const framework::Tensor& x, std::vector<int> axes,
                          std::vector<int> starts, std::vector<int> ends) {
    std::vector<int> new_axes = axes;
    NameInTensorMap inputs({{"Input", {&x}}});
    std::vector<int> out_shape = framework::vectorize<int>(x.dims());
    int rank = out_shape.size();
    PADDLE_ENFORCE_EQ(
        axes.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    PADDLE_ENFORCE_EQ(
        ends.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    for (unsigned int i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      if (axis < 0) axis = rank + axis;
      new_axes[i] = axis;  // change negative to positive
      int st = starts[i];
      int ed = ends[i];
      PADDLE_ENFORCE_GT(ed, st,
                        platform::errors::InvalidArgument(
                            "C++ Slice Operation Not Support End < Start"));
      out_shape[axis] = ed - st;
    }
    framework::AttributeMap attrs;
    attrs["axes"] = new_axes;
    attrs["starts"] = starts;
    attrs["ends"] = ends;
    return CreateOpRunAndReturnTensor("slice", inputs, attrs, out_shape);
  }

 private:
  const framework::ExecutionContext& context;
  BlasT<DeviceContext, T> GetBlas() {
    return math::GetBlas<DeviceContext, T>(context);
  }
  platform::ForRange<DeviceContext> GetForRange(int numel) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return platform::ForRange<DeviceContext>(dev_ctx, numel);
  }

  framework::Tensor CreateOpRunAndReturnTensor(
      const std::string& type, const NameInTensorMap& inputs,
      const framework::AttributeMap& attrs, std::vector<int> out_shape,
      NameOutTensor out_str = {"Out"}) {
    // varialble set dims must be LoDTensor / SelectedRowTensor
    framework::Scope& local_scope = context.scope().NewScope();

    framework::VariableNameMap op_outputs;
    for (auto out_name : out_str) {
      local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>();
      op_outputs[out_name].emplace_back("tmp_" + out_name);
    }
    auto out_var = local_scope.Var("tmp_Out");  // return the Out
    // create Out Tensor and allocat memory
    out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>(
        framework::make_ddim(out_shape), context.GetPlace());
    // framework::make_ddim(out_shape)
    framework::VariableNameMap op_inputs;
    int counter = 0;
    for (auto item : inputs) {
      auto& tensors = item.second;
      std::vector<std::string> name_vector;
      for (auto each_tensor : tensors) {
        // create score variable and reset the tensor.
        std::string _name = "tmp" + std::to_string(counter++);
        auto in_var = local_scope.Var(_name);  // create
        framework::LoDTensor tmp_tns;
        tmp_tns.ShareDataWith(*each_tensor);  // tensor -> lodtensor
        (*in_var->GetMutable<framework::LoDTensor>()) =
            tmp_tns;  // initialize and set value
        name_vector.emplace_back(_name);
      }
      op_inputs[item.first] = name_vector;
    }
    auto op =
        framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
    op->Run(local_scope, context.GetPlace());
    framework::Tensor out;
    out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>()));
    out.Resize(framework::make_ddim(out_shape));
    context.scope().DeleteScope(&local_scope);
    return out;
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle