split_ids_op.h 3.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class SplitIdsOpKernel : public framework::OpKernel<T> {
 public:
27
  void Compute(const framework::ExecutionContext &ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31 32
    auto place = ctx.GetPlace();
    if (!platform::is_cpu_place(place)) {
      PADDLE_THROW("SplitIds do not support GPU kernel");
    }

33 34 35 36 37 38
    const auto *ids_var = ctx.InputVar("Ids");
    if (ids_var->IsType<framework::LoDTensor>()) {
      const auto &ids_dims = ctx.Input<framework::LoDTensor>("Ids")->dims();
      const T *ids = ctx.Input<framework::LoDTensor>("Ids")->data<T>();
      auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
      const size_t shard_num = outs.size();
Q
Qiao Longfei 已提交
39

40 41
      std::vector<std::vector<T>> out_ids;
      out_ids.resize(outs.size());
Q
Qiao Longfei 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      // split id by their shard_num.
      for (int i = 0; i < ids_dims[0]; ++i) {
        T id = ids[i];
        size_t shard_id = static_cast<size_t>(id) % shard_num;
        out_ids[shard_id].push_back(id);
      }

      // create tensor for each shard and send to parameter server
      for (size_t i = 0; i < out_ids.size(); ++i) {
        auto *shard_t = outs[i];
        std::vector<T> ids = out_ids[i];
        auto *shard_data = shard_t->mutable_data<T>(
            framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
        for (size_t i = 0; i < ids.size(); ++i) {
          shard_data[i] = ids[i];
        }
      }
    } else if (ids_var->IsType<framework::SelectedRows>()) {
      const auto *ids_selected_rows = ctx.Input<framework::SelectedRows>("Ids");
      auto &ids_dims = ids_selected_rows->value().dims();
      PADDLE_ENFORCE_EQ(ids_dims[0], ids_selected_rows->rows().size(), "");
      const T *ids = ids_selected_rows->value().data<T>();
      const auto &ids_rows = ids_selected_rows->rows();
      auto outs = ctx.MultiOutput<framework::SelectedRows>("Out");
      const size_t shard_num = outs.size();
      // get rows for outputs
      for (auto &id : ids_rows) {
        size_t shard_id = static_cast<size_t>(id) % shard_num;
        outs[shard_id]->mutable_rows()->push_back(id);
      }
Q
Qiao Longfei 已提交
73

74 75 76 77 78 79 80 81 82 83
      int64_t row_width = ids_dims[1];
      for (auto &out : outs) {
        out->set_height(ids_selected_rows->height());
        framework::DDim ddim = framework::make_ddim(
            {static_cast<int64_t>(out->rows().size()), row_width});
        T *output = out->mutable_value()->mutable_data<T>(ddim, place);
        for (size_t i = 0; i < ddim[0]; ++i) {
          memcpy(output + i * row_width, ids + out->rows()[i] * row_width,
                 row_width * sizeof(T));
        }
Q
Qiao Longfei 已提交
84 85 86 87 88 89 90
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle