test_gradient_accmulator.cc 14.7 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
16
#include <type_traits>
J
Jiabin Yang 已提交
17
#include <vector>
18

J
Jiabin Yang 已提交
19 20 21 22
#include "gtest/gtest.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/memory/memcpy.h"
23
#include "paddle/fluid/operators/math/math_function.h"
J
Jiabin Yang 已提交
24 25 26 27 28 29 30

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;
namespace paddle {
namespace imperative {

31 32
template <typename Place1, typename Place2, typename T>
int TensorddTest(Place1 place1, Place2 place2, T t1, T t2) {
J
Jiabin Yang 已提交
33 34 35 36 37 38 39 40 41
  framework::Variable var1;
  framework::Variable var2;
  std::vector<T> src_data(10, t1);
  std::vector<T> dst_data(10, t2);
  std::vector<T> result;
  platform::CPUPlace src_place;
  for (unsigned int i = 0; i < 10; i++) {
    result.emplace_back(src_data[i] + dst_data[i]);
  }
42

J
Jiabin Yang 已提交
43 44 45 46 47
  std::vector<int64_t> dims = {2, 5};
  auto* src = var1.GetMutable<framework::LoDTensor>();
  auto* dst = var2.GetMutable<framework::LoDTensor>();
  src->Resize(framework::make_ddim(dims));
  dst->Resize(framework::make_ddim(dims));
48 49 50 51 52
  auto* src_mutable = src->mutable_data<T>(place1);
  auto* dst_mutable = dst->mutable_data<T>(place2);

  if (!std::is_same<Place1, platform::CUDAPlace>::value) {
    paddle::memory::Copy(place1, src_mutable, src_place, src_data.data(),
53
                         sizeof(T) * src_data.size());
54
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
55
  } else {
56
    paddle::memory::Copy(place1, src_mutable, src_place, src_data.data(),
57
                         sizeof(T) * src_data.size(), 0);
58 59 60 61 62 63 64 65 66
#endif
  }

  if (!std::is_same<Place2, platform::CUDAPlace>::value) {
    paddle::memory::Copy(place2, dst_mutable, src_place, dst_data.data(),
                         sizeof(T) * dst_data.size());
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else {
    paddle::memory::Copy(place2, dst_mutable, src_place, dst_data.data(),
67
                         sizeof(T) * dst_data.size(), 0);
J
Jiabin Yang 已提交
68 69
#endif
  }
70
  imperative::TensorAdd<framework::Variable>(var1, &var2);
J
Jiabin Yang 已提交
71 72 73 74 75 76 77
  framework::LoDTensor rlt;
  platform::CPUPlace rlt_place;
  framework::TensorCopySync(*dst, rlt_place, &rlt);

  for (unsigned int i = 0; i < rlt.numel(); i++) {
    if (rlt.data<T>()[i] != result[i]) return 1;
  }
78

J
Jiabin Yang 已提交
79 80 81 82
  return 0;
}

TEST(test_add_functor, add_functor) {
83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
J
Jiabin Yang 已提交
84 85 86 87 88
  platform::CUDAPlace gpu_place(0);
#endif
  platform::CPUPlace cpu_place;

  int cpu_res = 1;
89 90 91 92

  // float32
  cpu_res = TensorddTest(cpu_place, cpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
93
  EXPECT_EQ(cpu_res, 0);
94 95 96 97
  // float16
  cpu_res =
      TensorddTest(cpu_place, cpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
J
Jiabin Yang 已提交
98
  EXPECT_EQ(cpu_res, 0);
99 100 101 102 103

#ifndef PADDLE_WITH_XPU
  // does not support double when compiled using xpu
  cpu_res = TensorddTest(cpu_place, cpu_place, static_cast<double>(1.0),
                         static_cast<double>(2.0));
J
Jiabin Yang 已提交
104
  EXPECT_EQ(cpu_res, 0);
105 106
#endif

107
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
J
Jiabin Yang 已提交
108
  int gpu_res = 1;
109
  gpu_res = TensorddTest(gpu_place, gpu_place, 1.0, 0.0);
110
  EXPECT_EQ(gpu_res, 0);
111
  gpu_res = TensorddTest(gpu_place, gpu_place, static_cast<double>(1.0),
112
                         static_cast<double>(2.0));
J
Jiabin Yang 已提交
113
  EXPECT_EQ(gpu_res, 0);
114 115 116
  gpu_res =
      TensorddTest(gpu_place, gpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
J
Jiabin Yang 已提交
117 118
  EXPECT_EQ(gpu_res, 0);
#endif
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

#ifdef PADDLE_WITH_XPU
  platform::XPUPlace xpu_place(0);
  int xpu_res = 1;
  // normal
  xpu_res = TensorddTest(xpu_place, xpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res =
      TensorddTest(xpu_place, xpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(xpu_res, 0);
  // different places
  xpu_res = TensorddTest(cpu_place, xpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res = TensorddTest(xpu_place, cpu_place, static_cast<float>(1.0),
                         static_cast<float>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res =
      TensorddTest(cpu_place, xpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(xpu_res, 0);
  xpu_res =
      TensorddTest(xpu_place, cpu_place, static_cast<platform::float16>(1.0),
                   static_cast<platform::float16>(2.0));
  EXPECT_EQ(xpu_res, 0);
#endif
J
Jiabin Yang 已提交
147 148
}

149 150 151 152 153
TEST(test_add_functor, execption) {
  platform::CUDAPinnedPlace cuda_pinned_place;
  platform::CUDAPlace cuda_place(0);
  platform::CPUPlace cpu_place;

154
  ASSERT_ANY_THROW(TensorddTest(cpu_place, cpu_place, 1, 0));
155
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
156 157 158
  ASSERT_ANY_THROW(
      TensorddTest(cuda_pinned_place, cuda_pinned_place, 1.0, 0.0));
  ASSERT_ANY_THROW(TensorddTest(cuda_pinned_place, cuda_pinned_place,
159 160 161 162 163
                                static_cast<platform::float16>(1.0),
                                static_cast<platform::float16>(2.0)));
#endif
}

164 165 166 167 168 169 170 171 172
static void CopyVar(const framework::Variable& var,
                    framework::Variable* dst_ptr) {
  auto& dst = *dst_ptr;
  dst.Clear();
  if (var.IsType<framework::LoDTensor>()) {
    const auto& src_tensor = var.Get<framework::LoDTensor>();
    auto* dst_tensor = dst.GetMutable<framework::LoDTensor>();
    framework::TensorCopySync(src_tensor, src_tensor.place(), dst_tensor);
  } else {
173 174
    const auto& src_selected_rows = var.Get<pten::SelectedRows>();
    auto* dst_selected_rows = dst.GetMutable<pten::SelectedRows>();
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
    framework::TensorCopySync(src_selected_rows.value(),
                              src_selected_rows.value().place(),
                              dst_selected_rows->mutable_value());
  }
}

static bool IsEqualVar(const framework::Variable& var1,
                       const framework::Variable& var2) {
  if (var1.Type() != var2.Type()) {
    return false;
  }

  framework::Tensor t1, t2;

  if (var1.IsType<framework::LoDTensor>()) {
    framework::TensorCopySync(var1.Get<framework::LoDTensor>(),
                              platform::CPUPlace(), &t1);
    framework::TensorCopySync(var2.Get<framework::LoDTensor>(),
                              platform::CPUPlace(), &t2);
  } else {
197 198
    auto& s1 = var1.Get<pten::SelectedRows>();
    auto& s2 = var2.Get<pten::SelectedRows>();
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    if (s1.height() != s2.height()) {
      return false;
    }

    if (s1.rows().size() != s2.rows().size()) {
      return false;
    }

    auto row1_data = s1.rows().data();
    auto row2_data = s2.rows().data();
    if (std::memcmp(row1_data, row2_data,
                    s1.rows().size() * sizeof(*row1_data)) != 0) {
      return false;
    }

215
    framework::TensorCopySync(var1.Get<pten::SelectedRows>().value(),
216
                              platform::CPUPlace(), &t1);
217
    framework::TensorCopySync(var2.Get<pten::SelectedRows>().value(),
218 219 220 221 222 223 224
                              platform::CPUPlace(), &t2);
  }

  if (t1.type() != t2.type() || t1.dims() != t2.dims()) {
    return false;
  }

225 226
  auto* t1_p = t1.data();
  auto* t2_p = t2.data();
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  return std::memcmp(t1_p, t2_p,
                     t1.numel() * framework::SizeOfType(t1.type())) == 0;
}

template <typename T>
static framework::Variable RandomTensor(const framework::DDim& dims,
                                        const platform::Place& place,
                                        int low = -10, int high = 10) {
  framework::Tensor cpu_tensor;
  cpu_tensor.Resize(dims);
  auto* ptr = cpu_tensor.mutable_data<T>(platform::CPUPlace());
  std::uniform_int_distribution<int> dist(low, high);
  std::random_device rd;
  std::mt19937 engine(rd());
  for (int64_t i = 0; i < cpu_tensor.numel(); ++i) {
    ptr[i] = dist(engine);
  }

  framework::Variable ret;
  framework::TensorCopySync(cpu_tensor, place,
                            ret.GetMutable<framework::LoDTensor>());
  return ret;
}

template <typename T>
static framework::Variable RandomSelectedRows(framework::DDim dims,
                                              const platform::Place& place,
                                              int64_t row_number, int low = -10,
                                              int high = 10) {
  auto height = dims[0];
  dims[0] = row_number;

  framework::Variable ret;
260
  auto* sr = ret.GetMutable<pten::SelectedRows>();
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
  auto tensor_var = RandomTensor<T>(dims, place, low, high);
  sr->mutable_value()->ShareDataWith(
      tensor_var.template Get<framework::LoDTensor>());
  sr->set_height(height);
  sr->mutable_rows()->resize(row_number);
  auto* row_data = sr->mutable_rows()->data();
  std::uniform_int_distribution<int64_t> dist(0, height - 1);
  std::random_device rd;
  std::mt19937 engine(rd());
  for (int64_t i = 0; i < dims[0]; ++i) {
    row_data[i] = dist(engine);
  }
  return ret;
}

static std::unique_ptr<GradientAccumulator> CreateAccumulator(
    const std::shared_ptr<VariableWrapper>& var, bool sort_gradient) {
  if (sort_gradient) {
    return std::unique_ptr<GradientAccumulator>(
        new SortedGradientAccumulator(var.get()));
  } else {
    return std::unique_ptr<GradientAccumulator>(
        new EagerGradientAccumulator(var.get()));
  }
}

static void TestGradientAccumulatorTestUnchangeInput(
    const platform::Place& place, bool sort_gradient) {
  framework::DDim dim{10, 20};
  int64_t maximum_row_number = 100;

  std::uniform_int_distribution<int64_t> dist(1, maximum_row_number);
  int seed;
  {
    std::random_device rd;
    seed = rd();
  }

  std::mt19937 engine(seed);

  auto create_var = [&](bool use_tensor) {
    if (use_tensor) {
      return RandomTensor<float>(dim, place);
    } else {
      return RandomSelectedRows<float>(dim, place, dist(engine));
    }
  };

  std::vector<bool> use_tensors = {false, true};

  for (auto use_tensor1 : use_tensors) {
    for (auto use_tensor2 : use_tensors) {
313 314 315
      /** g_accum1 && g_accum2: has not been initialized
       *    test accumulate on this graph
      */
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
      auto g_var1 = std::make_shared<VariableWrapper>("g_var1");
      g_var1->SetOverridedStopGradient(false);
      auto g_accum1 = CreateAccumulator(g_var1, sort_gradient);
      g_accum1->IncreaseRefCnt();
      g_accum1->IncreaseRefCnt();

      auto g_var2 = std::make_shared<VariableWrapper>("g_var2");
      g_var2->SetOverridedStopGradient(false);
      auto g_accum2 = CreateAccumulator(g_var2, sort_gradient);
      g_accum2->IncreaseRefCnt();
      g_accum2->IncreaseRefCnt();

      auto var1 = create_var(use_tensor1);
      auto var_wrapper1_1 = std::make_shared<VariableWrapper>("tmp1_1");
      auto var_wrapper2_1 = std::make_shared<VariableWrapper>("tmp2_1");
331 332

      ASSERT_EQ(var_wrapper1_1->IsEmpty(), true);
333
      CopyVar(var1, var_wrapper1_1->MutableVar());
334 335 336
      ASSERT_EQ(var_wrapper1_1->IsEmpty(), false);

      ASSERT_EQ(var_wrapper2_1->IsEmpty(), true);
337
      CopyVar(var1, var_wrapper2_1->MutableVar());
338
      ASSERT_EQ(var_wrapper2_1->IsEmpty(), false);
339 340 341 342 343 344 345

      auto var2 = create_var(use_tensor2);
      auto var_wrapper1_2 = std::make_shared<VariableWrapper>("tmp1_2");
      auto var_wrapper2_2 = std::make_shared<VariableWrapper>("tmp2_2");
      CopyVar(var2, var_wrapper1_2->MutableVar());
      CopyVar(var2, var_wrapper2_2->MutableVar());

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
      // g_accum1: inner_var_ = var1 + var2
      g_accum1->SumGrad(var_wrapper1_1, 0, false);
      g_accum1->SumGrad(var_wrapper1_2, 1, false);
      ASSERT_EQ(g_accum1->CurCnt(), g_accum1->RefCnt());
      ASSERT_TRUE(g_accum1->SumGradCompleted());
      // g_accum1: inner_var_ -> var_
      g_accum1->AccumulateGrad();

      // g_accum2: inner_var_ = var1 + var2
      g_accum2->SumGrad(var_wrapper2_1, 0, true);
      g_accum2->SumGrad(var_wrapper2_2, 1, true);
      ASSERT_EQ(g_accum2->CurCnt(), g_accum2->RefCnt());
      ASSERT_TRUE(g_accum2->SumGradCompleted());
      // g_accum2: inner_var_ -> var_
      g_accum2->AccumulateGrad();
361 362 363 364

      ASSERT_TRUE(IsEqualVar(var_wrapper2_1->Var(), var1));
      ASSERT_TRUE(IsEqualVar(var_wrapper2_2->Var(), var2));
      ASSERT_TRUE(IsEqualVar(g_var1->Var(), g_var2->Var()));
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

      /** g_accum3 && g_accum4: has been initialized
       *    test accumulate on previous graph
      */
      auto var3 = create_var(use_tensor1);
      auto var_wrapper3_3 = std::make_shared<VariableWrapper>("tmp1_3");
      auto var_wrapper4_3 = std::make_shared<VariableWrapper>("tmp2_3");
      var_wrapper3_3->SetOverridedStopGradient(false);
      var_wrapper4_3->SetOverridedStopGradient(false);
      CopyVar(var3, var_wrapper3_3->MutableVar());
      CopyVar(var3, var_wrapper4_3->MutableVar());

      auto g_accum3 = CreateAccumulator(var_wrapper3_3, sort_gradient);
      g_accum3->IncreaseRefCnt();
      auto g_accum4 = CreateAccumulator(var_wrapper4_3, sort_gradient);
      g_accum4->IncreaseRefCnt();

      auto var4 = create_var(use_tensor2);
      auto var_wrapper3_4 = std::make_shared<VariableWrapper>("tmp1_4");
      auto var_wrapper4_4 = std::make_shared<VariableWrapper>("tmp2_4");
      CopyVar(var4, var_wrapper3_4->MutableVar());
      CopyVar(var4, var_wrapper4_4->MutableVar());

      g_accum3->SumGrad(var_wrapper3_4, 0, false);
      ASSERT_TRUE(g_accum3->SumGradCompleted());
      // g_accum4: var_(var_wrapper3_3) + inner_var_ -> var_
      g_accum3->AccumulateGrad();

      g_accum4->SumGrad(var_wrapper4_4, 0, false);
      ASSERT_TRUE(g_accum4->SumGradCompleted());
      // g_accum4: var_(var_wrapper4_3) + inner_var_ -> var_
      g_accum4->AccumulateGrad();

      ASSERT_TRUE(IsEqualVar(var_wrapper3_3->Var(), var_wrapper4_3->Var()));
399 400 401 402 403 404 405 406
    }
  }
}

TEST(test_gradient_accumulator, test_unchange_input) {
  for (auto sort_gradient : {false, true}) {
    TestGradientAccumulatorTestUnchangeInput(platform::CPUPlace(),
                                             sort_gradient);
407
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
408 409 410 411 412 413
    TestGradientAccumulatorTestUnchangeInput(platform::CUDAPlace(0),
                                             sort_gradient);
#endif
  }
}

J
Jiabin Yang 已提交
414 415
}  // namespace imperative
}  // namespace paddle