elementwise_op_function.h 106.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <functional>  // for multiplies
D
dzhwinter 已提交
21
#include <iterator>
22
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
27 28 29
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/platform/gpu_info.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/transform.h"
31

32
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduoZH 已提交
33
#ifdef __NVCC__
34
#include <cuda.h>
35 36 37
#elif defined(__HIPCC__)
#include <hip/hip_runtime.h>
#endif
C
chengduoZH 已提交
38
#include <thrust/iterator/iterator_adaptor.h>
39

40
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yu Yang 已提交
42
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
43 44
#define BLOCK_X 32
#define BLOCK_Y 32
C
chengduoZH 已提交
45 46
#endif

Y
Yi Wang 已提交
47
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/for_range.h"
49 50 51 52 53 54
#define GetDivMod(dividend, divisor, div, mod) \
  do {                                         \
    const auto dividend_copy = dividend;       \
    *div = dividend_copy / divisor;            \
    *mod = dividend_copy % divisor;            \
  } while (0)
55 56 57 58 59 60 61 62 63 64

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
65
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
66 67
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
68
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
69
 *
70 71
 * New parameter: *is_run_common_broadcast* is a flag to record whether to run
 * common broadcast code.
72
 */
73 74
inline void get_mid_dims(const framework::DDim &x_dims,
                         const framework::DDim &y_dims, const int axis,
75 76
                         int *pre, int *n, int *post,
                         int *is_run_common_broadcast) {
77 78 79
  *pre = 1;
  *n = 1;
  *post = 1;
80 81 82 83 84 85
  *is_run_common_broadcast = 0;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dims.size(); ++i) {
    if (x_dims[i + axis] != y_dims[i]) {
86 87 88 89 90 91 92
      PADDLE_ENFORCE_EQ(y_dims[i] == 1 || x_dims[i + axis] == 1, true,
                        platform::errors::InvalidArgument(
                            "Broadcast dimension mismatch. Operands "
                            "could not be broadcast together with the shape of "
                            "X = [%s] and the shape of Y = [%s]. Received [%d] "
                            "in X is not equal to [%d] in Y.",
                            x_dims, y_dims, x_dims[i + axis], y_dims[i]));
93 94
      *is_run_common_broadcast = 1;
      return;
95
    }
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    (*n) *= y_dims[i];
  }
  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
}
inline int GetElementwiseIndex(const int *x_dims_array, const int max_dim,
                               const int *index_array) {
  int index_ = 0;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] > 1) {
      index_ = index_ * x_dims_array[i] + index_array[i];
    }
  }
  return index_;
}

inline void UpdateElementwiseIndexArray(const int *out_dims_array,
                                        const int max_dim, int *index_array) {
  for (int i = max_dim - 1; i >= 0; --i) {
    ++index_array[i];
    if (index_array[i] >= out_dims_array[i]) {
      index_array[i] -= out_dims_array[i];
119
    } else {
120 121 122 123 124 125 126 127 128 129
      break;
    }
  }
}

inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
                                   const framework::DDim &y_dims,
                                   int *x_dims_array, int *y_dims_array,
                                   int *out_dims_array, const int max_dim,
                                   const int axis) {
130 131 132 133 134 135 136 137 138
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
139 140 141 142
  if (x_dims.size() > y_dims.size()) {
    std::fill(y_dims_array, y_dims_array + axis, 1);
    if (axis + y_dims.size() < max_dim) {
      std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
143
    }
144 145 146 147 148 149
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array + axis);
  } else {
    std::fill(x_dims_array, x_dims_array + axis, 1);
    if (axis + x_dims.size() < max_dim) {
      std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
150
    }
151 152 153
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array + axis);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array);
  }
154

155
  for (int i = 0; i < max_dim; i++) {
156 157 158 159 160 161 162 163 164
    PADDLE_ENFORCE_EQ(
        x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
            y_dims_array[i] <= 1,
        true, platform::errors::InvalidArgument(
                  "Broadcast dimension mismatch. Operands could "
                  "not be broadcast together with the shape of X = [%s] and "
                  "the shape of Y = [%s]. Received [%d] in X is not equal to "
                  "[%d] in Y at i:%d.",
                  x_dims, y_dims, x_dims_array[i], y_dims_array[i], i));
165 166
    if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
        (x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
167
      out_dims_array[i] = std::max(x_dims_array[i], y_dims_array[i]);
168 169
    } else {
      out_dims_array[i] = -1;
170
    }
171 172
  }
}
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const framework::Tensor *x,
                               const framework::Tensor *y, framework::Tensor *z,
                               int *x_dims_array, int *y_dims_array,
                               int *out_dims_array, int max_dim,
                               const platform::CPUDeviceContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x->data<T>();
  const T *y_data = y->data<T>();
  OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (is_xsize_larger) {
      out_data[out_index] = func(x_data[x_index], y_data[y_index]);
    } else {
      out_data[out_index] = func(y_data[y_index], x_data[x_index]);
197
    }
198 199

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
200 201 202
  }
}

203
#if defined(__NVCC__) || defined(__HIPCC__)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
template <typename Functor, typename T, typename OutType>
__global__ void ElementwiseKernel(const T *x, const T *y, OutType *out, int pre,
                                  int n, int post, int total, Functor func) {
  int tid = threadIdx.x + blockDim.x * blockIdx.x;
  int idx = tid / post % n;
  if (tid < total) {
    out[tid] = func(x[tid], y[idx]);
  }
}

template <typename Functor, typename T, typename OutType>
void ComputeElementwiseCUDA(const framework::Tensor *x,
                            const framework::Tensor *y, framework::Tensor *z,
                            int pre, int n, int post,
                            const platform::CUDADeviceContext &ctx,
                            Functor func, const bool is_xsize_larger = true) {
  const T *x_data = x->data<T>();
  const T *y_data = y->data<T>();
  OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());

  int numel = pre * n * post;
  int threads = 256;
  int blocks = (numel + threads - 1) / threads;
  if (is_xsize_larger) {
    ElementwiseKernel<Functor, T,
                      OutType><<<blocks, threads, 0, ctx.stream()>>>(
        x_data, y_data, out_data, pre, n, post, numel, func);
  } else {
    ElementwiseKernel<Functor, T,
                      OutType><<<blocks, threads, 0, ctx.stream()>>>(
        y_data, x_data, out_data, pre, n, post, numel, func);
  }
}

238
template <typename Functor, typename T, typename OutType = T>
239 240
__global__ void CommonForwardBroadcastCUDAKernel(
    const int *x_strides_array, const int *y_strides_array,
241 242
    const int *out_dims_array, const T *x, const T *y, OutType *out,
    int out_size, int max_dim, Functor func, const bool is_xsize_larger) {
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  for (int out_index = blockIdx.x * blockDim.x + threadIdx.x;
       out_index < out_size; out_index += blockDim.x * gridDim.x) {
    int x_index = 0;
    int y_index = 0;
    int out_index_quotient = out_index;
    int remainder = 0;
#pragma unroll
    for (int i = max_dim - 1; i >= 0; --i) {
      GetDivMod(out_index_quotient, out_dims_array[i], &out_index_quotient,
                &remainder);
      x_index += remainder * x_strides_array[i];
      y_index += remainder * y_strides_array[i];
    }
    if (is_xsize_larger) {
      out[out_index] = func(x[x_index], y[y_index]);
    } else {
      out[out_index] = func(y[y_index], x[x_index]);
    }
  }
}

264
template <typename Functor, typename T, typename OutType = T>
265 266 267 268 269
void CommonForwardBroadcastCUDA(
    const framework::Tensor *x, const framework::Tensor *y,
    framework::Tensor *z, int *x_dims_array, int *y_dims_array,
    int *out_dims_array, int max_dim, const platform::CUDADeviceContext &ctx,
    Functor func, const bool is_xsize_larger = true) {
270
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
271 272 273
  auto cplace = platform::CPUPlace();
  const T *x_data = x->data<T>();
  const T *y_data = y->data<T>();
274
  OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
  }

  int bytes = max_dim * sizeof(int);
  auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
               bytes, ctx.stream());

  auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
               bytes, ctx.stream());

  auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
               ctx.stream());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  dim3 gird_size = dim3(
      (out_size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);

  CommonForwardBroadcastCUDAKernel<
312
      Functor, T, OutType><<<gird_size, block_size, 0, ctx.stream()>>>(
313 314 315 316
      x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu, x_data,
      y_data, out_data, out_size, max_dim, func, is_xsize_larger);
}

317
#endif  // __NVCC__ or __HIPCC__
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

template <typename T, typename DX_OP, typename DY_OP>
void CommonGradBroadcastCPU(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CPUDeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  const T *out_data = out.data<T>();
  const T *dout_data = dout.data<T>();
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());
  if (dx_data != nullptr) {
    memset(dx_data, 0, dx->numel() * sizeof(T));
  }
  if (dy_data != nullptr) {
    memset(dy_data, 0, dy->numel() * sizeof(T));
  }
  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (dx_data != nullptr) {
      dx_data[x_index] += dx_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }
    if (dy_data != nullptr) {
      dy_data[y_index] += dy_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
  }
}

inline void ComputeBroadcastKernelSize(int *x_dims_array, int *out_dims_array,
                                       int *x_blocks, int *x_threads,
                                       int max_dim) {
  *x_blocks = 1;
  *x_threads = 1;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] == out_dims_array[i]) {
      *x_blocks *= x_dims_array[i];
    } else {
      *x_threads *= out_dims_array[i];
    }
  }
}

inline void ComputeBroadcastTranspositionArray(const int *x_one_indexs,
                                               int *x_trans_indexs,
                                               const int max_dim,
                                               const int x_one_size) {
  int diff = max_dim - x_one_size;
  std::copy_n(x_one_indexs, x_one_size, x_trans_indexs + diff);
  int p = 0;
  int q = diff;
  for (int i = 0; i < max_dim; ++i) {
    if (q < max_dim && i == x_trans_indexs[q]) {
      ++q;
    } else {
      x_trans_indexs[p++] = i;
    }
  }
}

389
#if defined(__NVCC__) || defined(__HIPCC__)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);
  if (is_xsize_larger) {
    do {
      int x_offset = i * w + j;
      if (dx) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    do {
      int y_offset = i * w + j;
      if (dy) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      if (dx) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dx) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
}

// suppose use 2D block is fast because more parallel
// and memory coalesced
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void FastElemwiseGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_xsize_larger) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int x_offset = n * w + m;
        if (dx && m < w && n < h) {
          dx[x_offset] =
              dx_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
        }
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int y_offset = n * w + m;
        if (dy && m < w && n < h) {
          dy[y_offset] =
              dy_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx) {
          if (m < w && n < h) {
            T val = dx_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dx) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dx[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
template <typename T, typename DX_OP>
__global__ void CommonGradBroadcastCUDAKernel(
    const int *x_strides_array, const int *y_strides_array,
    const int *out_dims_array, const int *y_strides_order,
    const int *y_dims_order, const T *x, const T *y, const T *out,
    const T *dout, T *dx, int out_size, int max_dim, int thread_num,
    DX_OP dx_op) {
  T val(0);
  int i = blockIdx.x;
  int tid = threadIdx.x;
  for (int j = tid; j < thread_num; j += blockDim.x) {
    const int X_index = i * thread_num + j;
    int out_index = X_index;
    int C_index = 0;
    int B_index = i * thread_num + j;
    int remainder = 0;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(B_index, y_dims_order[d], &B_index, &remainder);
      C_index += remainder * y_strides_order[d];
    }
    int x_index = 0;
    int y_index = 0;
    int C_index_val = C_index;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(C_index_val, out_dims_array[d], &C_index_val, &remainder);
      x_index += remainder * x_strides_array[d];
      y_index += remainder * y_strides_array[d];
    }
    out_index = C_index;
    val += dx_op(x[x_index], y[y_index], out[out_index], dout[out_index]);
  }
  val = paddle::platform::reduceSum(val, tid, thread_num);
  if (threadIdx.x == 0) {
    dx[i] = val;
  }
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
template <typename T, typename DY_OP>
static __global__ void CommonGradBroadcast1CUDAKernelHeight(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);

  if (is_y) {
    do {
      int out_offset = i * w + j;
      int x_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    do {
      int out_offset = i * w + j;
      int y_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[j], y[y_offset], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  }
}

template <typename T, typename DY_OP>
static __global__ void FastCommonGradBroadcastCUDAKernelHeight(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_y) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int x_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int y_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[m], y[y_offset], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

template <typename T, typename DY_OP, typename DX_OP>
static __global__ void FastCommonGradBroadcastAllCUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
    int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize_larger) {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + i * post + b_j;
      int y_offset = b_i * post + b_j;
      if (dx) {
        dx[x_offset] =
            dx_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
    }
    if (dy) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dy[bid] = val;
      }
    }
  } else {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + i * post + b_j;
      int x_offset = b_i * post + b_j;
      if (dy) {
        dy[y_offset] =
715
            dy_op(x[x_offset], y[y_offset], out[y_offset], dout[y_offset]);
716 717
      }
      if (dx) {
718
        val += dx_op(x[x_offset], y[y_offset], out[y_offset], dout[y_offset]);
719 720 721 722 723 724 725 726 727 728 729 730
      }
    }
    if (dx) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dx[bid] = val;
      }
    }
  }
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
template <typename T, typename OP>
static __global__ void FastCommonGradBroadcastOneCUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
    int post, int y_pre, int y_n, int y_post, bool is_xsize, OP op, T *dd) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize) {
    // do reduce for x
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      // Get y pre rows id with x post and y_pre.
      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int y_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  } else {
    // do reduce for y
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int x_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  }
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
// Check input can be split into 2 parts
static inline bool SplitDims(const std::vector<int> &y_broadcast_pos,
                             int max_dim) {
  bool can_split_dim2 = true;
  // must at start or end.
  if (y_broadcast_pos[0] != 0 &&
      y_broadcast_pos[y_broadcast_pos.size() - 1] != max_dim - 1) {
    can_split_dim2 = false;
  } else {
    for (int i = 1; i < y_broadcast_pos.size(); ++i) {
      // dim must be continue
      if (y_broadcast_pos[i] != y_broadcast_pos[i - 1] + 1) {
        can_split_dim2 = false;
        break;
      }
    }
  }
  return can_split_dim2;
}

809 810 811 812 813 814 815 816 817 818
// Suppose only has contiguous dims
static inline bool CheckContiguousDims(const std::vector<int> &broadcast_pos) {
  for (int i = 1; i < broadcast_pos.size(); ++i) {
    if (broadcast_pos[i] != broadcast_pos[i - 1] + 1) {
      return false;
    }
  }
  return true;
}

819 820 821 822 823 824 825
template <typename T, typename DX_OP, typename DY_OP>
void CommonGradBroadcastCUDA(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CUDADeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
826
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
  auto cplace = platform::CPUPlace();
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  const T *out_data = out.data<T>();
  const T *dout_data = dout.data<T>();
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());

  std::vector<int> x_one_indexs;
  std::vector<int> y_one_indexs;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] != y_dims_array[i]) {
      if (x_dims_array[i] == 1) {
        x_one_indexs.push_back(i);
      }
      if (y_dims_array[i] == 1) {
        y_one_indexs.push_back(i);
      }
    }
  }

  std::vector<int> x_trans_indexs(max_dim);
  std::vector<int> y_trans_indexs(max_dim);
  ComputeBroadcastTranspositionArray(x_one_indexs.data(), x_trans_indexs.data(),
                                     max_dim, x_one_indexs.size());
  ComputeBroadcastTranspositionArray(y_one_indexs.data(), y_trans_indexs.data(),
                                     max_dim, y_one_indexs.size());

  // compute array stride for cuda kernel;
  // e.g. x.dims=[2,3,4], x_stride=[12,4,1]
  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  std::vector<int> out_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  int z_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    out_strides_array[i] = z_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
    z_stride *= out_dims_array[i];
  }

  std::vector<int> x_strides_order(max_dim);
  std::vector<int> y_strides_order(max_dim);
  std::vector<int> x_dims_order(max_dim);
  std::vector<int> y_dims_order(max_dim);
  for (int i = 0; i < max_dim; ++i) {
    x_strides_order[i] = out_strides_array[x_trans_indexs[i]];
    y_strides_order[i] = out_strides_array[y_trans_indexs[i]];
    x_dims_order[i] = out_dims_array[x_trans_indexs[i]];
    y_dims_order[i] = out_dims_array[y_trans_indexs[i]];
  }
882 883 884 885 886 887 888 889 890 891 892 893 894
  std::vector<int> x_broadcast_pos;
  std::vector<int> y_broadcast_pos;

  int bytes = max_dim * sizeof(int);

  for (int i = 0; i < max_dim; ++i) {
    if (x_dims_array[i] != out_dims_array[i] && x_dims_array[i] == 1) {
      x_broadcast_pos.emplace_back(i);
    }
    if (y_dims_array[i] != out_dims_array[i] && y_dims_array[i] == 1) {
      y_broadcast_pos.emplace_back(i);
    }
  }
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  auto stream = ctx.stream();
  bool can_split_x = false;
  bool can_split_y = false;

  auto FastCommonCUDAF = [&](const std::vector<int> &broadcast_pos, bool is_y) {
    int h =
        std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
                        1, std::multiplies<int>());
    int w =
        std::accumulate(out_dims_array + broadcast_pos.size(),
                        out_dims_array + max_dim, 1, std::multiplies<int>());

    VLOG(3) << "FastCommonCUDAF elementwise w:" << w << " h:" << h
            << " is_y:" << is_y;

    int split_h;
    int split_w;
    int kh = h;
    int kw = w;

    if (is_y) {
      split_h =
          std::accumulate(x_dims_array, x_dims_array + broadcast_pos.size(), 1,
                          std::multiplies<int>());
      split_w =
          std::accumulate(x_dims_array + broadcast_pos.size(),
                          x_dims_array + max_dim, 1, std::multiplies<int>());

    } else {
      split_h =
          std::accumulate(y_dims_array, y_dims_array + broadcast_pos.size(), 1,
                          std::multiplies<int>());
      split_w =
          std::accumulate(y_dims_array + broadcast_pos.size(),
                          y_dims_array + max_dim, 1, std::multiplies<int>());
    }

    if (h > split_h) kh = split_h;
    if (w > split_w) kw = split_w;

    if (is_y) {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
                                               stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
            is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
                                                  stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
            is_y);
      }
    } else {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
                                               stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
            is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
                                                  stream>>>(
            x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
            is_y);
      }
    }
  };

  auto FastBroadCastHeightCUDAF = [&](const std::vector<int> &broadcast_pos,
                                      bool x_large) {
    int h =
        std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
                        1, std::multiplies<int>());
    int w =
        std::accumulate(out_dims_array + broadcast_pos.size(),
                        out_dims_array + max_dim, 1, std::multiplies<int>());

    VLOG(3) << "FastBroadCastHeightCUDAF w:" << w << " h:" << h;

    if (w < 16 || h < 16) {
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
      int grid_size = w;
      ElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
          x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
          dx_data, dy_data);
    } else {
      dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
      int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
      FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
          dx_data, dy_data);
    }
  };

  auto FastBroadCastAllCUDAF = [&](const std::vector<int> &broadcast_pos,
                                   int max_dim, bool is_x_large) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
                              std::multiplies<int>());
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    int mid = 1;
    int post = 1;

    if (broadcast_pos.size() == 1) {
      mid = out_dims_array[axis];
      post =
          std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim,
                          1, std::multiplies<int>());
    } else {
      mid = std::accumulate(out_dims_array + axis,
                            out_dims_array + broadcast_pos.back() + 1, 1,
                            std::multiplies<int>());
      post =
          std::accumulate(out_dims_array + broadcast_pos.back() + 1,
                          out_dims_array + max_dim, 1, std::multiplies<int>());
    }
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

    VLOG(3) << "FastBroadCastAllCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;

    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
    int grid_size = pre * post;

    FastCommonGradBroadcastAllCUDAKernel<<<grid_size, block_size, 0, stream>>>(
        x_data, y_data, out_data, dout_data, pre, mid, post, is_x_large, dx_op,
        dy_op, dx_data, dy_data);
  };

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
  auto FastBroadCastOneCUDAF = [&](const std::vector<int> &broadcast_pos,
                                   int max_dim, bool is_x) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
                              std::multiplies<int>());
    int mid = out_dims_array[axis];
    int post =
        std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim, 1,
                        std::multiplies<int>());

    int k_pre;
    int k_mid;
    int k_post;

    if (is_x) {
      k_pre = std::accumulate(y_dims_array, y_dims_array + axis, 1,
                              std::multiplies<int>());
      k_mid = y_dims_array[axis];
      k_post = std::accumulate(y_dims_array + axis + 1, y_dims_array + max_dim,
                               1, std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      // we need to calc y offset with blockid, so do x_pre/y_pre to get left
      // size.
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
          k_post, true, dx_op, dx_data);
    } else {
      k_pre = std::accumulate(x_dims_array, x_dims_array + axis, 1,
                              std::multiplies<int>());
      k_mid = x_dims_array[axis];
      k_post = std::accumulate(x_dims_array + axis + 1, x_dims_array + max_dim,
                               1, std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
                                             stream>>>(
          x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
          k_post, false, dy_op, dy_data);
    }
    VLOG(3) << "FastBroadCastOneCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;
  };

1080 1081 1082 1083
  // do fast elementwise if: 1. only one input need to do broadcast, we can
  // fallback
  // to old fast path.
  // 2. if both x and y need broadcast, then do it one by one.
1084
  bool fast_broadcast = false;
1085 1086 1087 1088 1089 1090
  if (x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
    if (can_split_y) {
      // only y need to do broadcast on h
      if (y_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(y_broadcast_pos, true);
1091
        fast_broadcast = true;
1092
      }
1093 1094 1095
    } else if (y_broadcast_pos.size() == 1 ||
               CheckContiguousDims(y_broadcast_pos)) {  // for only one dim and
                                                        // contiguous broadcast.
1096 1097
      // If cannot split,  which means input has 3 parts
      FastBroadCastAllCUDAF(y_broadcast_pos, max_dim, true);
1098
      fast_broadcast = true;
1099 1100 1101 1102 1103 1104 1105
    }
  } else if (y_broadcast_pos.empty() && !x_broadcast_pos.empty()) {
    // only x need broadcast
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(x_broadcast_pos, false);
1106
        fast_broadcast = true;
1107
      }
1108 1109
    } else if (x_broadcast_pos.size() == 1 ||
               CheckContiguousDims(x_broadcast_pos)) {
1110
      FastBroadCastAllCUDAF(x_broadcast_pos, max_dim, false);
1111
      fast_broadcast = true;
1112 1113 1114 1115
    }
  } else if (!x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    // do x and y broadcast each.
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
1116 1117
    bool fast_broadcast_x = false;
    bool fast_broadcast_y = false;
1118 1119 1120 1121
    if (can_split_y) {
      // begin at start.
      if (y_broadcast_pos[0] == 0) {
        FastCommonCUDAF(y_broadcast_pos, true);
1122
        fast_broadcast_y = true;
1123
      }
1124 1125 1126
    } else if (y_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(y_broadcast_pos, max_dim, false);
      can_split_y = true;
1127
      fast_broadcast_y = true;
1128 1129 1130 1131 1132
    }
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastCommonCUDAF(x_broadcast_pos, false);
1133
        fast_broadcast_x = true;
1134
      }
1135 1136 1137
    } else if (x_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(x_broadcast_pos, max_dim, true);
      can_split_x = true;
1138
      fast_broadcast_x = true;
1139 1140 1141 1142
    }
    VLOG(3) << "CommonBroadcast can_split_y:" << can_split_y
            << " can_split_x:" << can_split_x;
    // if both x and y into fast path then return
1143 1144 1145 1146
    if (fast_broadcast_x && fast_broadcast_y) {
      fast_broadcast = true;
    }
    if (can_split_y && can_split_x && fast_broadcast) return;
1147
  }
1148

1149
  // Should remove memory copy, use reg instead.
1150 1151 1152
  if (fast_broadcast) {
    return;
  }
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  int x_blocks = 0;
  int x_threads = 0;
  ComputeBroadcastKernelSize(x_dims_array, out_dims_array, &x_blocks,
                             &x_threads, max_dim);
  int y_blocks = 0;
  int y_threads = 0;
  ComputeBroadcastKernelSize(y_dims_array, out_dims_array, &y_blocks,
                             &y_threads, max_dim);

  auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
               bytes, ctx.stream());

  auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
               bytes, ctx.stream());

  auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
               ctx.stream());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, x_threads);
  int y_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, y_threads);
1183
  if (dx) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    auto x_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *x_strides_order_gpu =
        reinterpret_cast<int *>(x_strides_order_tmp->ptr());
    memory::Copy(gplace, x_strides_order_gpu, cplace, x_strides_order.data(),
                 bytes, ctx.stream());

    auto x_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *x_dims_order_gpu = reinterpret_cast<int *>(x_dims_order_tmp->ptr());
    memory::Copy(gplace, x_dims_order_gpu, cplace, x_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T, DX_OP><<<x_blocks, x_block_size, 0, ctx.stream()>>>(
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        x_strides_order_gpu, x_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dx_data, out_size, max_dim, x_threads, dx_op);
  }
1200
  if (dy) {
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    auto y_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *y_strides_order_gpu =
        reinterpret_cast<int *>(y_strides_order_tmp->ptr());
    memory::Copy(gplace, y_strides_order_gpu, cplace, y_strides_order.data(),
                 bytes, ctx.stream());

    auto y_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *y_dims_order_gpu = reinterpret_cast<int *>(y_dims_order_tmp->ptr());
    memory::Copy(gplace, y_dims_order_gpu, cplace, y_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T, DY_OP><<<y_blocks, y_block_size, 0, ctx.stream()>>>(
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        y_strides_order_gpu, y_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dy_data, out_size, max_dim, y_threads, dy_op);
  }
}

1219
#endif  // __NVCC__ or __HIPCC__
1220

1221
inline framework::DDim trim_trailing_singular_dims(
1222
    const framework::DDim &dims) {
1223
  // Remove trailing dimensions of size 1 for y
1224
  auto actual_dims_size = dims.size();
1225
  for (; actual_dims_size != 0; --actual_dims_size) {
1226
    if (dims[actual_dims_size - 1] != 1) break;
1227
  }
1228
  if (actual_dims_size == dims.size()) return dims;
1229 1230 1231 1232
  std::vector<int> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
1233
  }
1234 1235 1236
  if (trim_dims.size() == 0) {
    return framework::DDim(framework::make_dim());
  }
1237 1238
  framework::DDim actual_dims = framework::make_ddim(trim_dims);
  return actual_dims;
1239 1240
}

Q
QI JUN 已提交
1241
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
1242
class RowwiseTransformIterator;
1243

Q
QI JUN 已提交
1244
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
1245
class MidWiseTransformIterator;
C
chengduoZH 已提交
1246

D
dzhwinter 已提交
1247
// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
C
chengduoZH 已提交
1248
template <typename T>
D
dzhwinter 已提交
1249 1250 1251
class RowwiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
1252
 public:
1253
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
C
chengduoZH 已提交
1254

1255
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
1256
    ++i_;
C
chengduoZH 已提交
1257 1258 1259
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
1260 1261 1262
    return *this;
  }

P
peizhilin 已提交
1263
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
1264
    while (n-- > 0) {
P
peizhilin 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

1274 1275
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1276
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
1277 1278
  }

1279 1280
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1281
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
1282 1283
  }

1284
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
1285

C
chengduoZH 已提交
1286
 private:
1287
  const T *ptr_;
C
chengduoZH 已提交
1288
  int i_;
C
chengduoZH 已提交
1289
  int64_t n_;
C
chengduoZH 已提交
1290 1291 1292
};

template <typename T>
D
dzhwinter 已提交
1293 1294 1295
class MidWiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
1296
 public:
1297
  MidWiseTransformIterator(const T *ptr, int n, int post)
C
chengduoZH 已提交
1298 1299
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

1300
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
1301
    ++j_;
C
chengduoZH 已提交
1302 1303
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
1304
      j_ = 0;
C
chengduoZH 已提交
1305 1306 1307
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
1308
    }
C
chengduoZH 已提交
1309 1310 1311
    return *this;
  }

P
peizhilin 已提交
1312
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
1313
    while (n-- > 0) {
P
peizhilin 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

1326 1327
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1328
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
1329 1330
  }

1331 1332
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
1333
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
1334 1335
  }

1336
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
1337

C
chengduoZH 已提交
1338
 private:
1339
  const T *ptr_;
C
refine  
chengduoZH 已提交
1340
  int64_t i_;
C
chengduoZH 已提交
1341 1342
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
1343
  int64_t post_;
C
chengduoZH 已提交
1344 1345
};

1346
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduoZH 已提交
1347
template <typename T>
Q
QI JUN 已提交
1348
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
1349
    : public thrust::iterator_adaptor<
1350
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
1351 1352
 public:
  typedef thrust::iterator_adaptor<
1353
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
1354
      super_t;
1355
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
1356
      : super_t(x), begin_(x), n_(n) {}
C
chengduoZH 已提交
1357 1358 1359 1360
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
1361
  const T *begin_;
C
chengduoZH 已提交
1362
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
1363 1364 1365 1366 1367
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
1368
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
1369
    : public thrust::iterator_adaptor<
1370
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
1371 1372
 public:
  typedef thrust::iterator_adaptor<
1373
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
1374
      super_t;
1375
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
1376
      : super_t(x), begin_(x), n_(n), post_(post) {}
C
chengduoZH 已提交
1377 1378 1379 1380 1381
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
1382
  const T *begin_;
C
chengduoZH 已提交
1383
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
1384 1385 1386 1387 1388
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

1389 1390
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
1391 1392
class TransformFunctor {
 public:
1393
  TransformFunctor(const framework::Tensor *x, const framework::Tensor *y,
1394 1395
                   framework::Tensor *z, const DeviceContext &ctx, Functor func,
                   const bool is_xsize_larger = true)
C
chengduoZH 已提交
1396 1397
      : x_(x->data<T>()),
        y_(y->data<T>()),
1398
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
1399 1400
        nx_(x->numel()),
        ctx_(ctx),
1401 1402 1403 1404 1405 1406
        func_(func),
        is_xsize_larger_(is_xsize_larger) {
    if (is_xsize_larger_ == false) {
      nx_ = y->numel();
    }
  }
C
chengduoZH 已提交
1407 1408

  inline void Run() const {
Q
QI JUN 已提交
1409
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
1410
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
1411 1412 1413
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
1414
    platform::Transform<DeviceContext> trans;
1415 1416 1417 1418 1419 1420 1421
    if (is_xsize_larger_) {
      trans(ctx_, x_, x_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(y_, n), z_, func_);
    } else {
      trans(ctx_, y_, y_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(x_, n), z_, func_);
    }
C
chengduoZH 已提交
1422 1423 1424
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
1425
    platform::Transform<DeviceContext> trans;
1426 1427 1428 1429 1430 1431
    if (is_xsize_larger_) {
      trans(ctx_, x_, x_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
    } else {
      trans(ctx_, y_, y_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(x_, n, post), z_, func_);
1432 1433 1434
    }
  }

C
chengduoZH 已提交
1435
 private:
1436 1437 1438
  const T *x_;
  const T *y_;
  OutType *z_;
C
chengduoZH 已提交
1439
  int64_t nx_;
1440
  const DeviceContext &ctx_;
C
chengduoZH 已提交
1441
  Functor func_;
1442
  bool is_xsize_larger_;
C
chengduoZH 已提交
1443 1444
};

Y
Yu Yang 已提交
1445 1446
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
1447 1448 1449 1450
  const T *x_;
  const T *y_;
  const T *out_;
  const T *dout_;
Y
Yu Yang 已提交
1451 1452 1453 1454 1455 1456

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
1457
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
1458 1459 1460 1461 1462
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
1463 1464
  T *dx_;
  T *dy_;
Y
Yu Yang 已提交
1465 1466 1467
};

template <typename T, typename DX_OP, typename DY_OP>
1468
static void ElemwiseGradBroadcast1CPU(const T *x, const T *y, const T *out,
1469 1470
                                      const T *dout, int h, int w,
                                      bool is_xsize_larger, DX_OP dx_op,
1471
                                      DY_OP dy_op, T *dx, T *dy) {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
  if (is_xsize_larger) {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int x_offset = i * w + j;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
Y
Yu Yang 已提交
1488
      }
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int y_offset = i * w + j;
        if (dy != nullptr) {
          dy[y_offset] =
              dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx != nullptr) {
          T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          if (i == 0) {
            dx[j] = tmp;
          } else {
            dx[j] += tmp;
          }
Y
Yu Yang 已提交
1505 1506 1507 1508 1509
        }
      }
    }
  }
}
1510

1511
#if defined(__NVCC__) || defined(__HIPCC__)
1512

Y
Yu Yang 已提交
1513
template <typename T, typename DX_OP, typename DY_OP>
1514
static void ElemwiseGradBroadcast1CUDA(gpuStream_t stream, const T *x,
1515
                                       const T *y, const T *out, const T *dout,
1516 1517
                                       int h, int w, bool is_xsize_larger,
                                       DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
1518 1519 1520 1521 1522 1523
  // For small case use 1D block
  constexpr int half_walf = 16;
  if (w < half_walf || h < half_walf) {
    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
    int gird_size = w;
    ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
1524
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
1525 1526 1527 1528 1529
  } else {
    // suppose perfoemance improves with h increased.
    dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
    int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
    FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
1530
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
1531
  }
Y
Yu Yang 已提交
1532 1533 1534 1535 1536
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
1537 1538
static void ElemwiseGradBroadcast2CPU(const T *x, const T *y, const T *out,
                                      const T *dout, int pre, int n, int post,
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
                                      bool is_xsize_larger, DX_OP dx_op,
                                      DY_OP dy_op, T *dx, T *dy) {
  if (is_xsize_larger) {
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int x_offset = i * n * post + j * post + k;
          if (dx != nullptr) {
            dx[x_offset] =
                dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          }
          if (dy != nullptr) {
            T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
            if (i == 0 && k == 0) {
              dy[j] = tmp;
            } else {
              dy[j] += tmp;
            }
          }
Y
Yu Yang 已提交
1558
        }
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int y_offset = i * n * post + j * post + k;
          if (dy != nullptr) {
            dy[y_offset] =
                dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          }
          if (dx != nullptr) {
            T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
            if (i == 0 && k == 0) {
              dx[j] = tmp;
            } else {
              dx[j] += tmp;
            }
Y
Yu Yang 已提交
1577 1578 1579 1580 1581 1582 1583
          }
        }
      }
    }
  }
}

1584
#if defined(__NVCC__) || defined(__HIPCC__)
Y
Yu Yang 已提交
1585 1586
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
1587
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
1588
    int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1589 1590 1591
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
1592
  T val(0);
Y
Yu Yang 已提交
1593 1594
  int ttid = tid;

1595 1596 1597 1598 1599
  if (is_xsize_larger) {
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1600

1601
      int x_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      if (dy != nullptr) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
Y
Yu Yang 已提交
1612 1613
    }

1614 1615 1616 1617 1618 1619 1620
    if (dy) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
Y
Yu Yang 已提交
1621
    }
1622 1623 1624 1625 1626
  } else {  // x.dims < y.dims, broadcast for x.
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1627

1628
      int y_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
      if (dy != nullptr) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      if (dx != nullptr) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
    }

    if (dx) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
Y
Yu Yang 已提交
1648 1649 1650 1651 1652
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
1653
static void ElemwiseGradBroadcast2CUDA(gpuStream_t stream, const T *x,
1654
                                       const T *y, const T *out, const T *dout,
1655 1656
                                       int pre, int n, int post,
                                       bool is_xsize_larger, DX_OP dx_op,
1657
                                       DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1658 1659
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
1660
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
1661
      x, y, out, dout, pre, n, post, is_xsize_larger, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
1662 1663 1664 1665
}

#endif

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void CommonElementwiseBroadcastBackward(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);
  // for inplace strategy. memset will make dx and dout clear and get wrong
  // result.
1683
  if (dx && dx->IsSharedBufferWith(dout)) {
1684 1685
    dx->clear();
    dx->mutable_data<T>(x_dims, ctx.GetPlace());
1686 1687
  }

1688 1689 1690 1691
  VLOG(3) << "CommonElementwiseBroadcastBackward xdims:"
          << framework::make_ddim(x_dims_array)
          << " ydim:" << framework::make_ddim(y_dims_array);

1692
  if (platform::is_gpu_place(ctx.GetPlace())) {
1693
#if defined(__NVCC__) || defined(__HIPCC__)
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    CommonGradBroadcastCUDA<T, DX_OP, DY_OP>(
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CUDADeviceContext>(), dx_op,
        dy_op);
#endif
  } else {
    CommonGradBroadcastCPU<T, DX_OP, DY_OP>(
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CPUDeviceContext>(), dx_op,
        dy_op);
1706 1707 1708
  }
}

1709 1710
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeNoBroadcast(
1711 1712 1713 1714 1715
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1716
  size_t N = static_cast<size_t>(framework::product(x_dim));
D
dzhwinter 已提交
1717
#if !defined(_WIN32)
1718 1719
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
D
dzhwinter 已提交
1720 1721 1722 1723
#else
  platform::ForRange<DeviceContext> for_range(
      ctx.device_context<DeviceContext>(), N);
#endif  // !_WIN32
1724 1725 1726 1727 1728 1729 1730 1731
  for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
      x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeWithBroadcast(
1732 1733
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
1734 1735 1736
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1737
  bool is_xsize_larger = true;
1738

1739 1740 1741 1742 1743
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
1744

1745
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
1746 1747 1748 1749 1750 1751 1752 1753 1754
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  }
  // special case for common backward implementation.
  if (is_run_common_broadcast) {
    CommonElementwiseBroadcastBackward<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dims, y_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    return;
  }
  if (post == 1) {
1775
    if (platform::is_gpu_place(ctx.GetPlace())) {
1776
#if defined(__NVCC__) || defined(__HIPCC__)
1777 1778
      ElemwiseGradBroadcast1CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
1779 1780
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, is_xsize_larger,
          dx_op, dy_op,
1781 1782 1783 1784 1785
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast1CPU(
1786
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n,
1787
          is_xsize_larger, dx_op, dy_op,
1788
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1789 1790 1791 1792
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
1793
#if defined(__NVCC__) || defined(__HIPCC__)
1794 1795
      ElemwiseGradBroadcast2CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
1796 1797 1798
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
          is_xsize_larger, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1799 1800 1801 1802 1803
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast2CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
1804
          is_xsize_larger, dx_op, dy_op,
1805 1806 1807 1808 1809 1810
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

1811 1812 1813 1814 1815 1816 1817 1818 1819
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
void CommonElementwiseBroadcastForward(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, framework::Tensor *z,
    const framework::DDim &x_dims, const framework::DDim &y_dims, Functor func,
    int axis, const bool is_xsize_larger = true) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
1820 1821 1822 1823 1824 1825 1826 1827 1828
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
1829 1830 1831 1832 1833 1834 1835 1836
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  if (platform::is_gpu_place(ctx.GetPlace())) {
1837
#if defined(__NVCC__) || defined(__HIPCC__)
1838
    CommonForwardBroadcastCUDA<Functor, T, OutType>(
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
        x, y, z, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CUDADeviceContext>(), func,
        is_xsize_larger);
#endif
  } else {
    CommonForwardBroadcastCPU<Functor, T, OutType>(
        x, y, z, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CPUDeviceContext>(), func,
        is_xsize_larger);
  }
}

Y
Yu Yang 已提交
1853
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
1854 1855 1856 1857 1858
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
1859
                         DX_OP dx_op, DY_OP dy_op) {
1860 1861
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
Y
Yu Yang 已提交
1862
  if (x.dims() == y.dims()) {
1863 1864
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
1865
  } else {
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
1876 1877 1878 1879 1880 1881
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
                                 const framework::Tensor &x,
                                 const framework::Tensor &y,
                                 const framework::Tensor &out,
                                 const framework::Tensor &dout, int axis,
                                 framework::Tensor *dx, framework::Tensor *dy,
1882
                                 DX_OP dx_op, DY_OP dy_op) {
1883 1884 1885
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
1886
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
1887
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1888
  } else {
1889 1890
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1891 1892
  }
}
F
fengjiayi 已提交
1893

1894 1895
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
1896 1897 1898 1899
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
F
fengjiayi 已提交
1900
  auto x_dims = x->dims();
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
  auto y_dims = y->dims();
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
      x, y, z, ctx.template device_context<DeviceContext>(), func,
      is_xsize_larger);
  if (x_dims == y_dims) {
F
fengjiayi 已提交
1912 1913 1914 1915
    functor.Run();
    return;
  }

1916
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
1917 1918 1919 1920 1921 1922 1923 1924 1925
  PADDLE_ENFORCE_GE(
      axis, 0,
      platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis, max_dim,
                    platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim, axis));
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  }
  // special case for common implementation.
  // case 1: x=[2,3,1,5], y=[2,1,4,1]
  // case 2: x=[2,3,4], y=[1,1,4]
  if (is_run_common_broadcast == 1) {
    CommonElementwiseBroadcastForward<Functor, DeviceContext, T, OutType>(
        ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
1945 1946
    return;
  }
1947 1948

  if (platform::is_gpu_place(ctx.GetPlace())) {
1949
#if defined(__NVCC__) || defined(__HIPCC__)
1950 1951 1952 1953 1954 1955 1956
    ComputeElementwiseCUDA<Functor, T, OutType>(
        x, y, z, pre, n, post,
        ctx.template device_context<platform::CUDADeviceContext>(), func,
        is_xsize_larger);
#endif
    return;
  }
F
fengjiayi 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

2073
#if defined(__NVCC__) || defined(__HIPCC__)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
  int j = blockIdx.x;
  int i = threadIdx.x;

  while (i < h) {
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    i += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
2114
static void FusedElemwiseAndActBroadcast1CUDA(gpuStream_t stream, const T *x,
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
2171
static void FusedElemwiseAndActBroadcast2CUDA(gpuStream_t stream, const T *x,
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

2220 2221
  int pre, n, post, is_run_common_broadcast;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
2222 2223 2224 2225
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
2226
#if defined(__NVCC__) || defined(__HIPCC__)
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
2249
#if defined(__NVCC__) || defined(__HIPCC__)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
2274 2275
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
2276 2277
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
2278 2279 2280
    T zero = static_cast<T>(0);
    T x_val = (x_ == nullptr) ? zero : x_[i];
    T y_val = (y_ == nullptr) ? zero : y_[i];
2281 2282 2283 2284 2285
    T out_val = out_[i];
    T dout_val = dout_[i];
    T intermediate_out_val = UseIntermediateOut
                                 ? intermediate_out_[i]
                                 : dx_op_.GetIntermediateOut(x_val, y_val);
2286
    if (dx_ != nullptr) {
2287 2288
      dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
2289 2290
    }
    if (dy_ != nullptr) {
2291 2292
      dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
C
chengduo 已提交
2293 2294
    }
    if (dintermediate_ != nullptr) {
2295 2296
      dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
          x_val, intermediate_out_val, out_val, dout_val);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
2307
  DIntermediate_OP dintermediate_op_;
2308 2309
  T *dx_;
  T *dy_;
C
chengduo 已提交
2310
  T *dintermediate_;
2311 2312 2313
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2314
          typename DIntermediate_OP, bool UseIntermediateOut>
2315 2316 2317 2318 2319
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
2320 2321 2322
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2323 2324 2325
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();

  for_range(FusedElemwiseAndActGradNoBroadcast<
            T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>{
      x_data, y_data, intermediate_out ? intermediate_out->data<T>() : nullptr,
      out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
      dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                               ctx.GetPlace())});
2339 2340
}

C
chengduo 已提交
2341 2342 2343 2344 2345 2346 2347
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2348
  int64_t tmp_out_idx, x_idx, y_idx;
2349
  T zero = static_cast<T>(0);
2350 2351 2352 2353 2354 2355 2356
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;
2357 2358
      T x_val = (x == nullptr) ? zero : x[x_idx];
      T y_val = (y == nullptr) ? zero : y[y_idx];
2359 2360 2361 2362 2363 2364 2365

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
2366
                    ? dx_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
2367 2368
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
2369
                    : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
2383
                    ? dy_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
2384 2385
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
2386
                    : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
2397 2398 2399
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
2400
                          x_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
2401
                          dout[offset])
2402 2403
                    : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                 dout[i]);
C
chengduo 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
2414 2415 2416 2417
    }
  }
}

C
chengduo 已提交
2418 2419 2420 2421 2422 2423 2424
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2425
  int64_t tmp_out_idx, x_idx, y_idx;
2426
  T zero = static_cast<T>(0);
2427 2428 2429 2430 2431 2432 2433 2434 2435
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

2436 2437 2438
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];

2439 2440 2441 2442 2443
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
2444 2445 2446 2447 2448 2449
          T tmp =
              UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
2462 2463 2464 2465 2466 2467
          T tmp =
              UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
2478 2479 2480
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
2481 2482 2483 2484
                            x_val, intermediate_out[tmp_out_idx], out[offset],
                            dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[i]);
C
chengduo 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
2495 2496 2497 2498 2499
      }
    }
  }
}

2500
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
2501 2502 2503
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2504 2505
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
2506 2507
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2508 2509 2510
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduo 已提交
2511
  T val(0), inter_val(0);
2512
  int64_t tmp_out_idx, x_idx, y_idx;
2513
  T zero = static_cast<T>(0);
2514 2515 2516 2517 2518 2519 2520

  do {
    int offset = i * w + j;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;
2521 2522
    T x_val = (x == nullptr) ? zero : x[x_idx];
    T y_val = (y == nullptr) ? zero : y[y_idx];
2523 2524 2525 2526 2527 2528

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
2529 2530 2531 2532 2533
      T tmp = UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2534 2535 2536 2537 2538 2539 2540 2541

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
2542 2543 2544 2545 2546
      T tmp = UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2547 2548 2549 2550 2551 2552
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
2553 2554 2555 2556 2557
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
                        y[y_idx], intermediate_out[tmp_out_idx], out[offset],
                        dout[offset])
2558
                  : dintermediate_op.Recompute(x_val, y_val, out[offset],
C
chengduo 已提交
2559 2560 2561 2562 2563 2564 2565
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
2566 2567 2568 2569

    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

C
chengduo 已提交
2570
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
2586 2587 2588 2589 2590 2591 2592 2593
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
2594 2595
}

C
chengduo 已提交
2596 2597 2598 2599
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
2600
    gpuStream_t stream, const T *x, const T *y, const T *intermediate_out,
C
chengduo 已提交
2601 2602
    const T *out, const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2603 2604 2605
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
2606
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
2607
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
2608 2609
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
2610 2611
}

C
chengduo 已提交
2612 2613 2614
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2615 2616
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
2617 2618
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
2619 2620 2621
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
2622
  T val(0), inter_val(0);
2623 2624
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
2625
  T zero = static_cast<T>(0);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;
2636 2637
    T x_val = (x == nullptr) ? zero : x[x_idx];
    T y_val = (y == nullptr) ? zero : y[y_idx];
2638 2639 2640 2641 2642 2643

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
2644 2645 2646 2647 2648
      T tmp = UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2649 2650 2651 2652 2653 2654 2655 2656

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
2657 2658 2659 2660 2661
      T tmp = UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
2662 2663 2664 2665 2666 2667
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
2668 2669 2670
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
2671
                        y_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
2672
                        dout[offset])
2673
                  : dintermediate_op.Recompute(x_val, y_val, out[offset],
C
chengduo 已提交
2674 2675 2676 2677 2678 2679 2680
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
2681 2682 2683
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
2684 2685
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
2701 2702 2703 2704 2705 2706 2707 2708
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
2709 2710
}

C
chengduo 已提交
2711 2712 2713
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2714
static void FusedElemwiseAndActGradBroadcast2CUDA(
2715
    gpuStream_t stream, const T *x, const T *y, const T *intermediate_out,
2716
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
2717 2718
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
2719 2720 2721
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
2722
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
2723
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
2724 2725
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
2726 2727 2728 2729
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2730
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
2731 2732 2733 2734 2735 2736
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
2737 2738 2739
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2740 2741 2742 2743
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

2744 2745
  int pre, n, post, is_run_common_broadcast;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
2746 2747 2748 2749
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();
2750 2751 2752
  if (post == 1) {
    int h = pre;
    int w = n;
2753

2754
    if (platform::is_gpu_place(ctx.GetPlace())) {
2755
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
2756 2757
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2758
                                            SameShapeOfIntermediateOutAndOut>(
2759
          ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
2760
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2761
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2762
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2763 2764 2765
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2766 2767
#endif
    } else {
C
chengduo 已提交
2768 2769
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2770
                                           SameShapeOfIntermediateOutAndOut>(
2771
          x_data, y_data,
2772
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2773
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2774
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2775 2776 2777
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2778 2779 2780
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
2781
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
2782 2783
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2784
                                            SameShapeOfIntermediateOutAndOut>(
2785
          ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
2786 2787
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2788
          dintermediate_op,
2789
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2790 2791 2792
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2793 2794
#endif
    } else {
C
chengduo 已提交
2795 2796
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2797
                                           SameShapeOfIntermediateOutAndOut>(
2798
          x_data, y_data,
2799 2800
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2801
          dintermediate_op,
2802
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2803 2804 2805
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2806 2807 2808 2809 2810
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2811 2812
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
2813 2814 2815 2816
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
2817 2818 2819
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2820 2821 2822
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
2823 2824 2825
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument("Intermediate out is null pointer."));
2826 2827
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
2828 2829
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
2830
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
2831
        dintermediate, dx_op, dy_op, dintermediate_op);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2847 2848 2849 2850
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2851 2852
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2853 2854 2855 2856
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
2870 2871 2872 2873 2874
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument(
            "The save_intermediate_out is opened, intermediate "
            "out is null pointer."));
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
2886
    bool bcast_y = x.numel() >= y.numel();
2887 2888 2889 2890
    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
2891 2892
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
2904 2905
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
2918 2919 2920 2921 2922 2923 2924 2925

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
2926 2927
    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    *ddx_safe = ctx.AllocateTmpTensor<T, DeviceContext>(x->dims(), dev_ctx);
2928 2929 2930 2931 2932 2933
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(ctx.template device_context<DeviceContext>(), ddx_safe,
             static_cast<T>(0));
  }
}

2934 2935
}  // namespace operators
}  // namespace paddle