proximal_gd_op.cc 3.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/proximal_gd_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
class ProximalGDOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of ProximalGDOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of ProximalGDOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of ProximalGDOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of ProximalGDOp should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"),
                      "Two input of ProximalGD Op's dimension must be same.");

    auto lr_dim = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
                      "Learning Rate should be a scalar.");

    ctx->SetOutputDim("ParamOut", param_dim);
  }
D
dzhwinter 已提交
47 48 49 50 51 52
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("Param")->type());
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
53 54 55 56
};

class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
57
  void Make() override {
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
             "Input parameter value that has to be updated.");
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
             "Input gradient of the parameter.");
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
             "The learning rate should be a tensor of size 1.");

    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");

    AddAttr<float>("l1",
                   "(float, default 0.0) "
                   "L1 regularization strength.")
        .SetDefault(0.0f);
    AddAttr<float>("l2",
K
kexinzhao 已提交
75
                   "(float, default 0.0) "
76 77 78
                   "L2 regularization strength.")
        .SetDefault(0.0f);
    AddComment(R"DOC(
K
kexinzhao 已提交
79
ProximalGD Operator.
80

K
kexinzhao 已提交
81
Optimizer that implements the proximal gradient descent algorithm:
82

K
kexinzhao 已提交
83 84 85 86 87
$$
prox\_param = param - learning\_rate * grad \\
param = sign(prox\_param) / (1 + learning\_rate * l2) *
        \max(|prox\_param| - learning\_rate * l1, 0)
$$        
88 89 90

The paper that proposed Proximal Gradient Descent:
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
K
kexinzhao 已提交
91

92 93 94 95 96 97 98 99 100 101
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(proximal_gd, ops::ProximalGDOp,
                             ops::ProximalGDOpMaker);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
102 103
    proximal_gd,
    ops::ProximalGDOpKernel<paddle::platform::CPUDeviceContext, float>);