multi_devices_graph_pass.cc 34.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
X
Xin Pan 已提交
39 40 41 42 43
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

X
Xin Pan 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
101
    var = *var_holder.rbegin();
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
129

X
Xin Pan 已提交
130 131 132 133 134 135
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kParams[] = "params";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";

X
Xin Pan 已提交
136
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
137 138 139
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
140 141 142 143
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
Y
Yu Yang 已提交
144
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
145
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
146
#endif
X
Xin Pan 已提交
147

X
Xin Pan 已提交
148
  for (auto &p : Get<const std::unordered_set<std::string>>(kParams)) {
Y
Yu Yang 已提交
149 150
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
151
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
152 153 154 155 156
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
157 158
}

X
Xin Pan 已提交
159 160
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
Y
Yu Yang 已提交
161 162
                                                size_t place_id) const {
  auto p = places_[place_id];
X
clean1  
Xin Pan 已提交
163
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
X
Xin Pan 已提交
164 165
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
166

167 168
  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
T
wip  
typhoonzero 已提交
169 170 171
    op_handle->AddInput(var);
  }

172
  for (ir::Node *output : node->outputs) {
X
polish  
Xin Pan 已提交
173 174 175 176 177 178 179 180
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
T
wip  
typhoonzero 已提交
181 182
  }
}
Y
fix pe  
Yancey1989 已提交
183 184

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
X
Xin Pan 已提交
185
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
186
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
187 188
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
189 190
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
191 192
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
193
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
194 195 196 197 198 199 200 201 202 203
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
X
Xin Pan 已提交
204
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
205
  std::vector<std::string> recv_vars;
206 207
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
208 209 210
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
211 212 213 214 215 216 217 218 219
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

Y
Yancey1989 已提交
220 221 222 223
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
X
Xin Pan 已提交
224
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
Y
Yancey1989 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

X
better  
Xin Pan 已提交
241 242 243 244 245
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
X
Xin Pan 已提交
246 247 248
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
  std::vector<ir::Node *> ret = ir::TopologySortOperations(graph);
X
better  
Xin Pan 已提交
249 250 251 252 253
  size_t last_backward = 0;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (boost::get<int>(
            ret[i]->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kBackward)) {
X
Xin Pan 已提交
254
      last_backward = i;
X
better  
Xin Pan 已提交
255 256 257
    }
  }

X
Xin Pan 已提交
258 259 260 261
  std::vector<ir::Node *> optimize_ops;
  std::vector<ir::Node *> sorted_ret;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (i < last_backward) {
X
Xin Pan 已提交
262 263 264
      if (static_cast<bool>(boost::get<int>(ret[i]->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kOptimize))) {
X
Xin Pan 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        optimize_ops.push_back(ret[i]);
      } else {
        sorted_ret.push_back(ret[i]);
      }
    } else if (i == last_backward) {
      sorted_ret.push_back(ret[i]);
      // Verify that no operations before optimize ops depends on optimize ops.
      std::unordered_set<ir::Node *> optimize_set(optimize_ops.begin(),
                                                  optimize_ops.end());
      for (ir::Node *n : sorted_ret) {
        for (ir::Node *in : n->inputs) {
          for (ir::Node *pre_n : in->inputs) {
            PADDLE_ENFORCE(optimize_set.find(pre_n) == optimize_set.end(),
                           "optimize operations cannot be depended by forward "
                           "or backward node %s -> %s",
                           pre_n->Name(), n->Name());
          }
        }
X
Xin Pan 已提交
283
      }
X
Xin Pan 已提交
284 285 286 287
      sorted_ret.insert(sorted_ret.end(), optimize_ops.begin(),
                        optimize_ops.end());
    } else {
      sorted_ret.push_back(ret[i]);
X
Xin Pan 已提交
288 289
    }
  }
X
better  
Xin Pan 已提交
290 291 292
  return sorted_ret;
}

X
Xin Pan 已提交
293
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
294
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
295
  Init();
X
Xin Pan 已提交
296
  // Give the topology sort order and rebuild the graph structure.
X
better  
Xin Pan 已提交
297
  std::vector<ir::Node *> sorted_ops = SortOpsAndDelayOptimizeOp(*graph);
X
Xin Pan 已提交
298 299
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
300 301

  for (auto &node : nodes) {
X
Xin Pan 已提交
302
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
303
      all_vars_.emplace(node->Name(), node->Var());
304
    }
C
fix ci  
chengduoZH 已提交
305
  }
C
chengduoZH 已提交
306
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
307 308

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
309 310 311
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
312

Y
fix pe  
Yancey1989 已提交
313
  // find send/recv vars so that we can place the distributed training
314
  // related op in the place 0
X
Xin Pan 已提交
315 316
  auto send_vars = FindDistTrainSendVars(sorted_ops);
  auto recv_vars = FindDistTrainRecvVars(sorted_ops);
T
typhoonzero 已提交
317

C
chengduoZH 已提交
318 319 320
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
321
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
322
  bool is_forwarding = true;
Y
Yancey1989 已提交
323
  bool is_dist_train = false;
324

X
Xin Pan 已提交
325 326
  std::unordered_map<std::string, int> sharded_var_device;

X
better  
Xin Pan 已提交
327
  for (ir::Node *node : sorted_ops) {
Y
Yancey1989 已提交
328
    if (boost::get<int>(
329
            node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Yancey1989 已提交
330
        static_cast<int>(OpRole::kRPC)) {
X
Xin Pan 已提交
331
      int op_dev_id = CreateRPCOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
332 333 334 335 336 337 338 339 340 341 342 343
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
344 345 346
    } else if (boost::get<int>(node->Op()->GetAttr(
                   OpProtoAndCheckerMaker::OpRoleAttrName())) ==
               static_cast<int>(OpRole::kDist)) {
X
Xin Pan 已提交
347
      int op_dev_id = CreateDistTrainOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
348 349 350 351
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
352
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
353
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
354 355
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
356
        // TODO(paddle-dev): Why is there no input for this op_handle?
357
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
358
        CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]);
Y
Yu Yang 已提交
359
      }
360 361 362 363
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
364
      is_forwarding = false;
Y
Yu Yang 已提交
365
    } else {
X
Xin Pan 已提交
366
      int op_dev_id = GetOpDeviceID(result, node, sharded_var_device);
C
chengduo 已提交
367
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
368
        CreateComputationalOp(&result, node, op_dev_id);
369
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
370
          sharded_var_device.emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
371
        }
C
chengduo 已提交
372 373 374
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
375
        // TODO(paddle-dev): Why is so special about "read" op?
376 377
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
378
          CreateComputationalOps(&result, node, places_.size());
379
          const auto &data_var_names = node->Op()->Output("Out");
380
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
381
        } else {
X
Xin Pan 已提交
382
          CreateComputationalOps(&result, node, places_.size());
383 384
        }

C
chengduo 已提交
385 386 387
        if (!is_forwarding && places_.size() > 1) {
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
388
          if (static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
C
chengduo 已提交
389 390 391
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
392 393
              auto backward_vars = boost::get<std::vector<std::string>>(
                  node->Op()->GetNullableAttr(
C
chengduo 已提交
394
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
395

C
chengduo 已提交
396
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
397

C
chengduo 已提交
398 399 400 401
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
402

C
chengduo 已提交
403 404 405 406
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
X
Xin Pan 已提交
407
                    sharded_var_device.emplace(g_name, cur_device_id);
Y
Yancey1989 已提交
408 409 410
                    if (!is_dist_train) {
                      bcast_var_name_set[cur_device_id].emplace(p_name);
                    }
C
chengduo 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
424
              }
C
chengduo 已提交
425
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
426
            }
Y
Yu Yang 已提交
427 428 429 430 431
          }
        }
      }
    }
  }
432 433 434 435 436
  bool use_gpu = false;
#ifdef PADDLE_WITH_CUDA
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
437 438 439 440 441
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
442 443 444
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
445 446 447 448 449 450 451 452
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(&result, bcast_var_name_set);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(&result, bcast_name, dev_id);
        }
453
      }
C
chengduoZH 已提交
454 455
    }
  }
Y
Yu Yang 已提交
456
  /*
X
Xin Pan 已提交
457 458 459
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
460
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
461

Y
Yu Yang 已提交
462 463 464 465
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
466
  result.Erase<GraphOps>(kGraphOps);
Q
qiaolongfei 已提交
467
  return graph;
Y
Yu Yang 已提交
468 469
}

Y
Yancey1989 已提交
470 471 472
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
473 474 475
    return true;
  }
  return false;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
491
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
492
                                                const std::string &p_name,
C
chengduoZH 已提交
493
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
494
#ifdef PADDLE_WITH_CUDA
X
polish  
Xin Pan 已提交
495 496 497
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
498
#else
X
polish  
Xin Pan 已提交
499 500 501
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
502
#endif
X
Xin Pan 已提交
503
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
504

X
Xin Pan 已提交
505
  auto *in =
X
clean1  
Xin Pan 已提交
506
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
507 508 509 510
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
511
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
512
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
513 514 515
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
516 517 518 519 520
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
543
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

X
Xin Pan 已提交
559
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
560
                                                    ir::Node *node,
C
chengduoZH 已提交
561
                                                    int dev_id) const {
X
Xin Pan 已提交
562
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
563
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
564 565
                              local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
566 567
}

X
Xin Pan 已提交
568
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
569
                                                const std::string &og) const {
Y
Yu Yang 已提交
570
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
571
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
572 573
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
574
#else
X
Xin Pan 已提交
575
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
576 577
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
578
#endif
X
clean1  
Xin Pan 已提交
579
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
Y
Yu Yang 已提交
580 581 582

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
583
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
584
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
585 586
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
587
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
588

X
Xin Pan 已提交
589
    auto var =
X
polish  
Xin Pan 已提交
590 591
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
592 593 594 595 596
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

597
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
598
    ir::Graph *result, const std::vector<std::string> &datas) const {
F
fengjiayi 已提交
599
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
600
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
601 602
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
603
#else
X
Xin Pan 已提交
604
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
605 606
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
607
#endif
X
clean1  
Xin Pan 已提交
608
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
609 610 611 612
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
613
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
614
      PADDLE_ENFORCE(!vars.empty());
X
clean1  
Xin Pan 已提交
615
      op_handle->AddInput(vars.back());
X
polish  
Xin Pan 已提交
616 617 618
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
619 620 621 622 623 624
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
625 626 627
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const ir::Graph &graph, ir::Node *node,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
Y
yuyang18 已提交
628
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
629 630
    return -1;
  }
631
  int op_role = boost::get<int>(
632
      node->Op()->GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
633 634
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
635
  }
636
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
637
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
638 639

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
X
Xin Pan 已提交
640
  int dev_id = GetVarDeviceID(graph, param_grad[1], sharded_var_device);
X
Xin Pan 已提交
641 642
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
643
  return dev_id;
644 645
}

X
Xin Pan 已提交
646 647 648
int MultiDevSSAGraphBuilder::GetVarDeviceID(
    const ir::Graph &graph, const std::string &varname,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
X
Xin Pan 已提交
649 650
  auto got = sharded_var_device.find(varname);
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
651 652
}

653
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
654 655
    ir::Graph *result, const std::string &loss_grad_name,
    ir::Node *out_var_node) const {
Y
Yu Yang 已提交
656
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
657 658
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
659
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
660
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
Y
yuyang18 已提交
661
        local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
X
Xin Pan 已提交
662
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
663 664 665 666 667 668 669

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

670 671
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
672 673 674
  }
}

X
Xin Pan 已提交
675
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
676
                                                     ir::Node *node,
T
typhoonzero 已提交
677 678
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
679 680
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
X
Xin Pan 已提交
681
    result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
682
        new ComputationOpHandle(result->CreateOpNode(node->Op()), s, p));
683
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
684 685 686
  }
}

X
Xin Pan 已提交
687
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
688 689
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
690
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
691
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
692 693
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
694
#else
X
Xin Pan 已提交
695
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
696 697
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
698
#endif
X
clean1  
Xin Pan 已提交
699
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
700 701 702

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
703
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
704
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
705 706
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
707
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
708
  }
X
Xin Pan 已提交
709
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
710 711 712
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
713 714 715 716 717
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

X
Xin Pan 已提交
718 719 720
int MultiDevSSAGraphBuilder::CreateDistTrainOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
721
  int op_dev_id = -1;
722 723 724
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
725
    input_var_names.push_back(input->Name());
726 727
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
728
    output_var_names.push_back(output->Name());
729 730 731
  }

  if (node->Op()->Type() == "split_byref" ||
732 733
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
X
Xin Pan 已提交
734
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
735 736
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
Y
Yancey1989 已提交
737
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
738 739
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
740
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
741 742
      }
    }
743
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
744
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
745
    }
746
  } else if (node->Op()->Type() == "concat") {
X
Xin Pan 已提交
747 748
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
749
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
750
      sharded_var_device->emplace(varname, op_dev_id);
Y
yi.wu 已提交
751
    }
Y
Yancey1989 已提交
752
  } else {
753
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
754
    PADDLE_THROW(
Y
Yancey1989 已提交
755 756 757 758 759
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
760 761
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
762

763
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
764
  return op_dev_id;
W
Wu Yi 已提交
765 766 767
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
768
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
769 770 771 772 773 774
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
775
        var = *var_holder.rbegin();
W
Wu Yi 已提交
776 777 778
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
779 780 781
  }
}

782
// Create RPC related op handles that connects its in ops and out ops.
X
Xin Pan 已提交
783 784 785
int MultiDevSSAGraphBuilder::CreateRPCOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
786
  int op_dev_id = -1;
787
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
788
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
789 790
    op_dev_id =
        GetVarDeviceID(*result, node->inputs[0]->Name(), *sharded_var_device);
X
Xin Pan 已提交
791 792
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
793 794 795
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
796
        node->inputs[0]->Name().find(".block") == std::string::npos) {
797 798
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
799
        input_var_names.push_back(n->Name());
800
      }
W
Wu Yi 已提交
801 802 803 804 805 806
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
807
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
808
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
809
      }
X
Xin Pan 已提交
810
      sharded_var_device->emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
811
    }
812 813 814
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
815
      output_var_names.push_back(n->Name());
816
    }
W
Wu Yi 已提交
817 818 819
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
X
Xin Pan 已提交
820 821
      op_dev_id =
          GetVarDeviceID(*result, recv_param_grad[1], *sharded_var_device);
W
Wu Yi 已提交
822 823 824 825 826 827
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
828
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
829
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
830 831
    }
  } else {
W
Wu Yi 已提交
832
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
833 834 835 836
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
837
                 node->Op()->Type());
X
Xin Pan 已提交
838
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
839 840
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
841

W
Wu Yi 已提交
842 843
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
844
  } else {
W
Wu Yi 已提交
845 846 847
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
848
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
849 850
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
851

W
Wu Yi 已提交
852 853 854 855
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
X
Xin Pan 已提交
856 857
        outvar_dev_id =
            GetVarDeviceID(*result, output->Name(), *sharded_var_device);
W
Wu Yi 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870
        PADDLE_ENFORCE_NE(outvar_dev_id, -1);
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
871
  return op_dev_id;
Y
Yu Yang 已提交
872 873
}

874
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
875
  return boost::get<int>(
876
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
877 878 879
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
880
}
Y
Yu Yang 已提交
881 882 883
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
884

X
Xin Pan 已提交
885
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
886 887 888 889 890 891
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kParams)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
    .RequirePassAttr(paddle::framework::details::kStrategy);