tensor_utils.cc 9.6 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/lite/tensor_utils.h"
W
Wilber 已提交
16
#include <functional>
石晓伟 已提交
17
#include <map>
18
#include <memory>
石晓伟 已提交
19 20
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/inference/lite/engine.h"
21
#include "paddle/fluid/memory/allocation/allocator.h"
石晓伟 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace inference {
namespace lite {
namespace utils {

using paddle::lite_api::TargetType;
using paddle::lite_api::PrecisionType;
using paddle::lite_api::DataLayoutType;

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}
template void SetLoD<paddle::lite::LoD, framework::LoD>(
    paddle::lite::LoD* dst, const framework::LoD& src);
template void SetLoD<framework::LoD, paddle::lite::LoD>(
    framework::LoD* dst, const paddle::lite::LoD& src);

platform::Place GetNativePlace(const TargetType& type, int id = 0) {
  switch (type) {
    case TargetType::kHost:
    case TargetType::kX86:
W
Wilber 已提交
49
    case TargetType::kARM:
石晓伟 已提交
50 51 52
      return platform::CPUPlace();
    case TargetType::kCUDA:
      return platform::CUDAPlace(id);
53 54 55
    case TargetType::kXPU:
      LOG(ERROR) << "No corresponding device for XPU yet.";
      return platform::Place();
石晓伟 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    default:
      LOG(FATAL) << "Error target type.";
      return platform::Place();
  }
}

TargetType GetLiteTargetType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return TargetType::kHost;
  }
  return TargetType::kCUDA;
}

PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type) {
  switch (type) {
    case framework::proto::VarType_Type_FP32:
      return PrecisionType::kFloat;
    case framework::proto::VarType_Type_INT8:
      return PrecisionType::kInt8;
    case framework::proto::VarType_Type_INT32:
      return PrecisionType::kInt32;
    case framework::proto::VarType_Type_INT64:
      return PrecisionType::kInt64;
    default:
      LOG(FATAL) << "Error precision type.";
      return PrecisionType::kUnk;
  }
}

framework::proto::VarType::Type GetNativePrecisionType(
    const PrecisionType& type) {
  switch (type) {
    case PrecisionType::kFloat:
      return framework::proto::VarType_Type_FP32;
    case PrecisionType::kInt8:
      return framework::proto::VarType_Type_INT8;
    case PrecisionType::kInt32:
      return framework::proto::VarType_Type_INT32;
    case PrecisionType::kInt64:
      return framework::proto::VarType_Type_INT64;
    default:
      LOG(FATAL) << "Error precision type.";
      return static_cast<framework::proto::VarType::Type>(-1);
  }
}

framework::DataLayout GetNativeLayoutType(const DataLayoutType& type) {
  switch (type) {
    case DataLayoutType::kNCHW:
      return framework::DataLayout::kNCHW;
    default:
      LOG(FATAL) << "Error layout type.";
      return static_cast<framework::DataLayout>(-1);
  }
}

void MemoryCopyAsync(const platform::Place& dst_place, void* dst_data,
                     const platform::Place& src_place, const void* src_data,
                     const size_t size, const platform::DeviceContext& ctx) {
  const platform::CPUPlace cpu_place;
  if (platform::is_cpu_place(dst_place) && platform::is_cpu_place(src_place)) {
    memory::Copy(cpu_place, dst_data, cpu_place, src_data, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_cpu_place(dst_place) &&
        platform::is_gpu_place(src_place)) {
      LOG(FATAL) << "lite::MemoryCopy GPU->CPU is not yet implemented.";
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_cpu_place(src_place)) {
      LOG(FATAL) << "lite::MemoryCopy CPU->GPU is not yet implemented.";
    } else if (platform::is_gpu_place(dst_place) &&
               platform::is_gpu_place(src_place)) {
      auto gpu_place = boost::get<platform::CUDAPlace>(src_place);
      memory::Copy(
          gpu_place, dst_data, gpu_place, src_data, size,
          static_cast<const platform::CUDADeviceContext&>(ctx).stream());
    }
#else
    LOG(FATAL) << "You must define PADDLE_WITH_CUDA for using CUDAPlace.";
#endif
  }
}

W
Wilber 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
void* GetLiteTensorDataPtr(paddle::lite_api::Tensor* src,
                           PrecisionType precision_type,
                           TargetType target_type) {
  void* res{nullptr};
  switch (precision_type) {
    case PrecisionType::kFloat:
      res = static_cast<void*>(src->mutable_data<float>(target_type));
      break;
    case PrecisionType::kInt8:
      res = static_cast<void*>(src->mutable_data<int8_t>(target_type));
      break;
    case PrecisionType::kInt32:
      res = static_cast<void*>(src->mutable_data<int32_t>(target_type));
      break;
    case PrecisionType::kInt64:
      res = static_cast<void*>(src->mutable_data<int64_t>(target_type));
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported precision type. Now only supports FP32, INT8, INT32 and "
          "INT64."));
      break;
  }
  return res;
}

int64_t GetLiteTensorNumel(const paddle::lite_api::Tensor& tensor) {
  auto shape = tensor.shape();
  int64_t numel = std::accumulate(shape.begin(), shape.end(), 1,
                                  std::multiplies<int64_t>());
  return numel;
}

void InitDstTensor(paddle::lite_api::Tensor* dst,
                   const framework::LoDTensor& src) {
石晓伟 已提交
174 175 176
  // Currently, Lite needs to explicitly specify the target type of
  // the input tensor.
  constexpr int empty_size = 0;
W
Wilber 已提交
177 178 179 180 181 182 183
  dst->Resize({empty_size});
  GetLiteTensorDataPtr(dst, GetLitePrecisionType(src.type()),
                       GetLiteTargetType(src.place()));
  dst->SetPrecision(GetLitePrecisionType(src.type()));
  paddle::lite::LoD lite_lod;
  SetLoD(&lite_lod, src.lod());
  dst->SetLoD(lite_lod);
石晓伟 已提交
184 185
}

W
Wilber 已提交
186 187
void InitDstTensor(framework::LoDTensor* dst,
                   const paddle::lite_api::Tensor& src) {
石晓伟 已提交
188 189 190 191 192 193 194 195
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
  dst->mutable_data(inference::lite::utils::GetNativePlace(src.target()),
                    dtype);
  SetLoD(dst->mutable_lod(), src.lod());
}

template <>
W
Wilber 已提交
196 197
void TensorCopyAsync(paddle::lite_api::Tensor* dst,
                     const framework::LoDTensor& src,
石晓伟 已提交
198 199 200 201 202 203 204 205
                     const platform::DeviceContext& ctx) {
  InitDstTensor(dst, src);
  const platform::Place& src_place = src.place();
  const platform::Place& dst_place = GetNativePlace(dst->target());
  const size_t bytes =
      static_cast<size_t>(src.numel()) * framework::SizeOfType(src.type());
  dst->Resize(framework::vectorize(src.dims()));
  const void* src_data = src.data<void>();
W
Wilber 已提交
206 207 208
  void* dst_data{nullptr};
  dst_data = GetLiteTensorDataPtr(dst, GetLitePrecisionType(src.type()),
                                  GetLiteTargetType(src.place()));
209 210
  VLOG(3) << "[CopyAsync fluid -> lite] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << src.type();
石晓伟 已提交
211
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
W
Wilber 已提交
212
  VLOG(3) << "[Lite memory size] Bytes = " << bytes;
石晓伟 已提交
213 214 215
}

template <>
W
Wilber 已提交
216 217
void TensorCopyAsync(framework::LoDTensor* dst,
                     const paddle::lite_api::Tensor& src,
石晓伟 已提交
218
                     const platform::DeviceContext& ctx) {
W
Wilber 已提交
219
  dst->Resize(paddle::framework::make_ddim(src.shape()));
石晓伟 已提交
220 221 222
  InitDstTensor(dst, src);
  const platform::Place& src_place = GetNativePlace(src.target());
  const platform::Place& dst_place = dst->place();
W
Wilber 已提交
223 224 225
  int64_t src_numel = GetLiteTensorNumel(src);
  const size_t bytes = src_numel * framework::SizeOfType(dst->type());
  const void* src_data = src.data<void>();
石晓伟 已提交
226 227
  // When Lite is ready, the source type needs to be modified here.
  void* dst_data = dst->mutable_data(dst_place, dst->type());
228 229
  VLOG(3) << "[CopyAsync lite -> fluid] Bytes = " << bytes << ", src = " << &src
          << ", dst = " << dst << ", src_type = " << dst->type();
石晓伟 已提交
230
  MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx);
W
Wilber 已提交
231
  VLOG(3) << "[Lite memory size] Bytes = " << bytes;
石晓伟 已提交
232 233
}

234
template <>
W
Wilber 已提交
235
void TensorDataShare(paddle::lite_api::Tensor* dst, framework::LoDTensor* src) {
236
  dst->Resize(framework::vectorize(src->dims()));
W
Wilber 已提交
237 238 239 240 241 242
  dst->ShareExternalMemory(src->data<void>(), src->memory_size(),
                           GetLiteTargetType(src->place()));
  dst->SetPrecision(GetLitePrecisionType(src->type()));
  paddle::lite::LoD lite_lod;
  SetLoD(&lite_lod, src->lod());
  dst->SetLoD(lite_lod);
243 244 245
}

template <>
W
Wilber 已提交
246
void TensorDataShare(framework::LoDTensor* dst, paddle::lite_api::Tensor* src) {
247 248
  constexpr framework::proto::VarType::Type dtype =
      framework::proto::VarType_Type_FP32;
W
Wilber 已提交
249 250 251
  void* src_raw_data =
      GetLiteTensorDataPtr(src, GetLitePrecisionType(dtype), src->target());
  size_t memory_size = GetLiteTensorNumel(*src) * sizeof(float);
252
  std::shared_ptr<memory::allocation::Allocation> holder(
W
Wilber 已提交
253
      new memory::allocation::Allocation(src_raw_data, memory_size,
254
                                         GetNativePlace(src->target())));
W
Wilber 已提交
255
  dst->Resize(paddle::framework::make_ddim(src->shape()));
256 257 258 259
  SetLoD(dst->mutable_lod(), src->lod());
  dst->ResetHolderWithType(holder, dtype);
}

石晓伟 已提交
260 261 262 263
}  // namespace utils
}  // namespace lite
}  // namespace inference
}  // namespace paddle