quantize_mkldnn_op.cc 3.3 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/quantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaoli.liu@intel.com 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

template <typename T>
class QuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
    auto* output = ctx.Output<Tensor>("Output");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    std::vector<primitive> pipeline;
    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    const T* input_data = input->data<T>();

    mkldnn::primitive_attr attri;
    int mask = 0;
    attri.set_output_scales(mask, {scale_data});

    auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
                                          input->format());
    auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
    auto src_memory =
        std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
    std::shared_ptr<primitive::at> src_memory_p =
        std::shared_ptr<primitive::at>(new primitive::at(*src_memory));

    bool is_negative = ctx.Attr<bool>("is_negative_input");
X
xiaoli.liu@intel.com 已提交
63
    std::shared_ptr<mkldnn::memory::primitive_desc> dst_pd;
X
xiaoli.liu@intel.com 已提交
64 65
    std::shared_ptr<mkldnn::memory> dst_memory;
    if (is_negative) {
X
xiaoli.liu@intel.com 已提交
66 67
      platform::ConvMKLDNNHandler::SetDstMemory<int8_t>(
          ctx, output, dst_tz, engine, dst_pd, dst_memory);
X
xiaoli.liu@intel.com 已提交
68
    } else {
X
xiaoli.liu@intel.com 已提交
69 70
      platform::ConvMKLDNNHandler::SetDstMemory<uint8_t>(
          ctx, output, dst_tz, engine, dst_pd, dst_memory);
X
xiaoli.liu@intel.com 已提交
71 72
    }
    auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
X
xiaoli.liu@intel.com 已提交
73
        new reorder::primitive_desc(src_pd, *dst_pd, attri));
X
xiaoli.liu@intel.com 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    auto reorder_p = std::shared_ptr<reorder>(
        new reorder(*reorder_pd, *src_memory_p, *dst_memory));
    pipeline.push_back(*reorder_p);
    stream(stream::kind::eager).submit(pipeline).wait();
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory));
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

// TODO(Xiaoli) Support FP32->S8 quantization.

REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::QuantOpKernel<float>);