base.py 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
17 18
import functools
import inspect
19
import sys
20 21 22
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
23
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
24
from .tracer import Tracer
Z
Zeng Jinle 已提交
25
import logging
26
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
27
import warnings
J
Jiabin Yang 已提交
28
from ..framework import _get_paddle_place, _in_legacy_dygraph, _in_eager_without_dygraph_check
29
import paddle
30

31
__all__ = [
32 33
    'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph',
    'enabled', 'to_variable'
34
]
35

36 37 38 39 40 41 42 43 44 45 46
# Flag that indicates whether running code under `@declarative`
_in_declarative_mode_ = False


def in_declarative_mode():
    """
    Return a bool value that indicates whether running code under `@declarative`

    """
    return _in_declarative_mode_

47

48 49 50 51 52 53 54 55 56 57 58
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


59 60 61 62 63 64 65 66 67 68
@signature_safe_contextmanager
def _switch_declarative_mode_guard_(is_declarative=True):

    global _in_declarative_mode_
    original_val = _in_declarative_mode_
    _in_declarative_mode_ = is_declarative
    yield
    _in_declarative_mode_ = original_val


69 70 71 72 73 74
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
75 76 77 78 79
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
80 81


82 83 84
_functional_dygraph_context_manager = None


85 86
@signature_safe_contextmanager
def param_guard(parameters):
87
    # Note: parameters is a reference of self._parameters or self._buffers
J
Jiabin Yang 已提交
88 89
    if in_declarative_mode() and not framework._non_static_mode(
    ) and parameters:
90 91
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
92 93 94 95 96
            if isinstance(var_base, list):
                new_var = [_convert_into_variable(var) for var in var_base]
            else:
                new_var = _convert_into_variable(var_base)
            parameters[name] = new_var
97 98 99 100 101 102
        yield
        parameters.update(origin_parameters)
    else:
        yield


J
Jiabin Yang 已提交
103
def _convert_into_variable(tensor):
104 105 106
    """
    Convert Varbase into Variable.
    """
J
Jiabin Yang 已提交
107
    if isinstance(tensor, (core.eager.Tensor, core.VarBase)):
108
        # Check whether has been created before.
J
Jiabin Yang 已提交
109
        new_var = tensor.block._find_var_recursive(tensor.name)
110 111 112
        if new_var is not None:
            assert isinstance(new_var, framework.Variable)
        # Convert ParamBase into Parameter with same attributes in dy2stat.
J
Jiabin Yang 已提交
113 114 115
        elif isinstance(tensor,
                        (framework.EagerParamBase, framework.ParamBase)):
            new_var = tensor._to_static_var(to_parameter=True)
116 117 118 119 120 121 122 123 124
        else:
            # Note(Aurelius84): Convert VarBase in self._buffers into Variable with
            # same attributes and set persistable=True to allow saving this var.
            # Because users can create a VarBase in `__init__`  like a
            # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
            # and necessary for inferring. It will be pruned if it's not necessary for inferring.

            # But if its shape is empty while created from `create_variable()`, we consider this buffer
            # non-persistable. See case of `drop_state` in lstm api.
J
Jiabin Yang 已提交
125
            is_persistable = len(tensor.shape) > 0
126

J
Jiabin Yang 已提交
127
            new_var = tensor._to_static_var(
128 129 130
                to_parameter=False, persistable=is_persistable)
        return new_var
    else:
J
Jiabin Yang 已提交
131
        return tensor
132 133


134
def enabled():
135 136 137
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
138 139
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable_dygraph`
    and :ref:`api_fluid_dygraph_disable_dygraph` api .
140 141

    **Note**:
J
Jiabin Yang 已提交
142 143
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use for now.
144 145 146 147 148 149 150 151 152 153 154 155 156 157

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
J
Jiabin Yang 已提交
158
    # TODO(jiabin): Make this check as in_dygraph_mode when we support default eager mode.
J
Jiabin Yang 已提交
159
    return framework._non_static_mode()
160 161


162 163
def enable_dygraph(place=None):
    """
164 165 166 167 168

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
169 170

    Parameters:
171 172 173
        place(paddle.CPUPlace|paddle.CUDAPlace|str, optional): Place to run dynamic graph. Default: None. Which means that the running place will be 
            determined according to the way of paddle compilation. If ``place`` is string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
            index of the GPUs.
174 175 176 177 178 179 180

    return:
        None

    Examples:
        .. code-block:: python

181 182 183 184 185 186 187 188
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
189 190 191

    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
192
    if _functional_dygraph_context_manager is None:
193 194
        _functional_dygraph_context_manager = guard(
            place=_get_paddle_place(place))
S
songyouwei 已提交
195
        _functional_dygraph_context_manager.__enter__()
196

H
hong 已提交
197 198 199
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

200 201 202

def disable_dygraph():
    """
203 204 205 206 207

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
208 209 210 211 212 213 214

    return:
        None

    Examples:
        .. code-block:: python

215 216 217 218 219 220 221 222
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
223 224 225 226 227 228 229 230

    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


231 232 233 234
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
235 236
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
237 238 239
        try:
            yield
        finally:
240
            tracer._has_grad = has_grad
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 1024], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


class no_grad_:
305
    """
306 307
    :api_attr: imperative

308
    Create a context which disables dygraph gradient calculation.
309 310
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
311

312
    Also functions as a decorator. (Make sure to use an instance.)
313 314 315 316 317 318

    Examples:

     .. code-block:: python

        import numpy as np
319
        import paddle
320

321 322 323
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
324 325 326
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
327 328
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
329
        x = paddle.to_tensor(data)
330 331 332 333 334
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
335 336 337

        # use as decorator

338
        @paddle.no_grad()
339
        def test_layer():
340
            inp = np.ones([3, 1024], dtype='float32')
341 342 343
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
344 345
            ret = linear1(t)
            dy_ret = linear2(ret)
346 347 348 349

        test_layer()
    """

350
    def __call__(self, func):
S
songyouwei 已提交
351
        @decorator.decorator
352 353
        def _decorate_function(func, *args, **kwargs):
            with self:
354
                return func(*args, **kwargs)
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        tracer = framework._dygraph_tracer()
        if tracer:
371 372
            self.orig = tracer._has_grad
            tracer._has_grad = False
373 374 375 376

    def __exit__(self, *args):
        tracer = framework._dygraph_tracer()
        if tracer:
377
            tracer._has_grad = self.orig
378 379


S
rename  
sneaxiy 已提交
380
@signature_safe_contextmanager
P
Paddle CI 已提交
381
def guard(place=None):
382
    """
383 384
    :api_attr: imperative

385
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
386

387
    Parameters:
388 389 390 391
        place(fluid.CPUPlace| fluid.CUDAPlace|str, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation.
            If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None
392 393 394 395 396 397 398 399 400 401 402 403

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
404
            inp = np.ones([3, 1024], dtype='float32')
405
            t = fluid.dygraph.base.to_variable(inp)
406 407 408 409
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
410 411

    """
412 413
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
414
    tracer = Tracer()
415
    VarBase = core.VarBase
M
minqiyang 已提交
416

417
    if place is not None:
418
        expected_place = _get_paddle_place(place)
419 420
    else:
        expected_place = framework._current_expected_place()
M
minqiyang 已提交
421

422 423
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
424
            with framework._dygraph_guard(tracer):
425
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
426
                    yield
427 428


429 430 431 432
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
433
         retain_graph=None,
434
         create_graph=False,
Z
Zeng Jinle 已提交
435 436
         only_inputs=True,
         allow_unused=False,
437
         no_grad_vars=None):
Z
Zeng Jinle 已提交
438 439
    ''' 
    .. note::
440
        **This API is ONLY available in imperative mode.**
Z
Zeng Jinle 已提交
441 442 443 444

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
445 446 447 448
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or 
            Tensor list/tuple of the graph to compute gradients.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the graph to compute gradients. The returned
Z
Zeng Jinle 已提交
449
            values of this API are the gradients of `inputs` . 
450
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional): 
Z
Zeng Jinle 已提交
451 452 453 454 455 456
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
457
            `grad_outputs` is a Tensor. Default None.
Z
Zeng Jinle 已提交
458 459 460 461 462 463 464 465 466 467 468
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
469
            Tensors in the graph would be also computed and accumulated. 
Z
Zeng Jinle 已提交
470 471 472 473
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
474
            Tensors of `inputs` are unreachable in the graph. If some Tensors of 
Z
Zeng Jinle 已提交
475 476 477
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
478 479
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional): 
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
480 481

    Returns:
L
levi131 已提交
482
        list: a list of Tensors, whose length is the same as the Tensor number 
483
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of 
Z
Zeng Jinle 已提交
484 485 486 487 488
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

489
            import paddle
Z
Zeng Jinle 已提交
490 491

            def test_dygraph_grad(create_graph):
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
518 519 520 521 522
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

523
            import paddle
Z
Zeng Jinle 已提交
524 525

            def test_dygraph_grad(grad_outputs=None):
526
                x = paddle.to_tensor(2.0)
Z
Zeng Jinle 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

542
                dx = paddle.grad(
Z
Zeng Jinle 已提交
543 544 545 546 547 548
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

549
            grad_value = paddle.to_tensor(4.0)
Z
Zeng Jinle 已提交
550 551 552 553
            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
554
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
555 556

            # dy1 = [4], dy2 = [1]
557
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
558 559

            # dy1 = [3], dy2 = [4]
560
            grad_y1 = paddle.to_tensor(3.0)
561
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
Z
Zeng Jinle 已提交
562 563
	'''

564 565 566 567 568 569
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
J
Jiabin Yang 已提交
570
                if _in_eager_without_dygraph_check():
571 572 573 574 575 576 577 578
                    assert isinstance(
                        each_var, core.eager.
                        Tensor), "Elements of {} must be Tensor".format(name)
                else:
                    assert isinstance(
                        each_var,
                        core.VarBase), "Elements of {} must be Variable".format(
                            name)
579 580
            return in_out_list
        else:
J
Jiabin Yang 已提交
581
            if _in_eager_without_dygraph_check():
582 583 584 585 586 587 588
                assert isinstance(
                    in_out_list, core.eager.
                    Tensor), "{} must be Tensor or list of Tensor".format(name)
            else:
                assert isinstance(
                    in_out_list, core.VarBase
                ), "{} must be Variable or list of Variable".format(name)
589 590 591 592 593 594 595 596 597 598 599
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
J
Jiabin Yang 已提交
600
                if _in_eager_without_dygraph_check():
601 602 603 604 605 606 607
                    assert isinstance(
                        each_var, core.eager.Tensor
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
                else:
                    assert isinstance(
                        each_var, core.VarBase
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
608 609 610 611 612 613 614
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
615 616
    if no_grad_vars is None:
        no_grad_vars = []
H
hong 已提交
617
    elif isinstance(no_grad_vars, (core.VarBase, core.eager.Tensor)):
Z
Zeng Jinle 已提交
618
        no_grad_vars = [no_grad_vars]
619 620
    elif isinstance(no_grad_vars, core.eager.Tensor):
        no_grad_vars = [no_grad_vars]
Z
Zeng Jinle 已提交
621 622 623
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
J
Jiabin Yang 已提交
624
            if _in_eager_without_dygraph_check():
625 626 627 628 629 630 631
                assert isinstance(
                    var,
                    core.eager.Tensor), "no_grad_vars can only contains Tensor"
            else:
                assert isinstance(
                    var,
                    core.VarBase), "no_grad_vars can only contains Variable"
632
    else:
J
Jiabin Yang 已提交
633
        if _in_eager_without_dygraph_check():
634 635 636 637 638 639
            raise AssertionError(
                "no_grad_vars must be None, Tensor or list/tuple/set of Tensors")
        else:
            raise AssertionError(
                "no_grad_vars must be None, Variable or list/tuple/set of Variables"
            )
640 641 642

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
643 644 645 646 647 648 649 650 651 652 653
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

J
Jiabin Yang 已提交
654
    if _in_eager_without_dygraph_check():
655 656 657
        return core.eager.run_partial_grad(
            outputs, inputs, grad_outputs, retain_graph, create_graph,
            only_inputs, allow_unused, no_grad_vars)
J
Jiabin Yang 已提交
658 659 660 661 662 663
    else:
        place = core.Place()
        place.set_place(framework._current_expected_place())
        return core.dygraph_partial_grad(
            inputs, outputs, grad_outputs, no_grad_vars, place, create_graph,
            retain_graph, allow_unused, only_inputs)
664 665


666
@framework.dygraph_only
667
def to_variable(value, name=None, zero_copy=None, dtype=None):
668
    r"""
669 670
    :api_attr: imperative

C
chentianyu03 已提交
671 672
    The API will create a ``Variable`` object from 
    tuple, list, numpy\.ndarray or Variable object.
673

674
    Parameters:
C
chentianyu03 已提交
675 676
        value(tuple|list|ndarray|Variable|Tensor): Initial data. 
            Can be a list, tuple, NumPy ndarray, Variable, Tensor.
677 678 679
            The shape can be multi-dimensional. The data type is one of 
            numpy\.{float16, float32, float64, int16, int32, int64, 
            uint8, uint16, complex64, complex128}.
680 681
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
L
Leo Chen 已提交
682
            refer to :ref:`api_guide_Name` . 
683 684
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
L
Leo Chen 已提交
685
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
686 687 688
        dtype(str, optional): The desired data type of returned ``Variable`` .
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 
            'int32' , 'int64' , 'uint8' . Default: None.
689

690
    Returns:
C
chentianyu03 已提交
691
        Variable : If ``value`` is a tuple/list/numpy\.ndarray object, 
692
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has 
C
chentianyu03 已提交
693
            same data type and shape with ``value``. 
694

695 696 697 698 699 700 701 702

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

703
        with fluid.dygraph.guard(fluid.CPUPlace()):
704
            x = np.ones([2, 2], np.float32)
705 706 707
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
708
            y = fluid.dygraph.to_variable(x)
709 710
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
711 712 713 714
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
715 716 717 718 719 720 721

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

722
    """
H
hong 已提交
723 724
    support_type = (list, tuple, np.ndarray, core.eager.Tensor, core.VarBase,
                    framework.Variable, core.Tensor, core.LoDTensor)
725 726 727 728
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
            % (support_type, type(value)))
H
hong 已提交
729
    if isinstance(value, (core.eager.Tensor, core.VarBase, framework.Variable)):
730 731 732 733
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
734 735
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
L
Leo Chen 已提交
736
            #TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
737
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
L
Leo Chen 已提交
738 739 740 741 742 743 744 745 746
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
747 748
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
749 750 751 752 753 754 755 756 757

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

J
Jiabin Yang 已提交
758
        if _in_eager_without_dygraph_check():
759 760 761
            return core.eager.Tensor(value,
                                     framework._current_expected_place(), False,
                                     zero_copy, name if name else None, True)
762 763 764 765 766 767 768 769
        else:
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '')
            return py_var