fc_op.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fc_op.h"
16
#include <vector>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
18
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
19

20 21 22 23 24 25 26 27 28 29
namespace paddle {
namespace operators {

void FCOp::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("Input"),
                 "X(Input) of Fully Connected should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Fully Connected should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("W"),
                 "W(Input) of Fully Connected should not be null.");
T
Tao Luo 已提交
30

31 32 33
  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");

T
tensor-tang 已提交
34 35
  if (ctx->HasInput("Bias")) {
    auto bias_dims = ctx->GetInputDim("Bias");
36 37 38 39 40 41 42 43
    if (bias_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(bias_dims[0], 1, "The shape of Bias must be [1, dim].");
      PADDLE_ENFORCE_EQ(bias_dims[1], w_dims[1],
                        "The shape of Bias must be [1, dim].");
    } else if (bias_dims.size() == 1) {
      PADDLE_ENFORCE_EQ(bias_dims[0], w_dims[1],
                        "The shape of Bias must be [1, dim].");
    }
T
tensor-tang 已提交
44
  }
T
Tao Luo 已提交
45 46 47 48 49

  if (ctx->Attrs().Get<bool>("use_mkldnn")) {
    PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
                   "Fully Connected input should be 2-D or 4-D tensor.");
  }
T
tensor-tang 已提交
50 51
  PADDLE_ENFORCE_EQ(w_dims.size(), 2UL,
                    "Fully Connected input should be 2-D tensor.");
T
Tao Luo 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
  PADDLE_ENFORCE_GT(
      in_dims.size(), in_num_col_dims,
      "The input tensor Input's rank of FCOp should be larger than "
      "in_num_col_dims.");

  auto in_mat_dims = framework::flatten_to_2d(in_dims, in_num_col_dims);
  PADDLE_ENFORCE_EQ(
      in_mat_dims[1], w_dims[0],
      "Fully Connected input and weigth size do not match. %s, %s");

  std::vector<int64_t> output_dims;
  output_dims.reserve(static_cast<size_t>(in_num_col_dims + 1));
  for (int i = 0; i < in_num_col_dims; ++i) {
    output_dims.push_back(in_dims[i]);
  }
  output_dims.push_back(w_dims[1]);
T
tensor-tang 已提交
69

T
Tao Luo 已提交
70
  ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
71 72 73 74 75
  ctx->ShareLoD("Input", "Out");
}

framework::OpKernelType FCOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
76 77
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
T
tensor-tang 已提交
78
  if (ctx.Attr<bool>("use_mkldnn")) {
T
tensor-tang 已提交
79 80 81
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
Y
Yu Yang 已提交
82 83
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout, library);
84 85 86 87 88 89 90 91 92 93 94 95
}

void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");

  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
  }
T
tensor-tang 已提交
96 97

  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
98 99
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                   "Should have bias grad");
T
tensor-tang 已提交
100 101 102
    auto bias_dims = ctx->GetInputDim("Bias");
    ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
  }
103 104 105 106
}

framework::OpKernelType FCOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
107 108
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
T
tensor-tang 已提交
109
  if (ctx.Attr<bool>("use_mkldnn")) {
T
tensor-tang 已提交
110 111 112
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
Y
Yu Yang 已提交
113 114
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout, library);
115 116
}

Y
Yu Yang 已提交
117
void FCOpMaker::Make() {
T
Tao Luo 已提交
118
  AddInput("Input", "(Tensor), The input tensor of fully connected operator.");
T
tensor-tang 已提交
119 120
  AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
  AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
T
tensor-tang 已提交
121
      .AsDispensable();
T
Tao Luo 已提交
122
  AddAttr<int>("in_num_col_dims",
T
Tao Luo 已提交
123 124 125 126
               "(int, default 1), The fc op can take tensors with more than "
               "two dimensions as its inputs.")
      .SetDefault(1)
      .EqualGreaterThan(1);
127
  AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
128 129 130 131 132 133
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddComment(R"DOC(
  Fully Connected Operator.

134
  The fully connected operation calculates the output based on the input, weights and bias.
135 136 137 138
  The size of each dimension of the parameters checked in the infer-shape.
)DOC");
}

T
tensor-tang 已提交
139 140 141 142
template <typename T>
class FCOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
143
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
T
tensor-tang 已提交
144 145 146
                   "It must use CPUPlace.");
    auto input = ctx.Input<Tensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
147
    auto bias = ctx.Input<Tensor>("Bias");
T
tensor-tang 已提交
148
    auto output = ctx.Output<Tensor>("Out");
T
tensor-tang 已提交
149
    auto w_dims = w->dims();
T
Tao Luo 已提交
150 151
    auto out_dims = output->dims();
    int M = framework::product(out_dims) / out_dims[out_dims.size() - 1];
T
tensor-tang 已提交
152 153 154 155

    const T* input_data = input->data<T>();
    const T* w_data = w->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
156 157
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    math::FCCompute<platform::CPUDeviceContext, T>(
T
Tao Luo 已提交
158
        blas, M, w_dims[1], w_dims[0], input_data, w_data, output_data,
159
        bias ? bias->data<T>() : NULL);
T
tensor-tang 已提交
160 161

    // TODO(TJ): fuse act
T
tensor-tang 已提交
162 163 164
  }
};

165 166 167
}  // namespace operators
}  // namespace paddle

T
tensor-tang 已提交
168 169
namespace ops = paddle::operators;
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
170
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
171
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
T
tensor-tang 已提交
172
REGISTER_OP_CPU_KERNEL(fc, ops::FCOpKernel<float>, ops::FCOpKernel<double>);