eager_functions.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/include/core.h"

namespace paddle {
namespace pybind {

namespace py = ::pybind11;

extern PyTypeObject* p_eager_tensor_type;

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

class EagerNumpyAllocation : public paddle::memory::allocation::Allocation {
 public:
  explicit EagerNumpyAllocation(PyObject* numpy_data, pten::DataType dtype)
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
            pten::DataTypeSize(dtype) * PyArray_Size_(numpy_data),
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

static PyObject* eager_api_set_expected_place(PyObject* self, PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  egr::Controller::Instance().SetExpectedPlace(place);

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_scale(PyObject* self, PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
  egr::EagerTensor ret =
      egr::scale(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
                     ->eagertensor,
                 CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1),
                 CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2),
                 CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3),
                 CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4));
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_numpy_to_tensor(PyObject* numpy_data,
                                           pten::DataType dtype,
                                           const paddle::platform::Place& place,
                                           bool stop_gradient) {
  std::vector<int64_t> vec_dims;
  auto numpy_shape = pybind11::detail::array_proxy(numpy_data)->dimensions;
  int rank = pybind11::detail::array_proxy(numpy_data)->nd;
  for (int i = 0; i < rank; i++) {
    vec_dims.push_back(static_cast<int64_t>(numpy_shape[i]));
  }
  paddle::framework::DDim dims = paddle::framework::make_ddim(vec_dims);

  // TODO(jiabin): Support GPU later
  auto meta = pten::DenseTensorMeta(dtype, dims);
  auto holder = std::make_shared<EagerNumpyAllocation>(numpy_data, dtype);
  auto shared_storage =
      pten::make_intrusive<paddle::experimental::SharedStorage>(holder, 0);
  std::shared_ptr<pten::DenseTensor> densetensor(
      new pten::DenseTensor(std::move(shared_storage), std::move(meta)));

  PyObject* obj = p_eager_tensor_type->tp_alloc(p_eager_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<EagerTensorObject*>(obj);
    new (&(v->eagertensor)) egr::EagerTensor();
    v->eagertensor.set_impl(densetensor);
    v->eagertensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto meta = egr::EagerUtils::autograd_meta(&(v->eagertensor));
    meta->SetStopGradient(stop_gradient);

    // Created tensor will be leaf tensor
    // So we append AccumulationNode to it.
    auto accumulation_node = std::make_shared<egr::GradNodeAccumulation>();
    meta->SetGradNode(accumulation_node);

    // TODO(jiabin): Shall we increase ref cnt here to make python ref cnt num
    // correctly?
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
}

static PyObject* eager_api_to_tensor(PyObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Support Kwargs here
  PyObject* data = PyTuple_GET_ITEM(args, 0);
  auto str_dtype = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  pten::DataType dtype = pten::String2DataType(str_dtype);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  // TODO(jiabin): Support this when python given name
  // auto str_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 4), 4);

  if (pybind11::detail::npy_api::get().PyArray_Check_(data)) {
    return eager_api_numpy_to_tensor(data, dtype, place, stop_gradient);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Eater to_tensor only support numpy to tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_retain_grad_for_tensor(PyObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  egr::egr_utils_api::RetainGradForTensor(
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0));
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_run_backward(PyObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfEagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors =
      CastPyArg2VectorOfEagerTensor(PyTuple_GET_ITEM(args, 1), 1);
  RunBackward(tensors, grad_tensors,
              CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2));
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

PyMethodDef variable_functions[] = {
    {"to_tensor", (PyCFunction)(void (*)(void))eager_api_to_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"scale", (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_set_expected_place",
     (PyCFunction)(void (*)(void))eager_api_set_expected_place,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"retain_grad_for_tensor",
     (PyCFunction)(void (*)(void))eager_api_retain_grad_for_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"run_backward", (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle