pad_op.cc 3.4 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/pad_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    auto dim0 = ctx.Input<Tensor>("X")->dims();
W
wanghaoshuang 已提交
29
    auto paddings = GetAttr<std::vector<int>>("paddings");
W
wanghaoshuang 已提交
30
    PADDLE_ENFORCE_EQ(
W
wanghaoshuang 已提交
31
        dim0.size(), (int)(paddings.size() / 2),
W
wanghaoshuang 已提交
32
        "Paddings size should be equal to dimension size of input tensor.");
W
wanghaoshuang 已提交
33
    std::vector<int> dim1(dim0.size());
W
wanghaoshuang 已提交
34
    for (int i = 0; i < dim0.size(); ++i) {
W
wanghaoshuang 已提交
35
      dim1[i] = dim0[i] + paddings[i * 2] + paddings[i * 2 + 1];
W
wanghaoshuang 已提交
36
    }
W
wanghaoshuang 已提交
37
    ctx.Output<Tensor>("Out")->Resize(paddle::framework::make_ddim(dim1));
W
wanghaoshuang 已提交
38 39 40
  }
};

W
wanghaoshuang 已提交
41
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
42
 public:
W
wanghaoshuang 已提交
43
  PadOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
W
wanghaoshuang 已提交
44
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
45 46
    AddInput("X", "The input of pad op.");
    AddOutput("Out", "The output of pad op.");
W
wanghaoshuang 已提交
47
    AddComment(R"DOC(
W
wanghaoshuang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:

Given:

X = [[1, 2],
   [3, 4]]

and 

paddings = [(0,1),(1,2)]

and
 
pad_value = 0 

then we get 

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
W
wanghaoshuang 已提交
68
)DOC");
W
wanghaoshuang 已提交
69 70 71 72 73 74 75 76 77 78
    AddAttr<std::vector<int>>(
        "paddings",
        "A pair list to describes padding rules for each dimension."
        " For 2-D image tensor, paddings=[(0, 1), (2, 3)] means"
        " padding 0 row to top, 1 row to bottom, 2 columns to left"
        " and 3 columns to right.Paddings size should be equal to"
        " dimension size of input tensor.");
    AddAttr<float>("pad_value",
                   "(float) default to 0; "
                   "The value to be padded into tensor. ")
W
wanghaoshuang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        .SetDefault(0.0f);
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    x_grad->Resize(x_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(pad, ops::PadOp, ops::PadOpMaker, pad_grad, ops::PadOpGrad);
REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pad_grad,
                       ops::PadGradKernel<paddle::platform::CPUPlace, float>);