test_sparse_utils_api.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
13 14 15
limitations under the License. */

#include <gtest/gtest.h>
16

17 18
#include <memory>

19 20 21 22 23 24
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/api/include/sparse_api.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
25

26 27
PD_DECLARE_KERNEL(dense_to_sparse_coo, CPU, ALL_LAYOUT);

28 29 30 31
TEST(API, to_sparse_coo) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

32
  auto dense_x = std::make_shared<phi::DenseTensor>(
33
      alloc.get(),
34 35 36
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
37

38
  phi::CPUPlace cpu;
39 40 41 42 43 44 45 46 47 48 49
  const int64_t sparse_dim = 2;
  auto* dense_x_data = dense_x->mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);

50
  phi::CPUContext dev_ctx_cpu;
51 52 53

  // 1. test dense_to_sparse_coo
  paddle::experimental::Tensor x(dense_x);
54
  auto out = paddle::experimental::sparse::to_sparse_coo(x, sparse_dim);
55
  auto coo = std::dynamic_pointer_cast<phi::SparseCooTensor>(out.impl());
56 57 58 59 60 61 62 63 64
  ASSERT_EQ(coo->nnz(), non_zero_num);
  int cmp_indices = memcmp(coo->non_zero_indices().data<int64_t>(),
                           indices_data.data(),
                           indices_data.size() * sizeof(int64_t));
  ASSERT_EQ(cmp_indices, 0);
  int cmp_elements = memcmp(coo->non_zero_elements().data<float>(),
                            non_zero_data.data(),
                            non_zero_data.size() * sizeof(float));
  ASSERT_EQ(cmp_elements, 0);
65 66

  // 1. test sparse_csr_to_coo
67 68 69 70 71 72 73 74 75 76 77 78
  auto dense_dims = phi::make_ddim({3, 3});
  phi::DenseTensorMeta crows_meta(
      phi::DataType::INT64, {dense_dims[0] + 1}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta cols_meta(
      phi::DataType::INT64, {non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta values_meta(
      phi::DataType::FLOAT32, {non_zero_num}, phi::DataLayout::NCHW);

  phi::CPUPlace place;
  phi::DenseTensor crows(alloc.get(), crows_meta);
  phi::DenseTensor cols(alloc.get(), cols_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
79 80 81 82 83 84 85 86 87 88
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto csr =
89
      std::make_shared<phi::SparseCsrTensor>(crows, cols, values, dense_dims);
90
  paddle::experimental::Tensor csr_x(csr);
91
  auto out2 = paddle::experimental::sparse::to_sparse_coo(csr_x, sparse_dim);
92

93
  auto coo2 = std::dynamic_pointer_cast<phi::SparseCooTensor>(out.impl());
94 95 96 97 98 99 100 101 102
  ASSERT_EQ(coo2->nnz(), non_zero_num);
  int cmp_indices2 = memcmp(coo2->non_zero_indices().data<int64_t>(),
                            indices_data.data(),
                            indices_data.size() * sizeof(int64_t));
  ASSERT_EQ(cmp_indices2, 0);
  int cmp_elements2 = memcmp(coo2->non_zero_elements().data<float>(),
                             non_zero_data.data(),
                             non_zero_data.size() * sizeof(float));
  ASSERT_EQ(cmp_elements2, 0);
103
}
104 105 106 107 108

TEST(API, to_sparse_csr) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

109
  auto dense_x = std::make_shared<phi::DenseTensor>(
110
      alloc.get(),
111 112 113
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
114

115
  phi::CPUPlace cpu;
116 117 118 119 120 121 122 123 124 125 126
  const int64_t sparse_dim = 2;
  auto* dense_x_data = dense_x->mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);

127
  phi::CPUContext dev_ctx_cpu;
128 129 130

  // 1. test dense_to_sparse_csr
  paddle::experimental::Tensor x(dense_x);
131
  auto out = paddle::experimental::sparse::to_sparse_csr(x);
132 133
  auto csr = std::dynamic_pointer_cast<phi::SparseCsrTensor>(out.impl());
  auto check = [&](const phi::SparseCsrTensor& csr) {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    ASSERT_EQ(csr.non_zero_cols().numel(), non_zero_num);
    int cmp_crows = memcmp(csr.non_zero_crows().data<int64_t>(),
                           crows_data.data(),
                           crows_data.size() * sizeof(int64_t));
    ASSERT_EQ(cmp_crows, 0);
    int cmp_cols = memcmp(csr.non_zero_cols().data<int64_t>(),
                          cols_data.data(),
                          cols_data.size() * sizeof(int64_t));
    ASSERT_EQ(cmp_cols, 0);
    int cmp_elements = memcmp(csr.non_zero_elements().data<float>(),
                              non_zero_data.data(),
                              non_zero_data.size() * sizeof(float));
    ASSERT_EQ(cmp_elements, 0);
  };
  check(*csr);

  // 1. test sparse_coo_to_csr
151 152 153 154 155 156 157 158 159
  auto dense_dims = phi::make_ddim({3, 3});
  phi::DenseTensorMeta indices_meta(
      phi::DataType::INT64, {sparse_dim, non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta values_meta(
      phi::DataType::FLOAT32, {non_zero_num}, phi::DataLayout::NCHW);

  phi::CPUPlace place;
  phi::DenseTensor indices(alloc.get(), indices_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
160 161 162 163 164 165 166
  memcpy(indices.mutable_data<int64_t>(place),
         indices_data.data(),
         indices_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto coo =
167
      std::make_shared<phi::SparseCooTensor>(indices, values, dense_dims);
168
  paddle::experimental::Tensor coo_x(coo);
169
  auto out2 = paddle::experimental::sparse::to_sparse_csr(coo_x);
170

171
  auto csr2 = std::dynamic_pointer_cast<phi::SparseCsrTensor>(out.impl());
172 173
  check(*csr2);
}
Z
zhangkaihuo 已提交
174 175 176 177 178

TEST(API, to_dense) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

179
  phi::CPUPlace cpu;
Z
zhangkaihuo 已提交
180 181 182 183 184 185 186
  const int64_t sparse_dim = 2;
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;
187
  auto dense_dims = phi::make_ddim({3, 3});
Z
zhangkaihuo 已提交
188

189
  phi::CPUContext dev_ctx_cpu;
Z
zhangkaihuo 已提交
190 191

  // 1. test sparse_coo_to_dense
192 193 194 195 196 197 198 199
  phi::DenseTensorMeta indices_meta(
      phi::DataType::INT64, {sparse_dim, non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta values_meta(
      phi::DataType::FLOAT32, {non_zero_num}, phi::DataLayout::NCHW);

  phi::CPUPlace place;
  phi::DenseTensor indices(alloc.get(), indices_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
Z
zhangkaihuo 已提交
200 201 202 203 204 205 206
  memcpy(indices.mutable_data<int64_t>(place),
         indices_data.data(),
         indices_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto coo =
207
      std::make_shared<phi::SparseCooTensor>(indices, values, dense_dims);
Z
zhangkaihuo 已提交
208 209

  paddle::experimental::Tensor coo_x(coo);
210
  auto out = paddle::experimental::sparse::to_dense(coo_x);
211
  auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
Z
zhangkaihuo 已提交
212 213 214 215 216
  int cmp1 =
      memcmp(dense_out->data<float>(), &dense_data[0][0], 9 * sizeof(float));
  ASSERT_EQ(cmp1, 0);

  // 1. test sparse_csr_to_dense
217 218 219 220 221 222
  phi::DenseTensorMeta crows_meta(
      phi::DataType::INT64, {dense_dims[0] + 1}, phi::DataLayout::NCHW);
  phi::DenseTensorMeta cols_meta(
      phi::DataType::INT64, {non_zero_num}, phi::DataLayout::NCHW);
  phi::DenseTensor crows(alloc.get(), crows_meta);
  phi::DenseTensor cols(alloc.get(), cols_meta);
Z
zhangkaihuo 已提交
223 224 225 226 227 228 229 230 231 232
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<float>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(float));
  auto csr =
233
      std::make_shared<phi::SparseCsrTensor>(crows, cols, values, dense_dims);
Z
zhangkaihuo 已提交
234
  paddle::experimental::Tensor csr_x(csr);
235
  auto out2 = paddle::experimental::sparse::to_dense(csr_x);
Z
zhangkaihuo 已提交
236

237
  auto dense_out2 = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
Z
zhangkaihuo 已提交
238 239 240 241
  int cmp2 =
      memcmp(dense_out2->data<float>(), &dense_data[0][0], 9 * sizeof(float));
  ASSERT_EQ(cmp2, 0);
}