vol2col.cc 11.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/vol2col.h"
W
wanghuancoder 已提交
16

H
hong 已提交
17 18
#include "paddle/phi/backends/cpu/cpu_context.h"

C
chengduoZH 已提交
19 20 21 22 23 24 25 26 27 28
namespace paddle {
namespace operators {
namespace math {

/*
 * vol = [input_channels, input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
H
hong 已提交
29 30 31
template <class T>
class Vol2ColFunctor<phi::CPUContext, T> {
 public:
32 33
  void operator()(const phi::CPUContext& context,
                  const framework::Tensor& vol,
H
hong 已提交
34 35
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
36 37
                  const std::vector<int>& paddings,
                  framework::Tensor* col,
H
hong 已提交
38
                  const DataLayout data_layout) const {
39 40
    PADDLE_ENFORCE_EQ(vol.dims().size(),
                      4,
H
hong 已提交
41 42 43 44
                      platform::errors::InvalidArgument(
                          "The dimension of vol should be 4, but received %d.",
                          vol.dims().size()));

45 46
    PADDLE_ENFORCE_EQ(col->dims().size(),
                      7,
H
hong 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
                      platform::errors::InvalidArgument(
                          "The dimension of col should be 7, but received %d.",
                          col->dims().size()));

    int input_channels =
        (data_layout != DataLayout::kNHWC ? vol.dims()[0] : vol.dims()[3]);
    int input_depth =
        (data_layout != DataLayout::kNHWC ? vol.dims()[1] : vol.dims()[0]);
    int input_height =
        (data_layout != DataLayout::kNHWC ? vol.dims()[2] : vol.dims()[1]);
    int input_width =
        (data_layout != DataLayout::kNHWC ? vol.dims()[3] : vol.dims()[2]);
    int filter_depth = col->dims()[1];
    int filter_height = col->dims()[2];
    int filter_width = col->dims()[3];
    int output_depth = col->dims()[4];
    int output_height = col->dims()[5];
    int output_width = col->dims()[6];
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

    // changed
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];

    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
    PADDLE_ENFORCE_EQ(
82 83
        input_depth_tmp,
        output_depth,
H
hong 已提交
84 85
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
86 87
            input_depth_tmp,
            output_depth));
H
hong 已提交
88 89 90 91 92
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
    PADDLE_ENFORCE_EQ(
93 94
        input_height_tmp,
        output_height,
H
hong 已提交
95 96
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
97 98
            input_height_tmp,
            output_height));
H
hong 已提交
99 100 101 102 103
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
    PADDLE_ENFORCE_EQ(
104 105
        input_width_tmp,
        output_width,
H
hong 已提交
106 107
        platform::errors::InvalidArgument(
            "input_width(%d) and output_width(%d) are mismatching.",
108 109
            input_width_tmp,
            output_width));
H
hong 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    const T* vol_data = vol.data<T>();
    T* col_data = col->data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int c_in = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
        int d_pad = d * strides[0] - pad_d_forth + d_offset * dilations[0];
        for (int h = 0; h < output_height; ++h) {
          int h_pad = h * strides[1] - pad_h_up + h_offset * dilations[1];
          for (int w = 0; w < output_width; ++w) {
            int w_pad = w * strides[2] - pad_w_left + w_offset * dilations[2];

            int col_idx =
                ((c * output_depth + d) * output_height + h) * output_width + w;
            int vol_idx;
            if (data_layout != DataLayout::kNHWC) {
              vol_idx = ((c_in * input_depth + d_pad) * input_height + h_pad) *
                            input_width +
                        w_pad;
            } else {
              vol_idx = ((d_pad * input_height + h_pad) * input_width + w_pad) *
                            input_channels +
                        c_in;
            }
            col_data[col_idx] =
                (h_pad < 0 || h_pad >= input_height || w_pad < 0 ||
                 w_pad >= input_width || d_pad < 0 || d_pad >= input_depth)
                    ? static_cast<T>(0)
                    : vol_data[vol_idx];
          }
        }
      }
    }
  }
};

C
chengduoZH 已提交
149 150 151 152 153 154
/*
 * vol = [input_channels,input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
H
hong 已提交
155 156 157
template <class T>
class Col2VolFunctor<phi::CPUContext, T> {
 public:
158 159
  void operator()(const phi::CPUContext& context,
                  const framework::Tensor& col,
H
hong 已提交
160 161
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
162 163
                  const std::vector<int>& paddings,
                  framework::Tensor* vol,
H
hong 已提交
164
                  const DataLayout data_layout) const {
165 166
    PADDLE_ENFORCE_EQ(vol->dims().size(),
                      4,
H
hong 已提交
167 168 169 170
                      platform::errors::InvalidArgument(
                          "The dimension of vol should be 4, but received %d.",
                          vol->dims().size()));

171 172
    PADDLE_ENFORCE_EQ(col.dims().size(),
                      7,
H
hong 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                      platform::errors::InvalidArgument(
                          "The dimension of col  should be 7, but received %d.",
                          col.dims().size()));

    int input_channels =
        (data_layout != DataLayout::kNHWC ? vol->dims()[0] : vol->dims()[3]);
    int input_depth =
        (data_layout != DataLayout::kNHWC ? vol->dims()[1] : vol->dims()[0]);
    int input_height =
        (data_layout != DataLayout::kNHWC ? vol->dims()[2] : vol->dims()[1]);
    int input_width =
        (data_layout != DataLayout::kNHWC ? vol->dims()[3] : vol->dims()[2]);
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];

    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
    PADDLE_ENFORCE_EQ(
207 208
        input_depth_tmp,
        output_depth,
H
hong 已提交
209 210
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
211 212
            input_depth_tmp,
            output_depth));
H
hong 已提交
213 214 215 216 217
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
    PADDLE_ENFORCE_EQ(
218 219
        input_height_tmp,
        output_height,
H
hong 已提交
220 221
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
222 223
            input_height_tmp,
            output_height));
H
hong 已提交
224 225 226 227 228
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
    PADDLE_ENFORCE_EQ(
229 230
        input_width_tmp,
        output_width,
H
hong 已提交
231 232
        platform::errors::InvalidArgument(
            "input_width(%d)  and output_width(%d) are mismatching.",
233 234
            input_width_tmp,
            output_width));
H
hong 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    T* vol_data = vol->data<T>();
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int cIm = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
        int d_pad = d * strides[0] - pad_d_forth + d_offset * dilations[0];
        for (int h = 0; h < output_height; ++h) {
          int h_pad = h * strides[1] - pad_h_up + h_offset * dilations[1];
          for (int w = 0; w < output_width; ++w) {
            int w_pad = w * strides[2] - pad_w_left + w_offset * dilations[2];

            if (h_pad >= 0 && h_pad < input_height && w_pad >= 0 &&
                w_pad < input_width && d_pad >= 0 && d_pad < input_depth) {
              int vol_idx;
              if (data_layout != DataLayout::kNHWC) {
                vol_idx = ((cIm * input_depth + d_pad) * input_height + h_pad) *
                              input_width +
                          w_pad;
              } else {
                vol_idx =
                    ((d_pad * input_height + h_pad) * input_width + w_pad) *
                        input_channels +
                    cIm;
              }
              int col_idx =
                  ((c * output_depth + d) * output_height + h) * output_width +
                  w;
              vol_data[vol_idx] += col_data[col_idx];
            }
          }
        }
      }
    }
  }
};

template class Vol2ColFunctor<phi::CPUContext, float>;
template class Vol2ColFunctor<phi::CPUContext, double>;

template class Col2VolFunctor<phi::CPUContext, float>;
template class Col2VolFunctor<phi::CPUContext, double>;
C
chengduoZH 已提交
280 281 282 283

}  // namespace math
}  // namespace operators
}  // namespace paddle