unary.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18 19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33 34
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.

35
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);
36

F
From00 已提交
37 38 39 40 41
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);

42 43 44 45
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);
46

F
From00 已提交
47 48 49 50 51 52
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);

53
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
54

55 56
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

57 58 59 60 61
void CopyToInferMeta(const MetaTensor& x,
                     Backend backend,
                     bool blocking,
                     MetaTensor* out);

62
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
63

64 65
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

66 67 68
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
69

70 71 72 73 74
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);

75 76
void ReshapeInferMeta(const MetaTensor& x,
                      const ScalarArray& shape,
77 78 79 80 81 82 83 84
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
                                const ScalarArray& shape,
                                MetaTensor* xshape,
                                MetaTensor* out,
                                MetaConfig config = MetaConfig());
85

86 87 88
void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
89
                         bool reduce_all,
90 91
                         DataType dtype,
                         MetaTensor* out);
92

93 94 95 96 97 98 99 100 101 102
void MeanRawInferMeta(const MetaTensor& x,
                      const std::vector<int64_t>& axis,
                      bool keep_dim,
                      bool reduce_all,
                      MetaTensor* out);

void MeanInferMeta(const MetaTensor& x,
                   const std::vector<int64_t>& axis,
                   bool keep_dim,
                   MetaTensor* out);
103 104 105 106 107 108

void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
109 110 111 112 113

void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

C
chentianyu03 已提交
114 115 116
void SplitInferMeta(const MetaTensor& x_meta,
                    const ScalarArray& num_or_sections,
                    const Scalar& axis,
117
                    std::vector<MetaTensor*> out,
C
chentianyu03 已提交
118
                    MetaConfig config = MetaConfig());
C
Chen Weihang 已提交
119

L
Leo Chen 已提交
120 121 122
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
                     std::vector<MetaTensor>* outs);
C
Chen Weihang 已提交
123 124 125
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

126 127 128 129 130 131 132
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
133

L
Linjie Chen 已提交
134 135 136 137 138
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

139 140 141 142 143 144 145
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);

void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

146
}  // namespace phi