top_k_op.cc 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/top_k_op.h"
16
#include <memory>
武毅 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class TopkOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

W
whs 已提交
25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of TopkOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of TopkOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Indices"),
                   "Output(Indices) of TopkOp should not be null.");
32

Q
Qiao Longfei 已提交
33 34
    auto input_dims = ctx->GetInputDim("X");
    const int k = static_cast<int>(ctx->Attrs().Get<int>("k"));
武毅 已提交
35 36

    PADDLE_ENFORCE_GE(k, 1, "k must >= 1");
Q
Qiao Longfei 已提交
37
    PADDLE_ENFORCE_GE(input_dims.size(), 1, "input must have >= 1d shape");
38 39 40 41 42

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_GE(input_dims[input_dims.size() - 1], k,
                        "input must have >= k columns");
    }
武毅 已提交
43

Q
Qiao Longfei 已提交
44
    framework::DDim dims = input_dims;
武毅 已提交
45
    dims[dims.size() - 1] = k;
Q
Qiao Longfei 已提交
46 47
    ctx->SetOutputDim("Out", dims);
    ctx->SetOutputDim("Indices", dims);
Q
Qiao Longfei 已提交
48 49
    ctx->ShareLoD("X", "Out");
    ctx->ShareLoD("X", "Indices");
武毅 已提交
50
  }
W
whs 已提交
51 52 53 54 55 56

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
57 58 59
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context(),
        layout_, library_);
W
whs 已提交
60
  }
武毅 已提交
61 62 63 64
};

class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
65
  void Make() override {
66
    AddInput("X", "(Tensor) The input of Topk op");
W
whs 已提交
67 68 69 70
    AddInput("K",
             "(Tensor)  Number of top elements to look for along "
             "the last dimension (along each row for matrices).")
        .AsDispensable();
71
    AddOutput("Out", "(Tensor) The output tensor of Topk op");
72 73 74
    AddOutput("Indices", "(Tensor) The indices of Topk elements of input");
    AddComment(R"DOC(
Top K operator
武毅 已提交
75

76 77 78 79 80
If the input is a vector (1d tensor), this operator finds the k largest 
entries in the vector and outputs their values and indices as vectors. 
Thus values[j] is the j-th largest entry in input, and its index is indices[j].

For matrices, this operator computes the top k entries in each row. )DOC");
武毅 已提交
81
    AddAttr<int>("k",
82 83
                 "(int, default 1) Number of top elements to look for along "
                 "the last dimension (along each row for matrices).")
武毅 已提交
84 85 86 87
        .SetDefault(1);
  }
};

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
class TopkOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) should be not null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Indices"), true,
        platform::errors::InvalidArgument("Input(Indices) should be not null"));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Grad Input(Out) should be not null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::InvalidArgument("Grad Output(X) should be not null"));

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

template <typename T>
class TopkGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
    op->SetType("top_k_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Output("Indices"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    return op;
  }
};

武毅 已提交
135 136 137 138
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
139 140 141 142 143 144
REGISTER_OPERATOR(top_k, ops::TopkOp, ops::TopkOpMaker,
                  ops::TopkGradOpMaker<paddle::framework::OpDesc>,
                  ops::TopkGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(top_k_grad, ops::TopkOpGrad);

武毅 已提交
145
REGISTER_OP_CPU_KERNEL(top_k,
D
dzhwinter 已提交
146
                       ops::TopkKernel<paddle::platform::CPUPlace, float>,
147 148 149 150 151
                       ops::TopkKernel<paddle::platform::CPUPlace, double>);

REGISTER_OP_CPU_KERNEL(top_k_grad,
                       ops::TopkGradKernel<paddle::platform::CPUPlace, float>,
                       ops::TopkGradKernel<paddle::platform::CPUPlace, double>);