conditional_block_op.cc 7.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
#include <algorithm>
#include "paddle/framework/executor.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

class ConditionalOp : public framework::OperatorBase {
 public:
  ConditionalOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  std::vector<const framework::LoDTensor *> InputTensors(
      const framework::Scope &scope) const {
    std::vector<const framework::LoDTensor *> retv;
    auto xs = Inputs("X");
    retv.resize(xs.size(), nullptr);
    std::transform(
        xs.begin(), xs.end(), retv.begin(),
        [&scope](const std::string &var_name) -> const framework::LoDTensor * {
          auto *var = scope.FindVar(var_name);
          PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
          return &var->Get<framework::LoDTensor>();
        });
    return retv;
  }
};

class ConditionalBlockOp : public ConditionalOp {
 public:
  ConditionalBlockOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto xs = InputTensors(scope);
    bool need_run = std::all_of(
        xs.begin(), xs.end(),
        [](const framework::LoDTensor *t) { return t->numel() != 0; });

    if (need_run) {
      auto *scope_var = scope.FindVar(Output("Scope"));
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
      scopes->resize(1);
      scopes->front() = &scope.NewScope();
      auto &cur_scope = *scopes->front();

68
      auto *block = Attr<framework::BlockDescBind *>("sub_block");
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
      framework::Executor exec(dev_ctx);
      exec.Run(*block->Program(), &cur_scope, block->ID(), false);
    }
  }
};

class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ConditionalBlockOpProtoMaker(framework::OpProto *proto,
                               framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "The conditional variable of this operator. If X is empty, the "
             "whole sub-block will not be executed.")
        .AsDuplicable();
    AddInput("Params", "The input variables of the sub-block.").AsDuplicable();
    AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
    AddOutput("Scope",
              "(std::vector<Scope*>) The step scope of conditional block. To "
              "unify the conditional block, rnn and while op, the type of "
              "scope is std::vector<Scope*>");
    AddAttr<framework::BlockDescBind *>(
91
        "sub_block", "The step block of conditional block operator");
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    AddComment(R"DOC(Conditional block operator

Run the sub-block if X is not empty. Params is the other inputs and Out is the
outputs of the sub-block.
)DOC");
  }
};

class ConditionalBlockGradOp : public ConditionalOp {
 public:
  ConditionalBlockGradOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
      : ConditionalOp(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto xs = this->InputTensors(scope);
    bool need_run = std::all_of(
        xs.begin(), xs.end(),
        [](const framework::LoDTensor *t) { return t->numel() != 0; });

    if (need_run) {
      auto *scope_var = scope.FindVar(Input("Scope"));
      PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
      auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
      framework::Scope &cur_scope = *scopes[0];

120
      auto *block = Attr<framework::BlockDescBind *>("sub_block");
Y
Yu Yang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
      framework::Executor exec(dev_ctx);
      exec.Run(*block->Program(), &cur_scope, block->ID(), false);

      AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("Params"),
                                  Outputs(framework::GradVarName("Params")));

      AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("X"),
                                  Outputs(framework::GradVarName("X")));
    }
  }

 private:
  void AssignLocalGradientToGlobal(
      const platform::DeviceContext &dev_ctx, const framework::Scope &cur_scope,
      const std::vector<std::string> &p_names,
      const std::vector<std::string> &pg_names) const {
    for (size_t i = 0; i < p_names.size(); ++i) {
      auto out_grad_name = pg_names[i];
      auto in_grad_name = framework::GradVarName(p_names[i]);
      auto *in_var = cur_scope.FindVar(in_grad_name);
      if (in_var == nullptr) {
        continue;
      }
      auto new_in_grad_name = cur_scope.Rename(in_grad_name);
Y
Yiqun Liu 已提交
145 146 147
      auto assign = framework::OpRegistry::CreateOp(
          "assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}},
          framework::AttributeMap{});
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      assign->Run(cur_scope, dev_ctx);
      cur_scope.Rename(new_in_grad_name, in_grad_name);
    }
  }
};

class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInputs("X"));
    if (context->HasInputs("Params")) {
      PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("Params")));
      context->SetOutputsDim(framework::GradVarName("Params"),
                             context->GetInputsDim("Params"));
    }
    PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
    context->SetOutputsDim(framework::GradVarName("X"),
                           context->GetInputsDim("X"));
  }
};

class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto grad_op = new framework::OpDescBind();
    grad_op->SetType("conditional_block_grad");
    grad_op->SetInput("X", Input("X"));
    grad_op->SetInput("Params", Input("Params"));
    grad_op->SetInput("Out", Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetInput("Scope", Output("Scope"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params"));
184
    grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
Y
Yu Yang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
                  ops::ConditionalBlockOpProtoMaker,
                  ops::ConditionalBlockGradMaker);
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
                  ops::ConditionalBlockGradInferShape);