slice_mkldnn_op.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SliceMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("Input");
    auto* out = ctx.Output<Tensor>("Out");

    auto x_vec_dims = framework::vectorize(x->dims());
    auto out_vec_dims = framework::vectorize(out->dims());

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    std::vector<int64_t> offsets(x_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(x_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? x_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? x_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], x_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

    mkldnn::memory::data_type x_type = framework::ToMKLDNNDataType(x->type());
    auto key = platform::CreateKey(dev_ctx, x_vec_dims, axes, starts, ends,
                                   x->format(), x_type);

    platform::ReorderMKLDNNHandler reorder_handler(
        x_vec_dims, x->type(), x_type, dev_ctx, onednn_engine, key);

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        x->format(), platform::to_void_cast(x->data<T>()));
    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_src_memory_p);
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        out, slice_dims, 0, x->format(), ctx.GetPlace());

    auto reorder_p =
        reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);
    astream.wait();

    out->set_layout(framework::DataLayout::kMKLDNN);
    out->set_format(platform::GetMKLDNNFormat(
        reorder_dst_memory_p->get_desc().reshape(out_vec_dims)));
  }
};

template <typename T>
class SliceGradMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));

    auto dx_vec_dims = framework::vectorize(dx->dims());
    auto dout_vec_dims = framework::vectorize(dout->dims());

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    std::vector<int64_t> offsets(dx_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(dx_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? dx_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? dx_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], dx_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

    mkldnn::memory::data_type dout_type =
        framework::ToMKLDNNDataType(dout->type());
    mkldnn::memory::desc md(dout_vec_dims, platform::MKLDNNGetDataType<T>(),
                            dout->format());
    mkldnn::memory::format_tag reorder_format_tag =
        platform::GetMKLDNNFormat(md.reshape(slice_dims));

    auto key = platform::CreateKey(dev_ctx, dout_vec_dims, axes, starts, ends,
                                   reorder_format_tag, dout_type);

    platform::ReorderMKLDNNHandler reorder_handler(
        slice_dims, dout->type(), dout_type, dev_ctx, onednn_engine, key);

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        reorder_format_tag, platform::to_void_cast(dout->data<T>()));
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        dx, dx_vec_dims, 0, reorder_format_tag, ctx.GetPlace());
    memset(dx->data<T>(), 0, reorder_dst_memory_p->get_desc().get_size());

    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_dst_memory_p);

    auto reorder_p =
        reorder_handler.AcquireReorder(slice_mem_p, reorder_src_memory_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *slice_mem_p);
    astream.wait();

    dx->set_layout(framework::DataLayout::kMKLDNN);
    dx->set_format(reorder_format_tag);
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceMKLDNNKernel<float>,
                   ops::SliceMKLDNNKernel<paddle::platform::bfloat16>);

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceGradMKLDNNKernel<float>,
                   ops::SliceGradMKLDNNKernel<paddle::platform::bfloat16>);