sample_trainer_config_rnn.conf 5.5 KB
Newer Older
Z
zhangjinchao01 已提交
1
#edit-mode: -*- python -*-
2
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.

# Note: when making change to this file, please make sure
# sample_trainer_config_qb_rnn.conf is changed accordingly so that the uniitest
# for comparing these two nets can pass (test_CompareTwoNets)

default_initial_std(0.1)
default_device(0)

word_dim = 1451594
l1 = 0
l2 = 0

model_type("recurrent_nn")

sparse_update = get_config_arg("sparse_update", bool, False)

TrainData(ProtoData(
            type = "proto_sequence",
            files = ('trainer/tests/train.list'), 
            ))

Settings(
    algorithm='sgd',
    batch_size=100,
    learning_rate=0.0001,
    learning_rate_decay_a=4e-08,
    learning_rate_decay_b=0.0,
    learning_rate_schedule='poly',
)


wordvec_dim = 128
layer2_dim = 96
layer3_dim = 96
hidden_dim = 128

slot_names = ["qb", "qw", "tb", "tw"]

def SimpleRecurrentLayer(name, 
                         size, 
                         active_type, 
                         bias, 
                         input_layer_name, 
                         parameter_name,
                         seq_reversed = False):
    RecurrentLayerGroupBegin(name + "_layer_group", 
                             in_links=[input_layer_name], 
                             out_links=[name],
                             seq_reversed=seq_reversed)
    memory_name = Memory(name=name, size=size)
    Layer(
        name = name,
        type = "mixed",
        size = size,
        active_type = active_type,
        bias = bias,
        inputs = [IdentityProjection(input_layer_name),
                  FullMatrixProjection(memory_name,
                                       parameter_name = parameter_name,
                                       ),
                  ]
        )
    RecurrentLayerGroupEnd(name + "_layer_group")


def ltr_network(network_name,
                word_dim=word_dim,
                wordvec_dim=wordvec_dim,
                layer2_dim=layer2_dim,
                layer3_dim=layer3_dim,
                hidden_dim=hidden_dim,
                slot_names=slot_names,
                l1=l1,
                l2=l2):

    slotnum = len(slot_names)
    for i in xrange(slotnum):
        Inputs(slot_names[i] + network_name)
    for i in xrange(slotnum):
        Layer(
            name = slot_names[i] + network_name,
            type = "data",
            size = word_dim,
            device = -1,
        )
        Layer(
            name = slot_names[i] + "_embedding_" + network_name,
            type = "mixed",
            size = wordvec_dim,
            bias = False,
            device = -1,
            inputs = TableProjection(slot_names[i] + network_name,
                                     parameter_name = "embedding.w0",
                                     decay_rate_l1=l1,
                                     sparse_remote_update = True,
                                     sparse_update = sparse_update,
                                     ),
        )
        SimpleRecurrentLayer(
            name = slot_names[i] + "_rnn1_" + network_name,
            size = hidden_dim,
            active_type = "tanh",
            bias = Bias(initial_std = 0,
                        parameter_name = "rnn1.bias"),
            input_layer_name = slot_names[i] + "_embedding_" + network_name,
            parameter_name = "rnn1.w0",
            )
        Layer(
            name = slot_names[i] + "_rnnlast_" + network_name,
            type = "seqlastins",
            inputs = [
                slot_names[i] + "_rnn1_" + network_name,
            ],
        )
    Layer(
        name = "layer2_" + network_name,
        type = "fc",
        active_type = "tanh",
        size = layer2_dim,
        bias = Bias(parameter_name = "layer2.bias"),
        inputs = [Input(slot_name + "_rnnlast_" + network_name, 
                        parameter_name = "_layer2_" + slot_name + ".w", 
                        decay_rate = l2, 
                        initial_smart = True) for slot_name in slot_names]
    )
    Layer(
        name = "layer3_" + network_name,
        type = "fc",
        active_type = "tanh",
        size = layer3_dim,
        bias = Bias(parameter_name = "layer3.bias"),
        inputs = [
            Input("layer2_" + network_name, 
                  parameter_name = "_layer3.w", 
                  decay_rate = l2, 
                  initial_smart = True),
        ]
    )
    Layer(
        name = "output_" + network_name,
        type = "fc",
        size = 1,
        bias = False,
        inputs = [
                  Input("layer3_" + network_name,
                       parameter_name = "_layerO.w"),
                 ],
        )


ltr_network("left")
ltr_network("right")
Inputs("label")
Layer(
    name = "label",
    type = "data",
    size = 1,
    )
Outputs("cost", "qb_rnnlast_left")
Layer(
    name = "cost",
    type = "rank-cost",
    inputs = ["output_left", "output_right", "label"],
    )