cpu_profiling_en.md 7.9 KB
Newer Older
S
Shan Yi 已提交
1 2
# Tune CPU performance

3
This tutorial introduces techniques we use to profile and tune the
4
CPU performance of PaddlePaddle.  We will use Python packages
5
`cProfile` and `yep`, and Google's `perftools`.
Y
Yu Yang 已提交
6

7
Profiling is the process that reveals performance bottlenecks,
8
which could be very different from what's in the developers' mind.
9
Performance tuning is done to fix these bottlenecks. Performance optimization
10
repeats the steps of profiling and tuning alternatively.
Y
Yu Yang 已提交
11

12
PaddlePaddle users program AI applications by calling the Python API, which calls
13 14
into `libpaddle.so.` written in C++.  In this tutorial, we focus on
the profiling and tuning of
Y
Yu Yang 已提交
15

16 17
1. the Python code and
1. the mixture of Python and C++ code.
Y
Yu Yang 已提交
18

S
Shan Yi 已提交
19
## Profiling the Python Code
Y
Yu Yang 已提交
20

21
### Generate the Performance Profiling File
Y
Yu Yang 已提交
22

23 24 25
We can use Python standard
package, [`cProfile`](https://docs.python.org/2/library/profile.html),
to generate Python profiling file.  For example:
Y
Yu Yang 已提交
26 27 28 29 30

```bash
python -m cProfile -o profile.out main.py
```

31 32 33
where `main.py` is the program we are going to profile, `-o` specifies
the output file.  Without `-o`, `cProfile` would outputs to standard
output.
Y
Yu Yang 已提交
34

35
### Look into the Profiling File
Y
Yu Yang 已提交
36

37 38 39
`cProfile` generates `profile.out` after `main.py` completes. We can
use [`cprofilev`](https://github.com/ymichael/cprofilev) to look into
the details:
Y
Yu Yang 已提交
40 41 42 43 44

```bash
cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
```

45 46
where `-a` specifies the HTTP IP, `-p` specifies the port, `-f`
specifies the profiling file, and `main.py` is the source file.
Y
Yu Yang 已提交
47

48 49
Open the Web browser and points to the local IP and the specifies
port, we will see the output like the following:
Y
Yu Yang 已提交
50

51
```
Y
Yu Yang 已提交
52 53
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.284    0.284   29.514   29.514 main.py:1(<module>)
54
     4696    0.128    0.000   15.748    0.003 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/executor.py:20(run)
Y
Yu Yang 已提交
55 56 57 58
     4696   12.040    0.003   12.040    0.003 {built-in method run}
        1    0.144    0.144    6.534    6.534 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/__init__.py:14(<module>)
```

59 60
where each line corresponds to Python function, and the meaning of
each column is as follows:
Y
Yu Yang 已提交
61

_青葱's avatar
_青葱 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
<table>
<thead>
<tr>
<th>column</th>
<th>meaning </th>
</tr>
</thead>
<tbody>
<tr>
<td> ncalls</td>
<td> the number of calls into a function</td>
</tr>
<tr>
<td>tottime</td>
<td> the total execution time of the function, not including the execution time of other functions called by the function</td>
</tr>
<tr>
<td> percall </td>
<td> tottime divided by ncalls</td>
</tr>
<tr>
<td> cumtime</td>
<td> the total execution time of the function, including the execution time of other functions being called</td>
</tr>
<tr>
<td> percall</td>
<td> cumtime divided by ncalls</td>
</tr>
<tr>
<td> filename:lineno(function) </td>
<td> where the function is define </td>
</tr>
</tbody>
</table>

97
### Identify Performance Bottlenecks
Y
Yu Yang 已提交
98

99 100
Usually, `tottime` and the related `percall` time is what we want to
focus on. We can sort above profiling file by tottime:
Y
Yu Yang 已提交
101 102 103 104

```text
     4696   12.040    0.003   12.040    0.003 {built-in method run}
   300005    0.874    0.000    1.681    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/dataset/mnist.py:38(reader)
105 106 107
   107991    0.676    0.000    1.519    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:219(__init__)
     4697    0.626    0.000    2.291    0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:428(sync_with_cpp)
        1    0.618    0.618    0.618    0.618 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/__init__.py:1(<module>)
Y
Yu Yang 已提交
108 109
```

110 111
We can see that the most time-consuming function is the `built-in
method run`, which is a C++ function in `libpaddle.so`.  We will
W
weixing 已提交
112
explain how to profile C++ code in the next section.  At this
113 114
moment, let's look into the third function `sync_with_cpp`, which is a
Python function.  We can click it to understand more about it:
Y
Yu Yang 已提交
115

116
```
Y
Yu Yang 已提交
117 118 119 120 121 122 123
Called By:

   Ordered by: internal time
   List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>

Function                                                                                                 was called by...
                                                                                                             ncalls  tottime  cumtime
124 125 126
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:428(sync_with_cpp)  <-    4697    0.626    2.291  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:562(sync_with_cpp)
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:562(sync_with_cpp)  <-    4696    0.019    2.316  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:487(clone)
                                                                                                                  1    0.000    0.001  /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:534(append_backward)
Y
Yu Yang 已提交
127 128 129 130 131 132 133 134


Called:

   Ordered by: internal time
   List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>
```

135 136
The lists of the callers of `sync_with_cpp` might help us understand
how to improve the function definition.
Y
Yu Yang 已提交
137

138
## Profiling Python and C++ Code
Y
Yu Yang 已提交
139

140
### Generate the Profiling File
Y
Yu Yang 已提交
141

142 143 144
To profile a mixture of Python and C++ code, we can use a Python
package, `yep`, that can work with Google's `perftools`, which is a
commonly-used profiler for C/C++ code.
Y
Yu Yang 已提交
145

146 147
In Ubuntu systems, we can install `yep` and `perftools` by running the
following commands:
Y
Yu Yang 已提交
148 149

```bash
150
apt update
Y
Yu Yang 已提交
151 152 153 154
apt install libgoogle-perftools-dev
pip install yep
```

155
Then we can run the following command
Y
Yu Yang 已提交
156 157 158 159 160

```bash
python -m yep -v main.py
```

161 162 163 164
to generate the profiling file.  The default filename is
`main.py.prof`.

Please be aware of the `-v` command line option, which prints the
165 166
analysis results after generating the profiling file.  By examining the
 the print result, we'd know that if we stripped debug
167 168
information from `libpaddle.so` at build time.  The following hints
help make sure that the analysis results are readable:
Y
Yu Yang 已提交
169

170 171 172 173
1. Use GCC command line option `-g` when building `libpaddle.so` so to
   include the debug information.  The standard building system of
   PaddlePaddle is CMake, so you might want to set
   `CMAKE_BUILD_TYPE=RelWithDebInfo`.
Y
Yu Yang 已提交
174

175 176 177
1. Use GCC command line option `-O2` or `-O3` to generate optimized
   binary code. It doesn't make sense to profile `libpaddle.so`
   without optimization, because it would anyway run slowly.
Y
Yu Yang 已提交
178

179 180 181 182 183
1. Profiling the single-threaded binary file before the
   multi-threading version, because the latter often generates tangled
   profiling analysis result.  You might want to set environment
   variable `OMP_NUM_THREADS=1` to prevents OpenMP from automatically
   starting multiple threads.
Y
Yu Yang 已提交
184

185
### Examining the Profiling File
Y
Yu Yang 已提交
186

187
The tool we used to examine the profiling file generated by
188 189 190 191 192
`perftools` is [`pprof`](https://github.com/google/pprof), which
provides a Web-based GUI like `cprofilev`.

We can rely on the standard Go toolchain to retrieve the source code
of `pprof` and build it:
Y
Yu Yang 已提交
193 194 195 196 197

```bash
go get github.com/google/pprof
```

198 199
Then we can use it to profile `main.py.prof` generated in the previous
section:
Y
Yu Yang 已提交
200 201 202 203 204

```bash
pprof -http=0.0.0.0:3213 `which python`  ./main.py.prof
```

205 206 207
Where `-http` specifies the IP and port of the HTTP service.
Directing our Web browser to the service, we would see something like
the following:
Y
Yu Yang 已提交
208 209 210

![result](./pprof_1.png)

211
### Identifying the Performance Bottlenecks
Y
Yu Yang 已提交
212

213 214
Similar to how we work with `cprofilev`, we'd focus on `tottime` and
`cumtime`.
Y
Yu Yang 已提交
215 216 217

![kernel_perf](./pprof_2.png)

218 219 220 221
We can see that the execution time of multiplication and the computing
of the gradient of multiplication takes 2% to 4% of the total running
time, and `MomentumOp` takes about 17%. Obviously, we'd want to
optimize `MomentumOp`.
Y
Yu Yang 已提交
222

223
`pprof` would mark performance critical parts of the program in
224
red. It's a good idea to follow the hints.