SparseMatrix.cpp 27.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "SparseMatrix.h"
Z
zhangjinchao01 已提交
16
#include <algorithm>
Y
Yu Yang 已提交
17
#include <iostream>
Z
zhangjinchao01 已提交
18 19 20
#include <vector>
#include "hl_gpu.h"
#include "hl_top_k.h"
Y
Yu Yang 已提交
21
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
22 23 24

namespace paddle {

25 26 27 28 29
GpuSparseMatrix::GpuSparseMatrix(size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
Z
zhangjinchao01 已提交
30 31 32 33 34 35
                                 bool trans)
    : Matrix(NULL, height, width, trans, true) {
  resize(height, width, nnz, valueType, format);
}

GpuSparseMatrix::GpuSparseMatrix(GpuMemHandlePtr dataHandle,
36 37 38 39 40 41 42 43
                                 hl_sparse_matrix_s_ptr sMatrix,
                                 size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
                                 bool trans,
                                 MemoryHandlePtr sMemoryHandle)
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    : Matrix(dataHandle, height, width, trans, true) {
  CHECK(dataHandle && sMatrix) << "Invalid argument pointer";

  size_t size = 0;
  if (format == SPARSE_CSR) {
    size = (height + 1) * sizeof(int) + nnz * sizeof(int);
  } else {
    size = (width + 1) * sizeof(int) + nnz * sizeof(int);
  }

  if (NO_VALUE != valueType) {
    size += nnz * sizeof(real);
  }
  CHECK_LE(size, dataHandle->getSize());

  sMatrix_ = sMatrix;

  if (sMemoryHandle == NULL) {
    sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(dataHandle->getSize());
  } else {
    CHECK_EQ(sMemoryHandle->getSize(), dataHandle->getSize());
    sMemoryHandle_ = sMemoryHandle;
  }

  elementCnt_ = nnz;
  valueType_ = valueType;
  format_ = format;
  if (format_ == SPARSE_CSR)
    sparseResizeCSR();
  else
    sparseResizeCSC();
}

77 78 79 80 81 82 83 84
GpuSparseMatrix::GpuSparseMatrix(hl_sparse_matrix_s_ptr sMatrix,
                                 size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
                                 bool trans,
                                 MemoryHandlePtr sMemoryHandle)
Z
zhangjinchao01 已提交
85 86 87 88 89 90 91 92 93
    : Matrix(NULL, height, width, trans, true) {
  CHECK(sMatrix) << "Invalid argument pointer";
  sMatrix_ = sMatrix;
  sMemoryHandle_ = sMemoryHandle;
  elementCnt_ = nnz;
  format_ = format;
  valueType_ = valueType;
}

94 95 96 97 98 99 100 101
GpuSparseMatrix::GpuSparseMatrix(real* value,
                                 int* rows,
                                 int* cols,
                                 size_t height,
                                 size_t width,
                                 size_t nnz,
                                 SparseValueType valueType,
                                 SparseFormat format,
Z
zhangjinchao01 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                                 bool trans)
    : Matrix(NULL, height, width, trans, true) {
  size_t size = 0;
  if (format == SPARSE_CSR) {
    size = (height + 1) * sizeof(int) + nnz * sizeof(int);
  } else {
    size = (width + 1) * sizeof(int) + nnz * sizeof(int);
  }

  if (NO_VALUE != valueType) {
    size += nnz * sizeof(real);
  }
  elementCnt_ = nnz;
  valueType_ = valueType;
  format_ = format;

  sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(size);
  if (format_ == SPARSE_CSR) {
    rows_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
    cols_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (height_ + 1) * sizeof(int));
    if (NO_VALUE != valueType_) {
      value_ = reinterpret_cast<real*>(
          reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
          (height_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
    } else {
      value_ = NULL;
    }

    if (sMatrix_ == NULL) {
      /* construct hl_sparse_matrix_s */
      hl_sparse_matrix_s tmp;
      hl_construct_sparse_matrix(
137 138 139 140 141 142 143 144 145
          &tmp,
          value,
          rows,
          cols,
          HL_SPARSE_CSR,
          valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
          height_,
          width_,
          elementCnt_);
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
      sMatrix_ = tmp2;
    }

  } else {
    cols_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
    rows_ = reinterpret_cast<int*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (width_ + 1) * sizeof(int));
    if (NO_VALUE != valueType_) {
      value_ = reinterpret_cast<real*>(
          reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
          (width_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
    } else {
      value_ = NULL;
    }

    if (sMatrix_ == NULL) {
      /* construct hl_sparse_matrix_s */
      hl_sparse_matrix_s tmp;
      hl_construct_sparse_matrix(
168 169 170 171 172 173 174 175 176
          &tmp,
          value,
          rows,
          cols,
          HL_SPARSE_CSC,
          valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
          height_,
          width_,
          elementCnt_);
Z
zhangjinchao01 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
      hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
      sMatrix_ = tmp2;
    }
    LOG(INFO) << "weight to matrix ";
  }
}

void GpuSparseMatrix::sparseResizeCSR() {
  rows_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
  cols_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
                             (height_ + 1) * sizeof(int));
  if (NO_VALUE != valueType_) {
    value_ = reinterpret_cast<real*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (height_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
  } else {
    value_ = NULL;
  }

  if (sMatrix_ == NULL) {
    /* construct hl_sparse_matrix_s */
    hl_sparse_matrix_s tmp;
    hl_construct_sparse_matrix(
202 203 204 205 206 207 208
        &tmp,
        data_,
        memoryHandle_->getSize(),
        HL_SPARSE_CSR,
        valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
        height_,
        width_,
Z
zhangjinchao01 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        elementCnt_);
    hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
    sMatrix_ = tmp2;
  }
}

void GpuSparseMatrix::sparseResizeCSC() {
  cols_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()));
  rows_ =
      reinterpret_cast<int*>(reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
                             (width_ + 1) * sizeof(int));
  if (NO_VALUE != valueType_) {
    value_ = reinterpret_cast<real*>(
        reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
        (width_ + 1) * sizeof(int) + elementCnt_ * sizeof(int));
  } else {
    value_ = NULL;
  }

  if (sMatrix_ == NULL) {
    /* construct hl_sparse_matrix_s */
    hl_sparse_matrix_s tmp;
    hl_construct_sparse_matrix(
233 234 235 236 237 238 239
        &tmp,
        memoryHandle_->getBuf(),
        memoryHandle_->getSize(),
        HL_SPARSE_CSC,
        valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE,
        height_,
        width_,
Z
zhangjinchao01 已提交
240 241 242 243 244 245
        elementCnt_);
    hl_sparse_matrix_s_ptr tmp2(tmp, hl_destruct_sparse_matrix);
    sMatrix_ = tmp2;
  }
}

246 247 248 249 250
void GpuSparseMatrix::resize(size_t newHeight,
                             size_t newWidth,
                             size_t newNnz,
                             SparseValueType valueType,
                             SparseFormat format) {
Z
zhangjinchao01 已提交
251 252 253 254 255 256 257
  if (format == SPARSE_CSR) {
    resizeCSR(newHeight, newWidth, newNnz, valueType);
  } else {
    resizeCSC(newHeight, newWidth, newNnz, valueType);
  }
}

258 259 260 261
void GpuSparseMatrix::resizeCSR(size_t newHeight,
                                size_t newWidth,
                                size_t newNnz,
                                SparseValueType valueType) {
Z
zhangjinchao01 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  size_t newSize = (newHeight + 1) * sizeof(int) + newNnz * sizeof(int);
  if (NO_VALUE != valueType) {
    newSize += newNnz * sizeof(real);
  }

  if (NULL == memoryHandle_.get() || newSize > memoryHandle_->getSize()) {
    memoryHandle_ = std::make_shared<GpuMemoryHandle>(newSize);
    data_ = reinterpret_cast<real*>(memoryHandle_->getBuf());
    sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(newSize);
    end_ = reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
           sMemoryHandle_->getSize();
    sMatrix_ = NULL;
  } else if (valueType != valueType_) {
    sMatrix_ = NULL;
  } else {
    /*
     * newNnz > elementCnt_ is necessary for the following condition:
     * Firstly, height_ is 9 elementCnt_ is 56
     * Secondly, height_ is 11 elementCnt_ is 44
     *   ==> height_ is bigger, sMatrix_ will resize, and total item is 44 now
     * Then, height_ is 10 elementCnt_ is 52
     *   ==> Without newNnz > elementCnt_ condition, sMatrix_ will fail
     */
    if ((ssize_t)((newHeight + 1) * sizeof(int)) >
            ((char*)cols_ - (char*)rows_) ||
        newNnz > static_cast<size_t>(sMatrix_->nnz)) {
      sMatrix_ = NULL;
    } else if (NO_VALUE == valueType) {
      if ((ssize_t)(newNnz * sizeof(int)) > (end_ - (char*)cols_)) {
        sMatrix_ = NULL;
      }
    } else {
      if ((ssize_t)(newNnz * sizeof(int)) > ((char*)value_ - (char*)cols_) ||
          (ssize_t)(newNnz * sizeof(real)) > (end_ - (char*)value_)) {
        sMatrix_ = NULL;
      }
    }
  }

  height_ = newHeight;
  width_ = newWidth;
  elementCnt_ = newNnz;
  valueType_ = valueType;
  format_ = SPARSE_CSR;

  if (sMatrix_ == NULL) {
    sparseResizeCSR();
  }
}

312 313 314 315
void GpuSparseMatrix::resizeCSC(size_t newHeight,
                                size_t newWidth,
                                size_t newNnz,
                                SparseValueType valueType) {
Z
zhangjinchao01 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  size_t newSize = (newWidth + 1) * sizeof(int) + newNnz * sizeof(int);
  if (NO_VALUE != valueType) {
    newSize += newNnz * sizeof(real);
  }

  if (NULL == memoryHandle_.get() || newSize > memoryHandle_->getSize()) {
    memoryHandle_ = std::make_shared<GpuMemoryHandle>(newSize);
    data_ = reinterpret_cast<real*>(memoryHandle_->getBuf());
    sMemoryHandle_ = std::make_shared<CpuMemoryHandle>(newSize);
    end_ = reinterpret_cast<char*>(sMemoryHandle_->getBuf()) +
           sMemoryHandle_->getSize();
    sMatrix_ = NULL;
  } else if (valueType != valueType_) {
    sMatrix_ = NULL;
  } else {
    /*
     * newNnz > elementCnt_ is necessary for the following condition:
     * Firstly, height_ is 9 elementCnt_ is 56
     * Secondly, height_ is 11 elementCnt_ is 44
     *   ==> height_ is bigger, sMatrix_ will resize,
     *       and total item is 44 now
     * Then, height_ is 10 elementCnt_ is 52
     *   ==> Without newNnz > elementCnt_ condition, sMatrix_ will fail
     */
    if ((ssize_t)((newWidth + 1) * sizeof(int)) >
            ((char*)rows_ - (char*)cols_) ||
        newNnz > static_cast<size_t>(sMatrix_->nnz)) {
      sMatrix_ = NULL;
    } else if (NO_VALUE == valueType) {
      if ((ssize_t)(newNnz * sizeof(int)) > (end_ - (char*)rows_)) {
        sMatrix_ = NULL;
      }
    } else {
      if ((ssize_t)(newNnz * sizeof(int)) > ((char*)value_ - (char*)rows_) ||
          (ssize_t)(newNnz * sizeof(real)) > (end_ - (char*)value_)) {
        sMatrix_ = NULL;
      }
    }
  }

  height_ = newHeight;
  width_ = newWidth;
  elementCnt_ = newNnz;
  valueType_ = valueType;
  format_ = SPARSE_CSC;

  if (sMatrix_ == NULL) {
    sparseResizeCSC();
  }
}

void GpuSparseMatrix::resize(size_t newHeight, size_t newWidth) {
  resize(newHeight, newWidth, elementCnt_, valueType_, format_);
}

MatrixPtr GpuSparseMatrix::getTranspose() {
  CHECK(memoryHandle_.get() || sMatrix_) << "not supported";
  if (memoryHandle_.get()) {
    MatrixPtr copy_T(new GpuSparseMatrix(
375 376 377 378 379 380 381 382
        std::dynamic_pointer_cast<GpuMemoryHandle>(memoryHandle_),
        sMatrix_,
        height_,
        width_,
        elementCnt_,
        valueType_,
        format_,
        true,
Z
zhangjinchao01 已提交
383 384 385
        sMemoryHandle_));
    return copy_T;
  } else {
386 387 388 389 390 391 392
    MatrixPtr copy_T(new GpuSparseMatrix(sMatrix_,
                                         height_,
                                         width_,
                                         elementCnt_,
                                         valueType_,
                                         format_,
                                         true,
Z
zhangjinchao01 已提交
393 394 395 396 397
                                         sMemoryHandle_));
    return copy_T;
  }
}

398 399
void GpuSparseMatrix::copyRow(int offsets,
                              size_t colNum,
Z
zhangjinchao01 已提交
400 401 402 403
                              const sparse_non_value_t* row) {
  memcpy(cols_ + offsets, row, sizeof(int) * colNum);
}

404 405
void GpuSparseMatrix::copyRow(int offsets,
                              size_t colNum,
Z
zhangjinchao01 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
                              const sparse_float_value_t* row) {
  for (size_t j = 0; j < colNum; j++) {
    cols_[offsets + j] = row[j].col;
    value_[offsets + j] = row[j].value;
  }
}

void GpuSparseMatrix::copyFrom(const Matrix& src, hl_stream_t stream) {
  if (auto mat = dynamic_cast<const CpuSparseMatrix*>(&src)) {
    copyFrom(*(const_cast<CpuSparseMatrix*>(mat)), stream);
  } else if (auto mat = dynamic_cast<const GpuSparseMatrix*>(&src)) {
    copyFrom(*(const_cast<GpuSparseMatrix*>(mat)), stream);
  } else {
    LOG(FATAL) << "Not implemented";
  }
}

void GpuSparseMatrix::copyFrom(const Matrix& src) {
  copyFrom(src, HPPL_STREAM_1);
  hl_stream_synchronize(HPPL_STREAM_1);
}

template <class T>
429 430 431
void GpuSparseMatrix::copyFrom(int64_t* ids,
                               int64_t* indices,
                               T* data,
Z
zhangjinchao01 已提交
432 433 434 435 436 437 438 439
                               hl_stream_t stream) {
  CHECK_EQ(format_, SPARSE_CSR);
  size_t nnz = 0;
  for (size_t i = 0; i < height_; i++) {
    int64_t id = ids[i];
    nnz += indices[id + 1] - indices[id];
  }

440 441 442
  resize(height_,
         width_,
         nnz,
Z
zhangjinchao01 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
         sizeof(T) == sizeof(sparse_non_value_t) ? NO_VALUE : FLOAT_VALUE,
         format_);

  rows_[0] = 0;
  for (size_t i = 0; i < height_; i++) {
    int64_t id = ids[i];
    size_t colNum = indices[id + 1] - indices[id];
    rows_[i + 1] = rows_[i] + colNum;

    T* row = data + indices[id];
    copyRow(rows_[i], colNum, row);
  }

  sMatrix_->format = HL_SPARSE_CSR;
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;
  hl_memcpy_csr_matrix(sMatrix_.get(), value_, rows_, cols_, stream);
}

464 465 466 467
void GpuSparseMatrix::setRow(size_t row,
                             size_t colNum,
                             const unsigned int* cols,
                             const real* values) {
Z
zhangjinchao01 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
  CHECK_EQ(format_, SPARSE_CSR);
  if (NO_VALUE == valueType_) {
    CHECK_LT(row, height_);
    CHECK(NULL != cols);
    CHECK(NULL == values);
  } else {
    CHECK_LT(row, height_);
    CHECK(NULL != cols);
    CHECK(NULL != values);
  }
  if (0 == row) {
    rows_[row] = 0;
  }
  rows_[row + 1] = rows_[row] + colNum;

  memcpy(cols_ + rows_[row], cols, sizeof(*cols) * colNum);
  if (FLOAT_VALUE == valueType_) {
    memcpy(value_ + rows_[row], values, sizeof(*values) * colNum);
  }

  if (height_ - 1 == row) {
    sMatrix_->format = HL_SPARSE_CSR;
    sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
    sMatrix_->rows = height_;
    sMatrix_->cols = width_;
    sMatrix_->nnz = elementCnt_;
494 495
    hl_memcpy_csr_matrix(
        sMatrix_.get(), value_, rows_, cols_, HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
496 497 498 499 500 501 502 503 504
  }
}

SparseValueType GpuSparseMatrix::getValueType() const { return valueType_; }

void GpuSparseMatrix::transpose(MatrixPtr matTrans, bool memAlloc) {
  CHECK_EQ(format_, SPARSE_CSC);
  int nnz = sMatrix_->nnz;
  if (memAlloc) {
505 506
    matTrans = std::make_shared<GpuSparseMatrix>(
        width_, height_, nnz, valueType_, format_, false);
Z
zhangjinchao01 已提交
507 508 509 510 511 512 513 514 515
  } else {
    CHECK(matTrans != nullptr);
  }

  CpuIVector rows(nnz);
  CpuIVector cols(width_ + 1);
  CpuIVector cols_full(nnz);
  CpuVector value(nnz);
  hl_stream_t stream = HPPL_STREAM_1;
516 517 518 519 520 521 522 523
  hl_memcpy_from_csc_matrix(value.getData(),
                            nnz,
                            rows.getData(),
                            nnz,
                            cols.getData(),
                            width_ + 1,
                            sMatrix_.get(),
                            stream);
Z
zhangjinchao01 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536

  hl_stream_synchronize(stream);

  /*for every non zero number, get its column index*/
  std::vector<Element> dataVec;
  for (size_t i = 0; i < width_; i++) {
    for (int j = cols.getData()[i]; j < cols.getData()[i + 1]; j++) {
      cols_full.getData()[j] = i;
    }
  }

  /*sort row index and column index by the ascending order*/
  for (int i = 0; i < nnz; i++) {
537 538
    dataVec.emplace_back(
        rows.getData()[i], cols_full.getData()[i], value.getData()[i]);
Z
zhangjinchao01 已提交
539
  }
Y
Yu Yang 已提交
540 541 542
  std::sort(dataVec.begin(), dataVec.end(), [](Element a, Element b) {
    return a.row < b.row || (a.row == b.row && a.col < b.col);
  });
Z
zhangjinchao01 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

  /*get sorted data, row index, and col index, put them in the right place*/
  cols.resize(height_ + 1);
  rows.resize(nnz);
  value.resize(nnz);

  cols.getData()[0] = 0;
  rows.getData()[0] = dataVec[0].col;
  value.getData()[0] = dataVec[0].val;
  for (int i = 1; i < nnz; i++) {
    if (dataVec[i].row != dataVec[i - 1].row) {
      for (int j = dataVec[i - 1].row + 1; j <= dataVec[i].row; j++) {
        cols.getData()[j] = i;
      }
    }
    rows.getData()[i] = dataVec[i].col;
    value.getData()[i] = dataVec[i].val;
  }
  cols.getData()[height_] = nnz;

  /*copy back from cpu*/
  GpuSparseMatrixPtr dest =
      std::dynamic_pointer_cast<GpuSparseMatrix>(matTrans);
566 567 568 569 570
  hl_memcpy_csc_matrix((dest->sMatrix_).get(),
                       value.getData(),
                       rows.getData(),
                       cols.getData(),
                       stream);
Z
zhangjinchao01 已提交
571 572 573
  hl_stream_synchronize(stream);
}

574 575 576 577
void GpuSparseMatrix::mul(const GpuMatrixPtr a,
                          const GpuMatrixPtr b,
                          real scaleAB,
                          real scaleT) {
Z
zhangjinchao01 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
  CHECK(a->useGpu_ && b->useGpu_) << "type not match";
  CHECK(!trans_) << "trans not supported";
  real* A_d = a->getData();
  real* B_d = b->getData();
  hl_sparse_matrix_s C_d = sMatrix_.get();
  hl_trans_op_t a_trans = a->trans_ ? HPPL_OP_T : HPPL_OP_N;
  hl_trans_op_t b_trans = b->trans_ ? HPPL_OP_T : HPPL_OP_N;

  if (!a->trans_ && !b->trans_) {
    CHECK(height_ == a->getHeight());
    CHECK(width_ == b->getWidth());
    CHECK(a->getWidth() == b->getHeight());
  } else if (a->trans_ && !b->trans_) {
    CHECK(height_ == a->getWidth());
    CHECK(width_ == b->getWidth());
    CHECK(a->getHeight() == b->getHeight());
  } else if (!a->trans_ && b->trans_) {
    CHECK(height_ == a->getHeight());
    CHECK(width_ == b->getHeight());
    CHECK(a->getWidth() == b->getWidth());
  } else {
    LOG(INFO) << "Not support";
  }
  int dimM = height_;
  int dimN = width_;
  int dimK = !b->trans_ ? b->getHeight() : b->getWidth();
604 605
  hl_sparse_matrix_mul(
      A_d, a_trans, B_d, b_trans, C_d, dimM, dimN, dimK, scaleAB, scaleT);
Z
zhangjinchao01 已提交
606 607
}

608 609 610
void GpuSparseMatrix::mul(const MatrixPtr a,
                          const MatrixPtr b,
                          real scaleAB,
Z
zhangjinchao01 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
                          real scaleT) {
  if (std::dynamic_pointer_cast<GpuMatrix>(a) &&
      std::dynamic_pointer_cast<GpuMatrix>(b)) {
    GpuMatrixPtr a_ptr = std::dynamic_pointer_cast<GpuMatrix>(a);
    GpuMatrixPtr b_ptr = std::dynamic_pointer_cast<GpuMatrix>(b);
    mul(a_ptr, b_ptr, scaleAB, scaleT);
  } else {
    LOG(FATAL) << "not supported";
  }
}

template <class T>
void printBuf(std::ostream& os, T* a, size_t len, const char* name) {
  os << "\n: " << name << " [";
  for (size_t i = 0; i < len; i++) {
    os << a[i] << " ";
  }
  os << "]\n";
}

void GpuSparseMatrix::print(std::ostream& os) const {
  if (format_ == SPARSE_CSC) {
    int nnz = sMatrix_->nnz;
    IVectorPtr rows = IVector::create(nnz, false);
    IVectorPtr cols = IVector::create(width_ + 1, false);
    VectorPtr value = Vector::create(nnz, false);
    hl_stream_t stream = HPPL_STREAM_DEFAULT;
638 639 640 641 642 643 644 645
    hl_memcpy_from_csc_matrix(value->getData(),
                              value->getSize(),
                              rows->getData(),
                              rows->getSize(),
                              cols->getData(),
                              cols->getSize(),
                              sMatrix_.get(),
                              stream);
Z
zhangjinchao01 已提交
646 647 648 649 650 651 652 653 654 655 656 657
    hl_stream_synchronize(stream);

    printBuf(os, cols->getData(), width_ + 1, "col idx");
    printBuf(os, rows->getData(), elementCnt_, "row idx");
    printBuf(os, value->getData(), elementCnt_, "value");
  }
}

void GpuSparseMatrix::copyFromCSR(CpuSparseMatrix& src, hl_stream_t stream) {
  trans_ = src.trans_;
  size_t nnz = src.getElementCnt();

658
  resize(src.getHeight(), src.getWidth(), nnz, valueType_, src.getFormat());
Z
zhangjinchao01 已提交
659 660
  // if have different value type, only copy rows and cols
  SparseValueType vType =
661
      valueType_ != src.getValueType() ? NO_VALUE : valueType_;
Z
zhangjinchao01 已提交
662 663 664 665 666 667 668 669 670

  sMatrix_->format = HL_SPARSE_CSR;
  sMatrix_->type = vType == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

  hl_memcpy_csr_matrix(sMatrix_.get(),
                       vType == NO_VALUE ? NULL : src.getValue(),
671 672 673
                       src.getRows(),
                       src.getCols(),
                       stream);
Z
zhangjinchao01 已提交
674 675 676 677 678 679 680 681 682

  // restore type of sMatrix_
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
}

void GpuSparseMatrix::copyFromCSC(CpuSparseMatrix& src, hl_stream_t stream) {
  trans_ = src.trans_;
  size_t nnz = src.getElementCnt();

683
  resize(src.getHeight(), src.getWidth(), nnz, valueType_, src.getFormat());
Z
zhangjinchao01 已提交
684 685 686

  // if have different value type, only copy rows and cols
  SparseValueType vType =
687
      valueType_ != src.getValueType() ? NO_VALUE : valueType_;
Z
zhangjinchao01 已提交
688 689 690 691 692 693 694 695 696

  sMatrix_->format = HL_SPARSE_CSC;
  sMatrix_->type = vType == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

  hl_memcpy_csc_matrix(sMatrix_.get(),
                       vType == NO_VALUE ? NULL : src.getValue(),
697 698 699
                       src.getRows(),
                       src.getCols(),
                       stream);
Z
zhangjinchao01 已提交
700 701 702 703 704 705 706 707

  // restore type of sMatrix_
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
}

void GpuSparseMatrix::copyFrom(GpuSparseMatrix& src, hl_stream_t stream) {
  CHECK(trans_ == src.trans_);
  CHECK(format_ == src.getFormat());
708 709 710 711
  resize(src.getHeight(),
         src.getWidth(),
         elementCnt_,
         valueType_,
Z
zhangjinchao01 已提交
712 713 714 715 716 717
         src.getFormat());

  size_t rowSize = format_ == SPARSE_CSC ? elementCnt_ : height_ + 1;
  size_t colSize = format_ == SPARSE_CSC ? width_ + 1 : elementCnt_;

  if (valueType_ == FLOAT_VALUE && src.getValueType() == FLOAT_VALUE) {
718 719
    hl_memcpy_async(
        getValue(), src.getValue(), sizeof(real) * elementCnt_, stream);
Z
zhangjinchao01 已提交
720 721 722 723
  }
  CHECK(getRows());
  CHECK(src.getRows());

724 725
  hl_memcpy_async(getRows(), src.getRows(), sizeof(int) * rowSize, stream);
  hl_memcpy_async(getCols(), src.getCols(), sizeof(int) * colSize, stream);
Z
zhangjinchao01 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738
}

void GpuSparseMatrix::copyFrom(CpuSparseMatrix& src, hl_stream_t stream) {
  if (format_ == SPARSE_CSR) {
    copyFromCSR(src, stream);
  } else {
    copyFromCSC(src, stream);
  }
}

void GpuSparseMatrix::trimFromCSR(const CpuSparseMatrix& src) {
  trans_ = src.trans_;
  int* srcCols = src.getCols();
739 740
  size_t nnz = std::count_if(srcCols,
                             srcCols + src.getElementCnt(),
Z
zhangjinchao01 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
                             [this](size_t n) { return n < this->width_; });
  resize(height_, width_, nnz, valueType_, format_);

  rows_[0] = 0;
  size_t index = 0;
  for (size_t r = 0; r < height_; ++r) {
    for (int i = src.getRows()[r]; i < src.getRows()[r + 1]; ++i) {
      if (srcCols[i] < (int)width_) {
        cols_[index] = srcCols[i];
        if (valueType_ == FLOAT_VALUE) {
          value_[index] = src.getValue()[i];
        }
        ++index;
      }
    }
    rows_[r + 1] = index;
  }
  CHECK_EQ(index, nnz);

  sMatrix_->format = HL_SPARSE_CSR;
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

766 767 768 769 770
  hl_memcpy_csr_matrix(sMatrix_.get(),
                       valueType_ == NO_VALUE ? NULL : value_,
                       rows_,
                       cols_,
                       /*default stream = */ HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
}

void GpuSparseMatrix::trimFromCSC(const CpuSparseMatrix& src) {
  trans_ = src.trans_;
  size_t nnz = src.getCols()[width_] - src.getCols()[0];
  resize(height_, width_, nnz, valueType_, format_);

  cols_[0] = 0;
  for (size_t i = 0; i < width_; i++) {
    cols_[i + 1] = cols_[i] + (int)(src.getRowNum(i));
  }
  memcpy(rows_, src.getRows() + src.getCols()[0], sizeof(int) * nnz);
  if (valueType_ == FLOAT_VALUE) {
    memcpy(value_, src.getValue() + src.getCols()[0], sizeof(real) * nnz);
  }

  sMatrix_->format = HL_SPARSE_CSC;
  sMatrix_->type = valueType_ == NO_VALUE ? HL_NO_VALUE : HL_FLOAT_VALUE;
  sMatrix_->rows = height_;
  sMatrix_->cols = width_;
  sMatrix_->nnz = nnz;

793 794 795 796 797
  hl_memcpy_csc_matrix(sMatrix_.get(),
                       valueType_ == NO_VALUE ? NULL : value_,
                       rows_,
                       cols_,
                       /*default stream = */ HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
}

void GpuSparseMatrix::trimFrom(const CpuSparseMatrix& src) {
  if (format_ == SPARSE_CSR) {
    trimFromCSR(src);
  } else {
    trimFromCSC(src);
  }
}

void GpuSparseMatrix::addBias(Matrix& b, real scale) {
  CHECK(b.getHeight() == 1) << "the Bias should be a vector";
  hl_sparse_matrix_s A_d = sMatrix_.get();
  hl_sparse_matrix_add_bias(A_d, b.getData(), scale);
}

void GpuSparseMatrix::add3(GpuMatrix* b) {
  CHECK(getFormat() != SPARSE_CSC) << "Not supported";
  CHECK(height_ == b->getHeight());
  CHECK(width_ == b->getWidth());
  real* B_d = b->getData();
  hl_sparse_matrix_s A_d = sMatrix_.get();
  hl_sparse_matrix_add_dense(A_d, B_d, height_, width_, 1, 0);
}

void GpuSparseMatrix::add3(MatrixPtr b) {
  if (dynamic_cast<GpuMatrix*>(b.get())) {
    add3(dynamic_cast<GpuMatrix*>(b.get()));
  } else {
    LOG(FATAL) << "not supported";
  }
}

void GpuSparseMatrix::zeroMem() {
  CHECK(valueType_ == FLOAT_VALUE);
  real* value = getValue();
  if (value == NULL) {
    LOG(FATAL) << "value is nullptr";
  }
  hl_matrix_zero_mem(value, elementCnt_);
}

void GpuSparseMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
#ifndef PADDLE_ONLY_CPU
  CHECK(maxIds.useGpu() && maxVal.useGpu()) << "Matrix type are not equal";
  size_t numSamples = getHeight();
  size_t beam = maxVal.getWidth();
  CHECK_EQ(maxIds.getSize(), numSamples * beam);
  CHECK_EQ(maxVal.getHeight(), numSamples);
  CHECK_EQ(format_, SPARSE_CSR) << "Only support SPARSE_CSR";

  hl_sparse_matrix_top_k(maxVal.getData(),
                         maxVal.getStride(),
                         maxIds.getData(),
                         sMatrix_.get(),
                         beam,
                         numSamples);
#endif
}

858 859
template void GpuSparseMatrix::copyFrom(int64_t* ids,
                                        int64_t* indices,
Z
zhangjinchao01 已提交
860 861
                                        sparse_non_value_t* data,
                                        hl_stream_t stream);
862 863
template void GpuSparseMatrix::copyFrom(int64_t* ids,
                                        int64_t* indices,
Z
zhangjinchao01 已提交
864 865 866
                                        sparse_float_value_t* data,
                                        hl_stream_t stream);
}  // namespace paddle