concat_and_split.cc 8.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15
#include "paddle/fluid/operators/math/concat_and_split.h"
16 17

#include "paddle/pten/kernels/cpu/concat_and_split.h"
18
#ifdef PADDLE_WITH_ASCEND_CL
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20
#endif
21 22
#include "paddle/pten/common/bfloat16.h"
#include "paddle/pten/common/float16.h"
W
wanghuancoder 已提交
23

24 25 26 27
namespace pten {
class DenseTensor;
}  // namespace pten

W
wanghuancoder 已提交
28
namespace paddle {
29
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
30 31 32 33
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle
C
chengduoZH 已提交
34 35 36 37 38 39

namespace paddle {
namespace operators {
namespace math {

/*
C
chengduoZH 已提交
40
 * All tensors' dimension should be the same and the values of
41
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
42 43 44 45 46
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
47
                  const std::vector<framework::Tensor>& input, int axis,
C
chengduoZH 已提交
48
                  framework::Tensor* output) {
49 50 51
    std::vector<pten::DenseTensor> pt_input{input.begin(), input.end()};
    pten::ConcatImpl<T, platform::CPUDeviceContext>(context, pt_input, axis,
                                                    output);
C
chengduoZH 已提交
52 53 54
  }
};

C
chengduoZH 已提交
55 56
/*
 * All tensors' dimension should be the same and the values of
57
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
58
 */
C
chengduoZH 已提交
59
template <typename T>
C
chengduo 已提交
60
class SplitFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
61 62
 public:
  void operator()(const platform::CPUDeviceContext& context,
Q
qiaolongfei 已提交
63
                  const framework::Tensor& input,
C
chengduoZH 已提交
64
                  const std::vector<const framework::Tensor*>& ref_inputs,
Q
qiaolongfei 已提交
65
                  const int axis, std::vector<framework::Tensor*>* outputs) {
66 67 68 69 70 71
    std::vector<const pten::DenseTensor*> pt_ref_inputs{ref_inputs.begin(),
                                                        ref_inputs.end()};
    std::vector<pten::DenseTensor*> pt_outputs{outputs->begin(),
                                               outputs->end()};
    pten::SplitImpl<T, platform::CPUDeviceContext>(
        context, input, pt_ref_inputs, axis, &pt_outputs);
C
chengduoZH 已提交
72 73
  }
};
74 75 76 77 78 79 80 81 82 83 84 85

#ifdef PADDLE_WITH_XPU
/*
 * All tensors' dimension should be the same and the values of
 * each dimension must be the same, except the axis dimension.
 */
template <typename T>
class ConcatFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
86
    int dev_id = context.GetPlace().GetDeviceId();
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    platform::XPUDeviceGuard guard(dev_id);

    int num = input.size();
    auto input_dims = input[0].dims();

    std::vector<std::vector<int>> xdims_list(num);
    for (int i = 0; i < num; ++i) {
      std::vector<int> tmp_dims(input_dims.size());
      for (int j = 0; j < input_dims.size(); ++j) {
        tmp_dims[j] = input[i].dims()[j];
      }
      xdims_list[i] = tmp_dims;
    }

    std::vector<const T*> ptrs;
    for (int i = 0; i < num; ++i) {
      ptrs.push_back(input[i].data<T>());
    }

    auto r = xpu::concat<T>(context.x_context(), ptrs, output->data<T>(),
                            xdims_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};

template <typename T>
class SplitFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
124
    int dev_id = context.GetPlace().GetDeviceId();
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    platform::XPUDeviceGuard guard(dev_id);

    auto& ins = ref_inputs;

    int num = ins.size();
    auto input_dims = ins[0]->dims();
    std::vector<int> split_list(num);
    std::vector<int> xdims_list(input_dims.size());
    int total_length = 0;
    for (int i = 0; i < num; ++i) {
      split_list[i] = ins[i]->dims()[axis];
      total_length += ins[i]->dims()[axis];
    }

    for (int i = 0; i < input_dims.size(); ++i) {
      if (i == axis) continue;
      xdims_list[i] = input_dims[i];
    }
    xdims_list[axis] = total_length;

    std::vector<T*> ptrs(num);
    for (int i = 0; i < num; ++i) {
      ptrs[i] = outputs->at(i)->data<T>();
    }

    auto r = xpu::split<T>(context.x_context(), input.data<T>(), ptrs,
                           xdims_list, split_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};
#endif

162 163 164 165 166 167 168
#ifdef PADDLE_WITH_ASCEND_CL
template <typename T>
class ConcatFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
169
    int dev_id = context.GetPlace().GetDeviceId();
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    platform::NPUDeviceGuard guard(dev_id);

    std::vector<std::string> names;
    for (size_t i = 0; i < input.size(); ++i) {
      names.push_back("x" + std::to_string(i));
    }
    NpuOpRunner runner{
        "ConcatD",
        {input},
        {*output},
        {{"concat_dim", axis}, {"N", static_cast<int>(input.size())}}};
    runner.AddInputNames(names);
    runner.Run(context.stream());
  }
};

template <typename T>
class SplitFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
    if (input.numel() == 0) {
      return;
    }

    size_t num = outputs->size();

    int input_rows = 1;
    auto dim_0 = ref_inputs[0]->dims();
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }

    int input_cols = 0;

    std::vector<int64_t> output_cols(outputs->size());
    for (size_t i = 0; i < num; ++i) {
      int t_cols = ref_inputs[i]->numel() / input_rows;
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
213
    auto npu_place = context.GetPlace();
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    // computation
    for (int k = 0; k < input_rows; ++k) {
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
      for (size_t j = 0; j < num; ++j) {
        int col_len = output_cols[j];
        auto* out_tensor = outputs->at(j);
        if (out_tensor != nullptr) {
          T* dst_ptr = out_tensor->data<T>() + k * col_len;
          memory::Copy(npu_place, dst_ptr, npu_place, src_ptr + col_idx,
                       sizeof(T) * col_len, context.stream());
        }
        col_idx += col_len;
      }
    }
  }
};
#endif

C
chengduoZH 已提交
234 235
#define DEFINE_FUNCTOR(type)                                      \
  template class ConcatFunctor<platform::CPUDeviceContext, type>; \
C
chengduo 已提交
236
  template class SplitFunctor<platform::CPUDeviceContext, type>;
C
chengduoZH 已提交
237

C
chengduoZH 已提交
238
FOR_ALL_TYPES(DEFINE_FUNCTOR);
C
chengduoZH 已提交
239

240 241 242 243 244 245 246 247
#ifdef PADDLE_WITH_XPU
#define DEFINE_XPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::XPUDeviceContext, type>; \
  template class SplitFunctor<platform::XPUDeviceContext, type>;

DEFINE_XPU_FUNCTOR(float)
#endif

248 249 250 251 252 253 254 255
#ifdef PADDLE_WITH_ASCEND_CL
#define DEFINE_NPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::NPUDeviceContext, type>; \
  template class SplitFunctor<platform::NPUDeviceContext, type>;

FOR_ALL_TYPES(DEFINE_NPU_FUNCTOR)
#endif

C
chengduoZH 已提交
256 257 258
}  // namespace math
}  // namespace operators
}  // namespace paddle