auto_gradient_check.html 24.1 KB
Newer Older
1 2


3 4


5 6 7 8 9 10 11 12
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
13
  <title>Auto Gradient Check Design &mdash; PaddlePaddle  文档</title>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
33

34 35 36 37 38
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 
39 40 41 42 43 44 45 46 47 48
<script>
var _hmt = _hmt || [];
(function() {
  var hm = document.createElement("script");
  hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
  var s = document.getElementsByTagName("script")[0]; 
  s.parentNode.insertBefore(hm, s);
})();
</script>

49 50 51 52 53 54 55 56

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

57 58 59 60 61 62 63 64 65 66 67 68 69
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../index_cn.html" class="icon icon-home"> PaddlePaddle
          

          
70 71
          </a>

72 73 74 75 76 77
          
            
            
          

          
78 79 80 81 82 83
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
84
</div>
85 86

          
87 88 89 90
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
<nav class="doc-menu-vertical" role="navigation">

<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中启动训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_cn.html">Kubernetes on AWS</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_cn.html">RNN模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_cn.html">如何贡献文档</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
154 155
</ul>

156 157
</nav>

158 159
        </div>
      </div>
160 161
    </nav>

162
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
163

164 165 166 167 168
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../index_cn.html">PaddlePaddle</a>
      </nav>
169 170


171 172 173 174
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
175

176
 
177 178 179 180 181



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
182
    <li><a href="../index_cn.html">Docs</a> &raquo;</li>
183
      
184
    <li>Auto Gradient Check Design</li>
185 186 187 188 189 190 191
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../_sources/design/auto_gradient_check.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
192
  </ul>
193
  <hr/>
194 195 196 197
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
198 199
  <div class="section" id="auto-gradient-check-design">
<span id="auto-gradient-check-design"></span><h1>Auto Gradient Check Design<a class="headerlink" href="#auto-gradient-check-design" title="永久链接至标题"></a></h1>
200
</div>
201 202
<div class="section" id="background">
<span id="background"></span><h1>Background:<a class="headerlink" href="#background" title="永久链接至标题"></a></h1>
203
<ul class="simple">
204 205 206 207
<li>Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right because of the following challenges:<ol>
<li>The formula for backpropagation formula should be correct according to the forward computation.</li>
<li>The Implementation of the above shoule be correct in CPP.</li>
<li>It is difficult to prepare an unbiased test data.</li>
208 209
</ol>
</li>
210 211 212
<li>Auto gradient checking gets a numerical gradient using forward Operator and uses it as a reference for the backward Operator&#8217;s result. It has several advantages:<ol>
<li>Numerical gradient checker only needs the forward operator.</li>
<li>The user only needs to prepare the input data for forward Operator and not worry about the backward Operator.</li>
213 214 215 216 217 218
</ol>
</li>
</ul>
</div>
<div class="section" id="mathematical-theory">
<span id="mathematical-theory"></span><h1>Mathematical Theory<a class="headerlink" href="#mathematical-theory" title="永久链接至标题"></a></h1>
219
<p>The following documents from Stanford have a detailed explanation of how to compute the numerical gradient and why it is useful.</p>
220 221 222 223 224 225 226
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
227 228
<div class="section" id="numerical-gradient-implementation">
<span id="numerical-gradient-implementation"></span><h1>Numerical Gradient Implementation<a class="headerlink" href="#numerical-gradient-implementation" title="永久链接至标题"></a></h1>
229 230
<div class="section" id="python-interface">
<span id="python-interface"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="永久链接至标题"></a></h2>
231
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_numerical_gradient</span><span class="p">(</span><span class="n">op</span><span class="p">,</span>
232 233 234 235 236 237
                         <span class="n">input_values</span><span class="p">,</span>
                         <span class="n">output_name</span><span class="p">,</span>
                         <span class="n">input_to_check</span><span class="p">,</span>
                         <span class="n">delta</span><span class="o">=</span><span class="mf">0.005</span><span class="p">,</span>
                         <span class="n">local_scope</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;</span>
238
<span class="sd">    Get Numerical Gradient for the input of an operator.</span>
239

240
<span class="sd">    :param op: C++ operator instance, could be an network.</span>
241
<span class="sd">    :param input_values: The input variables. Should be an dictionary, whose key is</span>
242
<span class="sd">    variable name, and value is a numpy array.</span>
243
<span class="sd">    :param output_name: The final output variable name.</span>
244 245 246 247
<span class="sd">    :param input_to_check: The input variable with respect to which the gradient has to be computed.</span>
<span class="sd">    :param delta: The perturbation value for numerical gradient method. The</span>
<span class="sd">    smaller the delta, the more accurate the result. But if the delta is too</span>
<span class="sd">    small, it will suffer from the numerical stability problem.</span>
248 249 250 251 252 253
<span class="sd">    :param local_scope: The local scope used for get_numeric_gradient.</span>
<span class="sd">    :return: The gradient array in numpy format.</span>
<span class="sd">    &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
254 255
<div class="section" id="explanation">
<span id="explanation"></span><h2>Explanation:<a class="headerlink" href="#explanation" title="永久链接至标题"></a></h2>
256
<ul class="simple">
257 258
<li>Why do we need an <code class="docutils literal"><span class="pre">output_name</span></code><ul>
<li>An Operator may have multiple Outputs, one can compute an independent gradient from each Output. So the caller should specify the name of the output variable.</li>
259 260
</ul>
</li>
261 262
<li>Why do we need <code class="docutils literal"><span class="pre">input_to_check</span></code><ul>
<li>One operator can have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numerical Gradient needs to calculate them one by one. So <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> multiple times each with a different input.</li>
263 264 265 266 267 268
</ul>
</li>
</ul>
</div>
<div class="section" id="core-algorithm-implementation">
<span id="core-algorithm-implementation"></span><h2>Core Algorithm Implementation<a class="headerlink" href="#core-algorithm-implementation" title="永久链接至标题"></a></h2>
269
<div class="highlight-python"><div class="highlight"><pre><span></span>    <span class="c1"># we only compute the gradient of one element a time.</span>
270
    <span class="c1"># we use a for loop to compute the gradient of each element.</span>
271
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">tensor_size</span><span class="p">):</span>
272 273
        <span class="c1"># get one input element using the index i.</span>
        <span class="n">original</span> <span class="o">=</span> <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
274

275 276 277
        <span class="c1"># add delta to it, run the forward op and then</span>
        <span class="c1"># get the new value of the result tensor.</span>
        <span class="n">x_pos</span> <span class="o">=</span> <span class="n">original</span> <span class="o">+</span> <span class="n">delta</span>
278 279 280
        <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_pos</span><span class="p">)</span>
        <span class="n">y_pos</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>

281 282 283
        <span class="c1"># Subtract delta from this element, run the op again</span>
        <span class="c1"># and get the new value of the result tensor.</span>
        <span class="n">x_neg</span> <span class="o">=</span> <span class="n">original</span> <span class="o">-</span> <span class="n">delta</span>
284 285 286 287
        <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_neg</span><span class="p">)</span>
        <span class="n">y_neg</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>

        <span class="c1"># restore old value</span>
288
        <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">original</span><span class="p">)</span>
289

290 291
        <span class="c1"># compute the gradient of this element and store</span>
        <span class="c1"># it into a numpy array.</span>
292 293 294 295 296 297 298 299
        <span class="n">gradient_flat</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">y_pos</span> <span class="o">-</span> <span class="n">y_neg</span><span class="p">)</span> <span class="o">/</span> <span class="n">delta</span> <span class="o">/</span> <span class="mi">2</span>

    <span class="c1"># reshape the gradient result to the shape of the source tensor.</span>
    <span class="k">return</span> <span class="n">gradient_flat</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_dims</span><span class="p">())</span>
</pre></div>
</div>
</div>
</div>
300 301
<div class="section" id="auto-gradient-check-framework">
<span id="auto-gradient-check-framework"></span><h1>Auto Gradient Check Framework<a class="headerlink" href="#auto-gradient-check-framework" title="永久链接至标题"></a></h1>
302
<p>Each Operator Kernel has three kinds of Gradient:</p>
303 304 305
<ol class="simple">
<li>Numerical gradient</li>
<li>CPU kernel gradient</li>
306
<li>GPU kernel gradient (if supported by the device)</li>
307
</ol>
308
<p>The numerical gradient only relies on the forward Operator, so we use the numerical gradient as the reference value. The gradient checking is performed in the following three steps:</p>
309
<ol class="simple">
310 311 312
<li>Calculate the numerical gradient</li>
<li>Calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient.</li>
<li>Calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient. (if supported)</li>
313 314 315 316 317 318 319 320 321 322 323 324 325 326
</ol>
<div class="section" id="python-interface">
<span id="id1"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="永久链接至标题"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span>    <span class="k">def</span> <span class="nf">check_grad</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
                   <span class="n">forward_op</span><span class="p">,</span>
                   <span class="n">input_vars</span><span class="p">,</span>
                   <span class="n">inputs_to_check</span><span class="p">,</span>
                   <span class="n">output_name</span><span class="p">,</span>
                   <span class="n">no_grad_set</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
                   <span class="n">only_cpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
                   <span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.005</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param forward_op: used to create backward_op</span>
<span class="sd">        :param input_vars: numpy value of input variable. The following</span>
327 328 329
<span class="sd">          computation will use these variables.</span>
<span class="sd">        :param inputs_to_check: the input variable with respect to which the</span>
<span class="sd">          gradient will be computed.</span>
330
<span class="sd">        :param output_name: The final output variable name.</span>
331
<span class="sd">        :param max_relative_error: The relative tolerance parameter.</span>
332
<span class="sd">        :param no_grad_set: used to create backward ops</span>
333 334 335 336 337 338
<span class="sd">        :param only_cpu: only compute and check gradient on cpu kernel.</span>
<span class="sd">        :return:</span>
<span class="sd">        &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
339 340 341
<div class="section" id="how-to-check-if-two-numpy-arrays-are-close-enough">
<span id="how-to-check-if-two-numpy-arrays-are-close-enough"></span><h2>How to check if two numpy arrays are close enough?<a class="headerlink" href="#how-to-check-if-two-numpy-arrays-are-close-enough" title="永久链接至标题"></a></h2>
<p>if <code class="docutils literal"><span class="pre">abs_numerical_grad</span></code> is nearly zero, then use absolute error for numerical_grad.</p>
342
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">numerical_grad</span> <span class="o">=</span> <span class="o">...</span>
343 344
<span class="n">operator_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">scope</span><span class="o">.</span><span class="n">find_var</span><span class="p">(</span><span class="n">grad_var_name</span><span class="p">(</span><span class="n">name</span><span class="p">))</span><span class="o">.</span><span class="n">get_tensor</span><span class="p">())</span>

345
<span class="n">abs_numerical_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">numerical_grad</span><span class="p">)</span>
346 347
<span class="c1"># if abs_numerical_grad is nearly zero, then use abs error for</span>
<span class="c1"># numeric_grad, instead of relative error.</span>
348
<span class="n">abs_numerical_grad</span><span class="p">[</span><span class="n">abs_numerical_grad</span> <span class="o">&lt;</span> <span class="mf">1e-3</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
349

350
<span class="n">diff_mat</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">abs_numerical_grad</span> <span class="o">-</span> <span class="n">operator_grad</span><span class="p">)</span> <span class="o">/</span> <span class="n">abs_numerical_grad</span>
351 352 353 354 355
<span class="n">max_diff</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">diff_mat</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="notes">
<span id="notes"></span><h3>Notes:<a class="headerlink" href="#notes" title="永久链接至标题"></a></h3>
356
<p>The Input data for auto gradient checker should be reasonable to avoid numerical stability problem.</p>
357
</div>
358 359
<div class="section" id="references">
<span id="references"></span><h3>References:<a class="headerlink" href="#references" title="永久链接至标题"></a></h3>
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
405
            HAS_SOURCE:  true
406 407 408 409 410 411 412
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
413

414 415 416 417 418 419
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
420

421
  
422 423 424 425 426 427 428
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
429 430 431

</body>
</html>