multiclass_nms_op.cc 21.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/detection/nms_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
                   "Input(BBoxes) of MultiClassNMS should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
D
dangqingqing 已提交
32 33 34
                   "Input(Scores) of MultiClassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MultiClassNMS should not be null.");
35

D
dangqingqing 已提交
36
    auto box_dims = ctx->GetInputDim("BBoxes");
37
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
38
    auto score_size = score_dims.size();
39

40
    if (ctx->IsRuntime()) {
J
jerrywgz 已提交
41 42
      PADDLE_ENFORCE(score_size == 2 || score_size == 3,
                     "The rank of Input(Scores) must be 2 or 3");
43
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
J
jerrywgz 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                        "The rank of Input(BBoxes) must be 3");
      if (score_size == 3) {
        PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
                           box_dims[2] == 16 || box_dims[2] == 24 ||
                           box_dims[2] == 32,
                       "The last dimension of Input(BBoxes) must be 4 or 8, "
                       "represents the layout of coordinate "
                       "[xmin, ymin, xmax, ymax] or "
                       "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                       "8 points: [xi, yi] i= 1,2,...,8 or "
                       "12 points: [xi, yi] i= 1,2,...,12 or "
                       "16 points: [xi, yi] i= 1,2,...,16");
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[2],
            "The 2nd dimension of Input(BBoxes) must be equal to "
            "last dimension of Input(Scores), which represents the "
            "predicted bboxes.");
      } else {
        PADDLE_ENFORCE(box_dims[2] == 4,
                       "The last dimension of Input(BBoxes) must be 4");
        PADDLE_ENFORCE_EQ(box_dims[1], score_dims[1],
                          "The 2nd dimension of Input(BBoxes)"
                          "must be equal to the 2nd dimension"
                          " of Input(Scores)");
      }
69
    }
70 71
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
72 73 74 75 76
    if (score_size == 3) {
      ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
77
  }
D
dangqingqing 已提交
78 79 80 81 82

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
83
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
84
        platform::CPUPlace());
D
dangqingqing 已提交
85
  }
86 87
};

88 89 90 91 92 93 94 95 96
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
                   const framework::Tensor& items, const int class_id,
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
J
jerrywgz 已提交
97 98 99 100 101 102 103 104 105 106
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
107 108 109
  }
}

110
template <typename T>
D
dangqingqing 已提交
111
class MultiClassNMSKernel : public framework::OpKernel<T> {
112 113 114
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
J
jerrywgz 已提交
115 116
               const int64_t top_k, std::vector<int>* selected_indices,
               const bool normalized) const {
117 118 119
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
120 121
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
122 123 124 125 126 127 128 129 130 131 132 133 134 135
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
136
      for (size_t k = 0; k < selected_indices->size(); ++k) {
137 138
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
139 140 141
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
J
jerrywgz 已提交
142 143 144
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
Y
Yipeng 已提交
145 146 147 148
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
149 150 151
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
Y
Yipeng 已提交
152
          }
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
168
  void MultiClassNMS(const framework::ExecutionContext& ctx,
169
                     const Tensor& scores, const Tensor& bboxes,
J
jerrywgz 已提交
170
                     const int scores_size,
171 172
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
173 174 175
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
176
    bool normalized = ctx.Attr<bool>("normalized");
177 178
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
179
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
J
jerrywgz 已提交
180
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
181 182

    int num_det = 0;
183 184 185 186 187 188 189 190 191 192 193 194 195

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
196
      }
197 198 199
      NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
              nms_top_k, &((*indices)[c]), normalized);
      if (scores_size == 2) {
J
jerrywgz 已提交
200 201
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
202
      num_det += (*indices)[c].size();
203 204
    }

205
    *num_nmsed_out = num_det;
206 207
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
208
      const T* sdata;
209
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
210
      for (const auto& it : *indices) {
211
        int label = it.first;
J
jerrywgz 已提交
212
        if (scores_size == 3) {
213
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
214
        } else {
215 216 217
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
218
        }
219
        const std::vector<int>& label_indices = it.second;
220
        for (size_t j = 0; j < label_indices.size(); ++j) {
221 222 223 224 225 226
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
227 228
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
229 230 231 232
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
233
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
234 235 236 237
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
238 239 240 241 242 243 244
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
245 246
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
247 248 249
    }
  }

J
jerrywgz 已提交
250 251
  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const Tensor& scores, const Tensor& bboxes,
252
                        const std::map<int, std::vector<int>>& selected_indices,
253 254
                        const int scores_size, Tensor* outs,
                        int* oindices = nullptr, const int offset = 0) const {
J
jerrywgz 已提交
255
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
256 257
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
258 259 260 261
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
262 263 264
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
265 266 267
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
268 269 270
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
271
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
272 273 274 275 276
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
277
      for (size_t j = 0; j < indices.size(); ++j) {
278
        int idx = indices[j];
J
jerrywgz 已提交
279 280 281 282 283
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
284 285 286
          if (oindices != nullptr) {
            oindices[count] = offset + idx;
          }
J
jerrywgz 已提交
287 288 289
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
290 291 292
          if (oindices != nullptr) {
            oindices[count] = offset + idx * class_num + label;
          }
J
jerrywgz 已提交
293
        }
Y
Yipeng 已提交
294 295
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
296
        count++;
297 298 299 300 301
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
302 303
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
304
    auto* outs = ctx.Output<LoDTensor>("Out");
305 306
    bool return_index = ctx.HasOutput("Index") ? true : false;
    auto index = ctx.Output<LoDTensor>("Index");
307
    auto score_dims = scores->dims();
308
    auto score_size = score_dims.size();
J
jerrywgz 已提交
309
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
310 311 312

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
313 314 315 316
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
317 318 319 320 321 322 323 324 325 326 327 328
    Tensor boxes_slice, scores_slice;
    int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
        auto boxes_lod = boxes->lod().back();
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
329
      }
330 331 332 333 334
      std::map<int, std::vector<int>> indices;
      MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
                    &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
335 336 337 338
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
339 340 341 342 343 344 345 346
      if (return_index) {
        outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
        index->mutable_data<int>({0, 1}, ctx.GetPlace());
      } else {
        T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
        od[0] = -1;
        batch_starts = {0, 1};
      }
J
jerrywgz 已提交
347 348
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
349 350
      int offset = 0;
      int* oindices = nullptr;
351 352 353 354 355 356
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
357 358 359
          if (return_index) {
            offset = i * score_dims[2];
          }
360 361 362 363
        } else {
          auto boxes_lod = boxes->lod().back();
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
364 365 366
          if (return_index) {
            offset = boxes_lod[i] * score_dims[1];
          }
J
jerrywgz 已提交
367
        }
368 369 370 371
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
372 373 374 375 376
          if (return_index) {
            int* output_idx =
                index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
            oindices = output_idx + s;
          }
377
          MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
378
                           score_dims.size(), &out, oindices, offset);
379 380 381 382 383 384
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);
385 386 387
    if (return_index) {
      index->set_lod(lod);
    }
388 389 390 391
    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
392
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
393
 public:
Y
Yu Yang 已提交
394
  void Make() override {
D
dangqingqing 已提交
395
    AddInput("BBoxes",
J
jerrywgz 已提交
396 397
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
398
             "[N, M, 4 or 8 16 24 32] represents the "
399 400
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
401
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
402 403
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
404
    AddInput("Scores",
J
jerrywgz 已提交
405 406
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
407 408 409
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
410 411 412 413
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
414
    AddAttr<int>(
415
        "background_label",
翟飞跃 已提交
416
        "(int, default: 0) "
D
dangqingqing 已提交
417 418
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
419
        .SetDefault(0);
D
dangqingqing 已提交
420 421
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
422 423
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
424 425 426 427 428
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
                 "confidences aftern the filtering detections based on "
                 "score_threshold");
429
    AddAttr<float>("nms_threshold",
翟飞跃 已提交
430
                   "(float, default: 0.3) "
D
dangqingqing 已提交
431
                   "The threshold to be used in NMS.")
432 433 434
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
435
                   "The parameter for adaptive NMS.")
436
        .SetDefault(1.0);
D
dangqingqing 已提交
437 438 439 440
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
441
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
442
                  "(bool, default true) "
J
jerrywgz 已提交
443 444
                  "Whether detections are normalized.")
        .SetDefault(true);
445 446 447
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
448 449 450 451 452 453
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
454 455 456 457
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
458
This operator is to do multi-class non maximum suppression (NMS) on a batched
459
of boxes and scores.
D
dangqingqing 已提交
460 461 462 463 464 465
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
466
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
467 468
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
469 470 471
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
472
means there is no detected bbox for this image.
473 474 475 476
)DOC");
  }
};

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
class MultiClassNMS2Op : public MultiClassNMSOp {
 public:
  MultiClassNMS2Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMSOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    MultiClassNMSOp::InferShape(ctx);

    auto box_dims = ctx->GetInputDim("BBoxes");
    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();
    if (score_size == 3) {
      ctx->SetOutputDim("Index", {box_dims[1], 1});
    } else {
      ctx->SetOutputDim("Index", {-1, 1});
    }
  }
};

class MultiClassNMS2OpMaker : public MultiClassNMSOpMaker {
 public:
  void Make() override {
    MultiClassNMSOpMaker::Make();
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.")
        .AsIntermediate();
  }
};

511 512 513 514
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
515 516 517 518
REGISTER_OPERATOR(
    multiclass_nms, ops::MultiClassNMSOp, ops::MultiClassNMSOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
D
dangqingqing 已提交
519 520
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);
H
hong 已提交
521 522 523 524
REGISTER_OPERATOR(
    multiclass_nms2, ops::MultiClassNMS2Op, ops::MultiClassNMS2OpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
525 526
REGISTER_OP_CPU_KERNEL(multiclass_nms2, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);