lu_op.h 27.3 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/lapack_function.h"
#include "paddle/fluid/operators/set_value_op.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/operators/triangular_solve_op.h"
#include "paddle/fluid/operators/tril_triu_op.h"
23
#include "paddle/pten/kernels/math_kernel.h"
Z
zhiboniu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensorArray = framework::LoDTensorArray;

template <typename DeviceContext, typename T, size_t D>
void SetValueCompute(const framework::ExecutionContext& ctx,
                     framework::Tensor* in, framework::Tensor* value_tensor,
                     framework::Tensor* out, const std::vector<int64_t>& axes,
                     std::vector<int64_t>* starts, std::vector<int64_t>* ends,
                     const std::vector<int64_t>& shape) {
  std::vector<int64_t> steps = {1, 1};
  std::vector<int64_t> decrease_axes = {};
  std::vector<int64_t> none_axes = {};

  auto dtype = in->type();

  auto in_dims = in->dims();
  CheckAndUpdateSliceAttrs<int64_t>(in_dims, axes, starts, ends, &steps);
  auto slice_dims = GetSliceDims(in_dims, axes, *starts, *ends, &steps);
  auto decrease_slice_dims = GetDecreasedDims(slice_dims, decrease_axes);

  auto slice_dims_for_assign = decrease_slice_dims;
  if (!none_axes.empty()) {
    std::vector<int64_t> slice_dims_with_none;

    size_t none_axes_cur = 0, decrease_axes_cur = 0;
    for (int i = 0; i < slice_dims.size(); ++i) {
      while (none_axes_cur < none_axes.size() &&
             none_axes[none_axes_cur] <= i) {
        slice_dims_with_none.push_back(1);
        none_axes_cur++;
      }
      if (decrease_axes_cur < decrease_axes.size() &&
          decrease_axes[decrease_axes_cur] == i) {
        decrease_axes_cur++;
      } else {
        slice_dims_with_none.push_back(slice_dims[i]);
      }
    }
    while (none_axes_cur < none_axes.size()) {
      slice_dims_with_none.push_back(1);
      none_axes_cur++;
    }

    slice_dims_for_assign = framework::make_ddim(slice_dims_with_none);
  }

  auto place = ctx.GetPlace();
  auto& eigen_place =
      *ctx.template device_context<DeviceContext>().eigen_device();

  // Here copy data from input to avoid data loss at PE and Graph level.
  // TODO(liym27): Speed up in the future version.
  // - Q: Why don't call ShareDataWith to speed up?
  // - A: Because it's not supported to ShareDataWith on OP's input and output
  // https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
  // - Q: Why don't delete Input, after all, the input and output are the same
  // Tensor at program level?
  // - A: If deleting Input, the graph will be complex, such as there will
  // be two ops points to the output in graph: op1 -> output <- set_value.
  // In this case, we have to find a way to handle the running order of
  // set_value is what we want.
  TensorCopy(*in, place, out);

  Tensor slice_tensor(dtype), pad_tensor(dtype);
  slice_tensor.mutable_data<T>(slice_dims, place);
  pad_tensor.mutable_data<T>(in_dims, place);

  auto pad_e = framework::EigenTensor<T, D>::From(pad_tensor, in_dims);
  auto out_e = framework::EigenTensor<T, D>::From(*out);
  auto slice_e = framework::EigenTensor<T, D>::From(slice_tensor, slice_dims);

  // Step 1: Set the value of out at `_index` to zero
  slice_e.device(eigen_place) = slice_e.constant(T(0));

  auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

  for (size_t i = 0; i < D; ++i) {
    starts_indices[i] = 0;
    ends_indices[i] = slice_dims[i];
    strides_indices[i] = 1;
  }
  for (size_t i = 0; i < axes.size(); i++) {
    int axis_index = axes[i];
    starts_indices[axis_index] = (*starts)[i];
    ends_indices[axis_index] = (*ends)[i];
    strides_indices[axis_index] = steps[i];
    if ((*starts)[i] ==
        (*ends)[i]) {  // slice is empty, data will not be changed
      return;
    }
  }

  out_e.stridedSlice(starts_indices, ends_indices, strides_indices)
      .device(eigen_place) = slice_e;

  // Step 2: Set a tensor with the same shape as out tensor. And its data at
  // '_index' is the same as value_tensor, and data out of '_index' to zero

  // - Step 2.1 Set slice tensor with value

  // NOTE(liym27): [ Why resize slice_tensor here? ]
  // A: When do broadcasting on slice_tensor and value_tensor, the shape of
  // slice_tensor should be decreased dims.
  // e.g.
  //  x[:,0] = value_tensor
  // x's shape = [3, 4], value_tensor's shape = [3]
  // We get slice_dims = [3, 1],  decrease_slice_dims = [3]
  // If do broadcasting on Tensor with shape [3, 1] and [3], the result's
  // shape is [3, 3], which cross the border;
  // If do broadcasting on Tensor with shape [3] and [3], the result's shape
  // is [3], which is right.

  slice_tensor.Resize(slice_dims_for_assign);
  if (value_tensor != nullptr) {
    CheckIsDimsMatch(slice_dims_for_assign, value_tensor->dims());
    // ElementwiseComputeEx can do broadcasting
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
        ctx, &slice_tensor, value_tensor, -1, SubFunctor<T>(), &slice_tensor);
  } else {
    Tensor value_t(dtype);
    auto value_dims = framework::make_ddim(shape);
    CheckIsDimsMatch(slice_dims_for_assign, value_dims);

    value_t.mutable_data<T>(value_dims, place);
    auto value_name = GetValueName(dtype);
    CopyVecotorToTensor<T>(value_name.c_str(), &value_t, ctx);
    value_t.Resize(value_dims);
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
        ctx, &slice_tensor, &value_t, -1, SubFunctor<T>(), &slice_tensor);
  }
  slice_tensor.Resize(slice_dims);

  // - Step 2.2 Pad slice tensor with 0
  pad_e.device(eigen_place) = pad_e.constant(T(0));
  pad_e.stridedSlice(starts_indices, ends_indices, strides_indices)
      .device(eigen_place) = slice_e;

  // Step 3: Set out tensor with value_tensor
  out_e.device(eigen_place) = out_e - pad_e;
}

template <typename DeviceContext, typename T>
void SetValueCompute_dispatch(
    const framework::ExecutionContext& ctx, framework::Tensor* in,
    framework::Tensor* value_tensor, framework::Tensor* out,
    const std::vector<int64_t>& axes, std::vector<int64_t>* starts,
    std::vector<int64_t>* ends, const std::vector<int64_t>& shape, int rank) {
  switch (rank) {
    case 1:
      SetValueCompute<DeviceContext, T, 1>(ctx, in, value_tensor, out, axes,
                                           starts, ends, shape);
      break;
    case 2:
      SetValueCompute<DeviceContext, T, 2>(ctx, in, value_tensor, out, axes,
                                           starts, ends, shape);
      break;
    case 3:
      SetValueCompute<DeviceContext, T, 3>(ctx, in, value_tensor, out, axes,
                                           starts, ends, shape);
      break;
    case 4:
      SetValueCompute<DeviceContext, T, 4>(ctx, in, value_tensor, out, axes,
                                           starts, ends, shape);
      break;
    case 5:
      SetValueCompute<DeviceContext, T, 5>(ctx, in, value_tensor, out, axes,
                                           starts, ends, shape);
      break;
    case 6:
      SetValueCompute<DeviceContext, T, 6>(ctx, in, value_tensor, out, axes,
                                           starts, ends, shape);
      break;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.", rank));
  }
}

template <typename DeviceContext, typename T>
void Tensor_Conj(const DeviceContext& dev_ctx, const framework::Tensor& tensor,
                 framework::Tensor* out) {
  out->Resize(tensor.dims());
  platform::ForRange<DeviceContext> out_for_range(dev_ctx, tensor.numel());
  math::ConjFunctor<T> out_functor(tensor.data<T>(), tensor.numel(),
                                   out->mutable_data<T>(dev_ctx.GetPlace()));
  out_for_range(out_functor);
}

template <typename DeviceContext, typename T>
void Tensor_Add(const DeviceContext& dev_ctx, const framework::Tensor& src1,
                const framework::Tensor& src2, framework::Tensor* out) {
  out->Resize(src1.dims());
  out->mutable_data<T>(dev_ctx.GetPlace());
223 224

  pten::AddKernel<T, DeviceContext>(dev_ctx, src1, src2, -1, out);
Z
zhiboniu 已提交
225 226 227 228 229 230 231
}

template <typename DeviceContext, typename T>
void Tensor_Sub(const DeviceContext& dev_ctx, const framework::Tensor& src1,
                const framework::Tensor& src2, framework::Tensor* out) {
  out->Resize(src1.dims());
  out->mutable_data<T>(dev_ctx.GetPlace());
232 233

  pten::SubtractKernel<T, DeviceContext>(dev_ctx, src1, src2, -1, out);
Z
zhiboniu 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

template <typename DeviceContext, typename T, size_t D>
void SliceCompute(const framework::ExecutionContext& ctx,
                  const framework::Tensor* in, framework::Tensor* out,
                  const std::vector<int>& axes_int,
                  const std::vector<int>& starts_int,
                  const std::vector<int>& ends_int) {
  std::vector<int64_t> axes(axes_int.begin(), axes_int.end());
  std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
  std::vector<int64_t> ends(ends_int.begin(), ends_int.end());

  std::vector<int> decrease_axis = {};
  std::vector<int> infer_flags = {};

  PADDLE_ENFORCE_EQ(
      starts.size(), axes.size(),
      platform::errors::InvalidArgument(
          "The size of starts must be equal to the size of axes."));
  PADDLE_ENFORCE_EQ(ends.size(), axes.size(),
                    platform::errors::InvalidArgument(
                        "The size of ends must be equal to the size of axes."));

  // Step 2: Compute output

  auto in_dims = in->dims();
  auto out_dims = out->dims();
  auto slice_dims = out_dims;

  // 2.1 Infer output dims
  for (size_t i = 0; i < axes.size(); ++i) {
    // when start == -1 && end == start+1
    if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        ends[i] = in_dims[axes[i]];
      }
    }
  }

  CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
  slice_dims =
      GetSliceDims<int64_t>(in_dims, axes, starts, ends, nullptr, nullptr);
  out_dims = GetDecreasedDims(slice_dims, decrease_axis);

  // 2.2 Get output
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();

  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = slice_dims[i];
  }
  for (size_t i = 0; i < axes.size(); ++i) {
    offsets[axes[i]] = starts[i];
  }

  out->Resize(slice_dims);
  out->mutable_data<T>(ctx.GetPlace());

  auto in_t = framework::EigenTensor<T, D>::From(*in, in_dims);
  auto out_t = framework::EigenTensor<T, D>::From(*out, slice_dims);
  auto& eigen_place =
      *ctx.template device_context<DeviceContext>().eigen_device();

  if (in->numel() <= Eigen::NumTraits<int>::highest()) {
    // similar to tf.slice:
    // if element number less than INT_MAX, change the type of index to int
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = offsets[i];
      extents_32bit[i] = extents[i];
    }
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, framework::To32BitIndex(out_t),
        framework::To32BitIndex(in_t), offsets_32bit, extents_32bit);
  } else {
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, out_t, in_t, offsets, extents);
  }

  out->Resize(out_dims);
  out->mutable_data<T>(ctx.GetPlace());
}

template <typename DeviceContext, typename T>
void Tensor_narrow(const framework::ExecutionContext& ctx,
                   const framework::Tensor* src, framework::Tensor* out,
                   int row_s, int row_e, int col_s, int col_e) {
  auto rank = src->dims().size();
  std::vector<int> axes_int = {rank - 2, rank - 1};
  std::vector<int> starts_int = {row_s, col_s};
  std::vector<int> ends_int = {row_e, col_e};
  switch (rank) {
    case 1:
      SliceCompute<DeviceContext, T, 1>(ctx, src, out, axes_int, starts_int,
                                        ends_int);
      break;
    case 2:
      SliceCompute<DeviceContext, T, 2>(ctx, src, out, axes_int, starts_int,
                                        ends_int);
      break;
    case 3:
      SliceCompute<DeviceContext, T, 3>(ctx, src, out, axes_int, starts_int,
                                        ends_int);
      break;
    case 4:
      SliceCompute<DeviceContext, T, 4>(ctx, src, out, axes_int, starts_int,
                                        ends_int);
      break;
    case 5:
      SliceCompute<DeviceContext, T, 5>(ctx, src, out, axes_int, starts_int,
                                        ends_int);
      break;
    case 6:
      SliceCompute<DeviceContext, T, 6>(ctx, src, out, axes_int, starts_int,
                                        ends_int);
      break;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.", rank));
  }
}

template <typename DeviceContext>
void arange(const DeviceContext& dev_ctx, framework::Tensor* tmp, int w,
            int batchsize = 1, int h = 1) {
  tmp->Resize(framework::make_ddim({batchsize * w}));
  platform::CPUPlace cpu;
  auto tmpdata = tmp->mutable_data<int32_t>(cpu);
  for (int b = 0; b < batchsize; b++) {
    for (int i = 0; i < w; i++) {
      tmpdata[b * w + i] = static_cast<int32_t>(b * h + i);
    }
  }
}

template <typename T>
struct OneFunctor {
  OneFunctor(T* output, int* idtptr, int w, int dim)
      : output_(output), idtptr_(idtptr), w_(w), dim_(dim) {}

  HOSTDEVICE void operator()(size_t idx) const {
    output_[w_ * idtptr_[idx] + idx % dim_] = static_cast<T>(1);
  }

  T* output_;
  int* idtptr_;
  int w_;
  int dim_;
};

template <typename DeviceContext, typename T>
void LU_Unpack(const DeviceContext& dev_ctx, const framework::Tensor* LU,
               framework::Tensor* L, framework::Tensor* U) {
  const auto udims = LU->dims();
  L->Resize(udims);
  U->Resize(udims);
  const auto H = udims[udims.size() - 2];
  const auto W = udims[udims.size() - 1];
  auto L_dataptr = L->mutable_data<T>(dev_ctx.GetPlace());
  platform::ForRange<DeviceContext> x_for_range(dev_ctx, LU->numel());
  TrilTriuCompute<T> tril_computer(LU->data<T>(), -1, true, H, W, L_dataptr);
  x_for_range(tril_computer);

  TrilTriuCompute<T> triu_computer(LU->data<T>(), 0, false, H, W,
                                   U->mutable_data<T>(dev_ctx.GetPlace()));
  x_for_range(triu_computer);

  // set L's diagonal 1
  auto dim = std::min(H, W);
  framework::Tensor rowtensor, rt_dev;
  auto batchsize = product(framework::slice_ddim(udims, 0, udims.size() - 2));
  batchsize = std::max(static_cast<int>(batchsize), 1);
  arange<DeviceContext>(dev_ctx, &rowtensor, dim, batchsize, H);
  auto idtptr = rowtensor.data<int32_t>();
410
  if (platform::is_gpu_place(dev_ctx.GetPlace())) {
Z
zhiboniu 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    framework::TensorCopy(rowtensor, dev_ctx.GetPlace(), &rt_dev);
    idtptr = rt_dev.data<int32_t>();
  }

  platform::ForRange<DeviceContext> for_range(dev_ctx, rowtensor.numel());
  OneFunctor<T> functor(L_dataptr, idtptr, W, dim);
  for_range(functor);
}

template <typename DeviceContext, typename T>
void scatterpivot(const DeviceContext& dev_ctx, T* out_data,
                  framework::Tensor* idlst, int w, int dim) {
  framework::Tensor idlst_tmp;
  idlst_tmp.Resize(idlst->dims());
  idlst_tmp.mutable_data<int32_t>(dev_ctx.GetPlace());
  framework::TensorCopy(*idlst, dev_ctx.GetPlace(), &idlst_tmp);
  auto idtptr = idlst_tmp.data<int32_t>();

  platform::ForRange<DeviceContext> for_range(dev_ctx, idlst_tmp.numel());
  OneFunctor<T> functor(out_data, idtptr, w, dim);
  for_range(functor);
}

template <typename DeviceContext, typename T>
void Unpack_Pivot(const DeviceContext& dev_ctx, const framework::Tensor& Pivot,
                  framework::Tensor* P, int h, int w) {
  auto dims = Pivot.dims();
  auto Pdimvec = vectorize(dims);
  auto prank = Pdimvec.size();
  auto Pnum = dims[prank - 1];
  framework::Tensor Pivot_cpu;
  platform::CPUPlace cpu;
  framework::TensorCopy(Pivot, cpu, &Pivot_cpu);
  auto pdataptr = Pivot_cpu.data<int32_t>();
  Pdimvec[prank - 1] = h;
  Pdimvec.emplace_back(h);
  auto Pdim = framework::make_ddim(Pdimvec);
  P->Resize(Pdim);
  auto pdata = P->mutable_data<T>(dev_ctx.GetPlace());
  math::SetConstant<DeviceContext, T> setter;
  setter(dev_ctx, P, static_cast<T>(0));

  auto batchsize = product(framework::slice_ddim(dims, 0, prank - 1));
  batchsize = std::max(static_cast<int>(batchsize), 1);
  framework::Tensor idt;
  for (int i = 0; i < batchsize; i++) {
    arange<DeviceContext>(dev_ctx, &idt, h);
    auto idlst = idt.data<int32_t>();
    for (int j = 0; j < Pnum; j++) {
      if (idlst[pdataptr[i * Pnum + j] - 1] == idlst[j]) continue;
      auto temp = idlst[j];
      idlst[j] = idlst[pdataptr[i * Pnum + j] - 1];
      idlst[pdataptr[i * Pnum + j] - 1] = temp;
    }
    scatterpivot(dev_ctx, &(pdata[i * h * h]), &idt, h, h);
  }
}

Z
zhiboniu 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
template <typename DeviceContext, typename T>
class LUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto xin = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Input<framework::Tensor>("Out");
    auto P = ctx.Input<framework::Tensor>("Pivots");
    auto dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    dx->mutable_data<T>(ctx.GetPlace());

    const auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::DeviceIndependenceTensorOperations<DeviceContext, T> helper(ctx);
    auto blas = math::GetBlas<DeviceContext, T>(ctx);

    auto xdims = xin->dims();
    int xrank = xdims.size();
    int64_t m = xdims[xrank - 2];
    int64_t n = xdims[xrank - 1];
    int64_t k = std::min(m, n);

    framework::Tensor L, U, L_narrow, U_narrow, L_narrow_mH, U_narrow_mH,
        grad_narrow;
    LU_Unpack<DeviceContext, T>(dev_ctx, out, &L, &U);

    Tensor_narrow<DeviceContext, T>(ctx, &L, &L_narrow, 0, k, 0, k);
    Tensor_narrow<DeviceContext, T>(ctx, &U, &U_narrow, 0, k, 0, k);
    Tensor_narrow<DeviceContext, T>(ctx, dout, &grad_narrow, 0, k, 0, k);
    auto graddims = grad_narrow.dims();

    Tensor_Conj<DeviceContext, T>(dev_ctx, L_narrow, &L_narrow_mH);
    Tensor_Conj<DeviceContext, T>(dev_ctx, U_narrow, &U_narrow_mH);
    L_narrow_mH = helper.Transpose(L_narrow_mH);
    U_narrow_mH = helper.Transpose(U_narrow_mH);

    auto LmHdims = L_narrow_mH.dims();
    auto UmHdims = U_narrow_mH.dims();

    framework::Tensor phi_L, phi_U, phi, psi;
    phi_L.Resize(LmHdims);
    phi_L.mutable_data<T>(ctx.GetPlace());
    phi_U.Resize(UmHdims);
    phi_U.mutable_data<T>(ctx.GetPlace());
    auto mat_dim_l = math::CreateMatrixDescriptor(LmHdims, 0, false);
    auto mat_dim_u = math::CreateMatrixDescriptor(UmHdims, 0, false);
    auto mat_dim_g = math::CreateMatrixDescriptor(graddims, 0, false);
    blas.MatMul(L_narrow_mH, mat_dim_l, grad_narrow, mat_dim_g,
                static_cast<T>(1), &phi_L, static_cast<T>(0));

    blas.MatMul(grad_narrow, mat_dim_g, U_narrow_mH, mat_dim_u,
                static_cast<T>(1), &phi_U, static_cast<T>(0));

    auto phil_rank = LmHdims.size();
    auto phiu_rank = UmHdims.size();
    platform::ForRange<DeviceContext> l_for_range(dev_ctx, phi_L.numel());
    TrilTriuCompute<T> tril_computer(phi_L.data<T>(), -1, true,
                                     LmHdims[phil_rank - 2],
                                     LmHdims[phil_rank - 1], phi_L.data<T>());
    l_for_range(tril_computer);

    platform::ForRange<DeviceContext> u_for_range(dev_ctx, phi_U.numel());
    TrilTriuCompute<T> triu_computer(phi_U.data<T>(), 0, false,
                                     UmHdims[phiu_rank - 2],
                                     UmHdims[phiu_rank - 1], phi_U.data<T>());
    u_for_range(triu_computer);

    Tensor_Add<DeviceContext, T>(dev_ctx, phi_L, phi_U, &phi);
    psi.Resize(xdims);
    psi.mutable_data<T>(ctx.GetPlace());
    math::SetConstant<DeviceContext, T> setter;
    setter(dev_ctx, &psi, static_cast<T>(0));

    std::vector<int64_t> axes = {xrank - 2, xrank - 1};
    std::vector<int64_t> slice_starts(2, 0);
    std::vector<int64_t> slice_ends(2, 0);
    auto valuedims = vectorize(xdims);

    framework::Tensor Pmat;
    Unpack_Pivot<DeviceContext, T>(dev_ctx, *P, &Pmat, m, k);
    if (m <= n) {
      if (k < n) {
        framework::Tensor U_complement, U_grad_complement, phi_complement,
            phi_complement_l;
        Tensor_narrow<DeviceContext, T>(ctx, &U, &U_complement, 0, k, k, n);
        Tensor_narrow<DeviceContext, T>(ctx, dout, &U_grad_complement, 0, k, k,
                                        n);
        framework::Tensor U_complement_mH = helper.Transpose(U_complement);

        Tensor_Conj<DeviceContext, T>(dev_ctx, U_complement_mH,
                                      &U_complement_mH);

        auto mat_dim_g =
            math::CreateMatrixDescriptor(U_grad_complement.dims(), 0, false);
        auto mat_dim_u =
            math::CreateMatrixDescriptor(U_complement_mH.dims(), 0, false);
        auto phidims = UmHdims;
        phidims[UmHdims.size() - 2] = k;
        phidims[UmHdims.size() - 1] = k;
        phi_complement.Resize(phidims);
        phi_complement.mutable_data<T>(ctx.GetPlace());
        blas.MatMul(U_grad_complement, mat_dim_g, U_complement_mH, mat_dim_u,
                    static_cast<T>(1), &phi_complement, static_cast<T>(0));

        phi_complement_l.Resize(phidims);
        phi_complement_l.mutable_data<T>(ctx.GetPlace());
        const auto H = phidims[phidims.size() - 2];
        const auto W = phidims[phidims.size() - 1];
        platform::ForRange<DeviceContext> x_for_range(dev_ctx,
                                                      phi_complement.numel());
        TrilTriuCompute<T> tril_computer(phi_complement.data<T>(), -1, true, H,
                                         W, phi_complement_l.data<T>());
        x_for_range(tril_computer);

        Tensor_Sub<DeviceContext, T>(dev_ctx, phi, phi_complement_l, &phi);

        slice_starts[0] = 0;
        slice_starts[1] = k;
        slice_ends[0] = k;
        slice_ends[1] = n;
        valuedims[xrank - 2] = k;
        valuedims[xrank - 1] = n - k;
        SetValueCompute_dispatch<DeviceContext, T>(
            ctx, &psi, &U_grad_complement, &psi, axes, &slice_starts,
            &slice_ends, valuedims, xrank);
      }

      framework::Tensor psi_principal, phi_mH, psi_tmp;
      Tensor_Conj<DeviceContext, T>(dev_ctx, phi, &phi_mH);
      phi_mH = helper.Transpose(phi_mH);
      triangular_solve<DeviceContext, T>(dev_ctx, U_narrow, phi_mH,
                                         &psi_principal, true, false, false);

      Tensor_Conj<DeviceContext, T>(dev_ctx, psi_principal, &psi_principal);
      psi_principal = helper.Transpose(psi_principal);
      slice_starts[0] = 0;
      slice_starts[1] = 0;
      slice_ends[0] = k;
      slice_ends[1] = k;
      valuedims[xrank - 2] = k;
      valuedims[xrank - 1] = k;

      SetValueCompute_dispatch<DeviceContext, T>(ctx, &psi, &psi_principal,
                                                 &psi, axes, &slice_starts,
                                                 &slice_ends, valuedims, xrank);
      triangular_solve<DeviceContext, T>(dev_ctx, L_narrow_mH, psi, &psi_tmp,
                                         true, false, true);

      auto mat_dim_p = math::CreateMatrixDescriptor(Pmat.dims(), 0, false);
      auto mat_dim_b = math::CreateMatrixDescriptor(psi_tmp.dims(), 0, false);
      blas.MatMul(Pmat, mat_dim_p, psi_tmp, mat_dim_b, static_cast<T>(1), dx,
                  static_cast<T>(0));
    } else {
      framework::Tensor L_complement, L_grad_complement, phi_complement,
          phi_complement_u;
      Tensor_narrow<DeviceContext, T>(ctx, &L, &L_complement, k, m, 0, k);
      Tensor_narrow<DeviceContext, T>(ctx, dout, &L_grad_complement, k, m, 0,
                                      k);
      framework::Tensor L_complement_mH = helper.Transpose(L_complement);
      Tensor_Conj<DeviceContext, T>(dev_ctx, L_complement_mH, &L_complement_mH);

      auto mat_dim_g =
          math::CreateMatrixDescriptor(L_grad_complement.dims(), 0, false);
      auto mat_dim_u =
          math::CreateMatrixDescriptor(L_complement_mH.dims(), 0, false);
      auto phidims = LmHdims;
      phidims[LmHdims.size() - 2] = k;
      phidims[LmHdims.size() - 1] = k;
      phi_complement.Resize(phidims);
      phi_complement.mutable_data<T>(ctx.GetPlace());
      blas.MatMul(L_complement_mH, mat_dim_u, L_grad_complement, mat_dim_g,
                  static_cast<T>(1), &phi_complement, static_cast<T>(0));

      phi_complement_u.Resize(phidims);
      phi_complement_u.mutable_data<T>(ctx.GetPlace());
      const auto H = phidims[phidims.size() - 2];
      const auto W = phidims[phidims.size() - 1];
      platform::ForRange<DeviceContext> x_for_range(dev_ctx,
                                                    phi_complement.numel());
      TrilTriuCompute<T> triu_computer(phi_complement.data<T>(), 0, false, H, W,
                                       phi_complement_u.data<T>());
      x_for_range(triu_computer);

      Tensor_Sub<DeviceContext, T>(dev_ctx, phi, phi_complement_u, &phi);

      slice_starts[0] = k;
      slice_starts[1] = 0;
      slice_ends[0] = m;
      slice_ends[1] = k;
      valuedims[xrank - 2] = m - k;
      valuedims[xrank - 1] = k;
      SetValueCompute_dispatch<DeviceContext, T>(ctx, &psi, &L_grad_complement,
                                                 &psi, axes, &slice_starts,
                                                 &slice_ends, valuedims, xrank);
      framework::Tensor psi_principal, phi_mH, psi_tmp, U_narrow_mH;
      triangular_solve<DeviceContext, T>(dev_ctx, L_narrow_mH, phi,
                                         &psi_principal, true, false, true);
      slice_starts[0] = 0;
      slice_starts[1] = 0;
      slice_ends[0] = k;
      slice_ends[1] = k;
      valuedims[xrank - 2] = k;
      valuedims[xrank - 1] = k;

      SetValueCompute_dispatch<DeviceContext, T>(ctx, &psi, &psi_principal,
                                                 &psi, axes, &slice_starts,
                                                 &slice_ends, valuedims, xrank);

      psi_tmp.Resize(psi.dims());
      psi_tmp.mutable_data<T>(ctx.GetPlace());
      auto mat_dim_p = math::CreateMatrixDescriptor(Pmat.dims(), 0, false);
      auto mat_dim_b = math::CreateMatrixDescriptor(psi.dims(), 0, false);
      blas.MatMul(Pmat, mat_dim_p, psi, mat_dim_b, static_cast<T>(1), &psi_tmp,
                  static_cast<T>(0));
      psi_tmp = helper.Transpose(psi_tmp);

      Tensor_Conj<DeviceContext, T>(dev_ctx, U_narrow, &U_narrow_mH);
      triangular_solve<DeviceContext, T>(dev_ctx, U_narrow_mH, psi_tmp, &psi,
                                         true, false, false);
      *dx = helper.Transpose(psi);
    }
  }
};

Z
zhiboniu 已提交
692 693
}  // namespace operators
}  // namespace paddle