gru_compute.cu 7.6 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/detail/gru_gpu_kernel.h"
#include "paddle/operators/math/detail/gru_kernel.h"
#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct GRUUnitFunctor<platform::GPUPlace, T> {
  static void compute(const platform::DeviceContext &context,
G
guosheng 已提交
24
                      hl_gru_value<T> value, int frame_size, int batch_size,
G
guosheng 已提交
25 26 27 28 29 30
                      activation_mode_t active_node,
                      activation_mode_t active_gate) {
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext &>(context).stream();
    dim3 threads;
    dim3 grid;
G
guosheng 已提交
31 32 33 34 35
    if (batch_size == 1) {
      int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
      int frame_blocks = (frame_size + 1024 - 1) / 1024;
      threads = dim3(frame_per_block, 1);
      grid = dim3(frame_blocks, 1);
G
guosheng 已提交
36 37
    } else {
      threads = dim3(32, 32);
G
guosheng 已提交
38
      grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
G
guosheng 已提交
39 40
    }

G
guosheng 已提交
41
    if (value.prev_out_value) {
G
guosheng 已提交
42
      math::gemm<platform::GPUPlace, T>(
G
guosheng 已提交
43 44 45
          context, false, false, batch_size, frame_size * 2, frame_size, 1,
          value.prev_out_value, frame_size, value.gate_weight, frame_size * 2,
          1, value.gate_value, frame_size * 3);
G
guosheng 已提交
46 47
    }

G
guosheng 已提交
48
    if (batch_size == 1) {
G
guosheng 已提交
49
      detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
G
guosheng 已提交
50
                                      /* is_batch= */ false,
G
guosheng 已提交
51
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
52 53 54
          detail::forward::gru_resetOutput<T>(), value.gate_value,
          value.reset_output_value, value.prev_out_value, frame_size,
          batch_size, active_gate);
G
guosheng 已提交
55 56
    } else {
      detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
G
guosheng 已提交
57
                                      /* is_batch= */ true,
G
guosheng 已提交
58
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
59 60 61
          detail::forward::gru_resetOutput<T>(), value.gate_value,
          value.reset_output_value, value.prev_out_value, frame_size,
          batch_size, active_gate);
G
guosheng 已提交
62 63
    }

G
guosheng 已提交
64
    if (value.prev_out_value) {
G
guosheng 已提交
65
      math::gemm<platform::GPUPlace, T>(
G
guosheng 已提交
66 67 68
          context, false, false, batch_size, frame_size, frame_size, 1,
          value.reset_output_value, frame_size, value.state_weight, frame_size,
          1, value.gate_value + frame_size * 2, frame_size * 3);
G
guosheng 已提交
69 70
    }

G
guosheng 已提交
71
    if (batch_size == 1) {
G
guosheng 已提交
72
      detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
G
guosheng 已提交
73
                                      /* is_batch= */ false,
G
guosheng 已提交
74
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
75 76
          detail::forward::gru_finalOutput<T>(), value.gate_value,
          value.prev_out_value, value.output_value, frame_size, batch_size,
G
guosheng 已提交
77 78 79
          active_node);
    } else {
      detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
G
guosheng 已提交
80
                                      /* is_batch= */ true,
G
guosheng 已提交
81
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
82 83
          detail::forward::gru_finalOutput<T>(), value.gate_value,
          value.prev_out_value, value.output_value, frame_size, batch_size,
G
guosheng 已提交
84 85 86 87 88 89 90 91
          active_node);
    }
  }
};

template <typename T>
struct GRUUnitGradFunctor<platform::GPUPlace, T> {
  static void compute(const platform::DeviceContext &context,
G
guosheng 已提交
92 93 94
                      hl_gru_value<T> value, hl_gru_grad<T> grad,
                      int frame_size, int batch_size,
                      activation_mode_t active_node,
G
guosheng 已提交
95 96 97 98 99
                      activation_mode_t active_gate) {
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext &>(context).stream();
    dim3 threads;
    dim3 grid;
G
guosheng 已提交
100 101 102 103 104
    if (batch_size == 1) {
      int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
      int frame_blocks = (frame_size + 1024 - 1) / 1024;
      threads = dim3(frame_per_block, 1);
      grid = dim3(frame_blocks, 1);
G
guosheng 已提交
105 106
    } else {
      threads = dim3(32, 32);
G
guosheng 已提交
107
      grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
G
guosheng 已提交
108 109
    }

G
guosheng 已提交
110
    if (batch_size == 1) {
G
guosheng 已提交
111 112
      detail::KeGruBackwardStateGrad<
          detail::backward::gru_stateGrad<T>,
G
guosheng 已提交
113 114 115 116
          /* is_batch= */ false><<<grid, threads, 0, stream>>>(
          detail::backward::gru_stateGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.output_grad, frame_size, batch_size, active_node);
G
guosheng 已提交
117 118 119
    } else {
      detail::KeGruBackwardStateGrad<
          detail::backward::gru_stateGrad<T>,
G
guosheng 已提交
120 121 122 123
          /* is_batch= */ true><<<grid, threads, 0, stream>>>(
          detail::backward::gru_stateGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.output_grad, frame_size, batch_size, active_node);
G
guosheng 已提交
124 125
    }

G
guosheng 已提交
126
    if (value.prev_out_value && grad.prev_out_grad) {
G
guosheng 已提交
127
      math::gemm<platform::GPUPlace, T>(
G
guosheng 已提交
128 129 130
          context, false, true, batch_size, frame_size, frame_size, 1,
          grad.gate_grad + frame_size * 2, frame_size * 3, value.state_weight,
          frame_size, 0, grad.reset_output_grad, frame_size);
G
guosheng 已提交
131

G
guosheng 已提交
132
      if (grad.state_weight_grad) {
G
guosheng 已提交
133
        math::gemm<platform::GPUPlace, T>(
G
guosheng 已提交
134 135 136 137
            context, true, false, frame_size, frame_size, batch_size, 1,
            value.reset_output_value, frame_size,
            grad.gate_grad + frame_size * 2, frame_size * 3, 1,
            grad.state_weight_grad, frame_size);
G
guosheng 已提交
138 139 140
      }
    }

G
guosheng 已提交
141
    if (batch_size == 1) {
G
guosheng 已提交
142 143
      detail::KeGruBackwardResetGrad<
          detail::backward::gru_resetGrad<T>,
G
guosheng 已提交
144 145 146 147
          /* is_batch= */ false><<<grid, threads, 0, stream>>>(
          detail::backward::gru_resetGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.reset_output_grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
148 149 150
    } else {
      detail::KeGruBackwardResetGrad<
          detail::backward::gru_resetGrad<T>,
G
guosheng 已提交
151 152 153 154
          /* is_batch= */ true><<<grid, threads, 0, stream>>>(
          detail::backward::gru_resetGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.reset_output_grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
155 156
    }

G
guosheng 已提交
157
    if (grad.prev_out_grad && value.prev_out_value) {
G
guosheng 已提交
158
      math::gemm<platform::GPUPlace, T>(
G
guosheng 已提交
159 160 161
          context, false, true, batch_size, frame_size, frame_size * 2, 1,
          grad.gate_grad, frame_size * 3, value.gate_weight, frame_size * 2, 1,
          grad.prev_out_grad, frame_size);
G
guosheng 已提交
162

G
guosheng 已提交
163
      if (grad.gate_weight_grad) {
G
guosheng 已提交
164
        math::gemm<platform::GPUPlace, T>(
G
guosheng 已提交
165 166 167
            context, true, false, frame_size, frame_size * 2, batch_size, 1,
            value.prev_out_value, frame_size, grad.gate_grad, frame_size * 3, 1,
            grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
168 169 170 171 172 173 174 175 176 177 178 179
      }
    }
  }
};

template struct GRUUnitFunctor<platform::GPUPlace, float>;
template struct GRUUnitFunctor<platform::GPUPlace, double>;
template struct GRUUnitGradFunctor<platform::GPUPlace, float>;
template struct GRUUnitGradFunctor<platform::GPUPlace, double>;

}  // namespace math
}  // namespace operators
G
guosheng 已提交
180
}  // namespace paddle