grid_sampler_op_xpu.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef PADDLE_WITH_XPU

#include <memory>
#include <vector>

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class GridSamplerXPUKernel : public framework::OpKernel<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;

 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_xpu_place(context.GetPlace()),
        true,
        platform::errors::Unavailable("This kernel only runs on XPU."));

    // input and output data
    const Tensor* input = context.Input<Tensor>("X");
    const Tensor* grid = context.Input<Tensor>("Grid");
    Tensor* output = context.Output<Tensor>("Output");

    int n = input->dims()[0];
    int c = input->dims()[1];
    int h = input->dims()[2];
    int w = input->dims()[3];
    int out_h = grid->dims()[1];
    int out_w = grid->dims()[2];

    // attrs
    // paddle.nn.functional.grid_sample(x, grid, mode='bilinear',
    // padding_mode='zeros', align_corners=True, name=None)
    const std::string mode = context.Attr<std::string>("mode");
    const std::string padding_mode = context.Attr<std::string>("padding_mode");
    bool align_corners_bool = context.Attr<bool>("align_corners");
    const std::string data_format =
        paddle::framework::DataLayoutToString(input->layout());

    // attr to real param
    bool is_nearest_bool;
    if (mode == "bilinear") {
      is_nearest_bool = false;
    } else if (mode == "nearest") {
      is_nearest_bool = true;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "should not reach here: mode should be either 'bilinear' or "
          "'nearest', bot got %s.",
          mode));
    }

    // attention: 0: zeros, 2: reflection, 1: border according to XDNN api.
    int padding_mode_int;
    if (padding_mode == "zeros") {
      padding_mode_int = 0;
    } else if (padding_mode == "reflection") {
      padding_mode_int = 2;
    } else if (padding_mode == "border") {
      padding_mode_int = 1;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "should not reach here: padding_mode should be either 'zeros' or "
          "'reflection' or 'border', bot got %s.",
          padding_mode));
    }

    bool is_nchw_bool;
    if (data_format == "NCHW") {
      is_nchw_bool = true;
    } else if (data_format == "NHWC") {
      is_nchw_bool = false;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "should not reach here: data_format should be either 'NCHW' or "
          "'NHWC', bot got %s.",
          data_format));
    }

    // data pointers
    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    T* output_data =
        output->mutable_data<T>({n, c, out_h, out_w}, context.GetPlace());

    auto& dev_ctx = context.template device_context<DeviceContext>();
    // int grid_sample(Context* ctx, const T* x, const T* grid, T* y, int n, int
    // c, int xh, int xw, int yh, int yw, bool is_nearest, bool align_corners,
    // int padding_mode, bool is_nchw);
    int r = xpu::grid_sample(dev_ctx.x_context(),
                             input_data,
                             grid_data,
                             output_data,
                             n,
                             c,
                             h,
                             w,
                             out_h,
                             out_w,
                             is_nearest_bool,
                             align_corners_bool,
                             padding_mode_int,
                             is_nchw_bool);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "grid_sampler");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(
    grid_sampler,
    ops::GridSamplerXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif