cudnn_lstm_op.cu.cc 19.4 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduozh 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
L
liuhongyu 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

struct CudnnRNNCache {
  CudnnRNNCache() {
    x_desc_ = NULL;
    y_desc_ = NULL;
    dx_desc_ = NULL;
    dy_desc_ = NULL;
  }
  ~CudnnRNNCache() { release(); }

  cudnnRNNDescriptor_t rnn_desc_;
  cudnnTensorDescriptor_t *x_desc_;
  cudnnTensorDescriptor_t *y_desc_;
  cudnnTensorDescriptor_t *dx_desc_;
  cudnnTensorDescriptor_t *dy_desc_;

  cudnnTensorDescriptor_t hx_desc_;
  cudnnTensorDescriptor_t cx_desc_;
  cudnnTensorDescriptor_t hy_desc_;
  cudnnTensorDescriptor_t cy_desc_;

  cudnnTensorDescriptor_t dhx_desc_;
  cudnnTensorDescriptor_t dcx_desc_;
  cudnnTensorDescriptor_t dhy_desc_;
  cudnnTensorDescriptor_t dcy_desc_;

  cudnnTensorDescriptor_t output_x_desc_;
  cudnnTensorDescriptor_t output_y_desc_;

  cudnnDropoutDescriptor_t dropout_desc_;

  size_t weights_size_;
  cudnnFilterDescriptor_t w_desc_;
  cudnnFilterDescriptor_t dw_desc_;

  size_t workspace_size_;
  size_t reserve_size_;
  Tensor reserve_data_;
  Tensor workspace_data_;

  Tensor dropout_state_;

  size_t max_length_;

  float dropout_prob_;
  bool is_bidirec_;

  int batch_size_;
  int input_size_;
  int hidden_size_;
  int num_layers_;
  int seed_;

  void init(cudnnHandle_t handle, const framework::ExecutionContext &ctx,
            size_t max_len, int batch_size, int input_size, int hidden_size,
            int num_layers, float dropout_prob, bool is_bidirec, int seed,
            int weight_numel) {
    max_length_ = max_len;
    batch_size_ = batch_size;
    input_size_ = input_size;
    hidden_size_ = hidden_size;
    num_layers_ = num_layers;
    dropout_prob_ = dropout_prob;
    is_bidirec_ = is_bidirec;
    seed_ = seed;

    x_desc_ = new cudnnTensorDescriptor_t[max_length_];
    y_desc_ = new cudnnTensorDescriptor_t[max_length_];
    dx_desc_ = new cudnnTensorDescriptor_t[max_length_];
    dy_desc_ = new cudnnTensorDescriptor_t[max_length_];
    int dim_a[3];
    int stride_a[3];

    for (size_t i = 0; i < max_length_; ++i) {
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&x_desc_[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&y_desc_[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&dx_desc_[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&dy_desc_[i]));
      dim_a[0] = batch_size_;
      dim_a[1] = input_size_;
      dim_a[2] = 1;

      stride_a[0] = dim_a[2] * dim_a[1];
      stride_a[1] = dim_a[2];
      stride_a[2] = 1;
      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          x_desc_[i], CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          dx_desc_[i], CUDNN_DATA_FLOAT, 3, dim_a, stride_a));

      dim_a[0] = batch_size_;
      dim_a[1] = is_bidirec_ ? hidden_size_ * 2 : hidden_size_;
      dim_a[2] = 1;

      stride_a[0] = dim_a[2] * dim_a[1];
      stride_a[1] = dim_a[2];
      stride_a[2] = 1;

      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          y_desc_[i], CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          dy_desc_[i], CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    }

    dim_a[0] = num_layers_ * (is_bidirec_ ? 2 : 1);
    dim_a[1] = batch_size_;
    dim_a[2] = hidden_size_;

    stride_a[0] = dim_a[2] * dim_a[1];
    stride_a[1] = dim_a[2];
    stride_a[2] = 1;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&hx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&cx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&hy_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&cy_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&dhx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&dcx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&dhy_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&dcy_desc_));

    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        hx_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        cx_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        hy_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        cy_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        dhx_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        dcx_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        dhy_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        dcy_desc_, CUDNN_DATA_FLOAT, 3, dim_a, stride_a));

    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateDropoutDescriptor(&dropout_desc_));

    size_t state_size;
    CUDNN_ENFORCE(
        platform::dynload::cudnnDropoutGetStatesSize(handle, &state_size);
        dropout_state_.Resize({static_cast<int64_t>(state_size)}));
    auto *dropout_state_data =
        dropout_state_.mutable_data<uint8_t>(ctx.GetPlace());
    CUDNN_ENFORCE(platform::dynload::cudnnSetDropoutDescriptor(
        dropout_desc_, handle, dropout_prob_, dropout_state_data, state_size,
        seed_));

    CUDNN_ENFORCE(platform::dynload::cudnnCreateRNNDescriptor(&rnn_desc_));
L
liuhongyu 已提交
180 181

#if CUDNN_VERSION >= 6000
L
liuhongyu 已提交
182
    CUDNN_ENFORCE(platform::dynload::cudnnSetRNNDescriptor_v6(
L
liuhongyu 已提交
183 184
        handle, rnn_desc_, hidden_size_, num_layers_, dropout_desc_,
        CUDNN_LINEAR_INPUT,
L
liuhongyu 已提交
185 186
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
        CUDNN_RNN_ALGO_STANDARD, CUDNN_DATA_FLOAT));
L
liuhongyu 已提交
187 188
#else
    CUDNN_ENFORCE(platform::dynload::cudnnSetRNNDescriptor(
L
liuhongyu 已提交
189
        rnn_desc_, hidden_size_, num_layers_, dropout_desc_, CUDNN_LINEAR_INPUT,
L
liuhongyu 已提交
190 191 192
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
        CUDNN_DATA_FLOAT));
#endif
L
liuhongyu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    CUDNN_ENFORCE(platform::dynload::cudnnCreateFilterDescriptor(&w_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateFilterDescriptor(&dw_desc_));

    CUDNN_ENFORCE(platform::dynload::cudnnGetRNNParamsSize(
        handle, rnn_desc_, x_desc_[0], &weights_size_, CUDNN_DATA_FLOAT));

    PADDLE_ENFORCE_EQ(weights_size_, sizeof(float) * weight_numel,
                      "cudnn lstm weight size should be SAME");
    int dim_w[3];
    dim_w[0] = weights_size_ / sizeof(float);
    dim_w[1] = 1;
    dim_w[2] = 1;
    CUDNN_ENFORCE(platform::dynload::cudnnSetFilterNdDescriptor(
        w_desc_, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 3, dim_w));
    CUDNN_ENFORCE(platform::dynload::cudnnSetFilterNdDescriptor(
        dw_desc_, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, 3, dim_w));

    CUDNN_ENFORCE(platform::dynload::cudnnGetRNNWorkspaceSize(
        handle, rnn_desc_, max_length_, x_desc_, &workspace_size_));
    CUDNN_ENFORCE(platform::dynload::cudnnGetRNNTrainingReserveSize(
        handle, rnn_desc_, max_length_, x_desc_, &reserve_size_));

    reserve_data_.Resize({static_cast<int64_t>(reserve_size_)});
    reserve_data_.mutable_data<uint8_t>(ctx.GetPlace());

    workspace_data_.Resize({static_cast<int64_t>(workspace_size_)});
    workspace_data_.mutable_data<uint8_t>(ctx.GetPlace());
  }

  void release() {
    for (size_t i = 0; i < max_length_; ++i) {
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(x_desc_[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(y_desc_[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(dx_desc_[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(dy_desc_[i]));
    }

    delete[] x_desc_;
    delete[] y_desc_;
    delete[] dx_desc_;
    delete[] dy_desc_;

    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(hx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(cx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(hy_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(cy_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(dhx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(dcx_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(dhy_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(dcy_desc_));

    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyDropoutDescriptor(dropout_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyRNNDescriptor(rnn_desc_));

    CUDNN_ENFORCE(platform::dynload::cudnnDestroyFilterDescriptor(w_desc_));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyFilterDescriptor(dw_desc_));
  }
};

C
chengduozh 已提交
258
template <typename T>
L
liuhongyu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
class CudnnLSTMGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const Tensor *x = ctx.Input<Tensor>("Input");
    const Tensor *init_h = ctx.Input<Tensor>("InitH");
    const Tensor *init_c = ctx.Input<Tensor>("InitC");

    auto w = ctx.Input<Tensor>("W");

    Tensor *out = ctx.Output<Tensor>("Out");
    Tensor *last_h = ctx.Output<Tensor>("last_h");
    Tensor *last_c = ctx.Output<Tensor>("last_c");

    const T *x_data = x->data<T>();
    const T *init_h_data = init_h->data<T>();
    const T *init_c_data = init_c->data<T>();

    const T *w_data = w->data<T>();

    T *out_data = out->mutable_data<T>(ctx.GetPlace());
    T *last_h_data = last_h->mutable_data<T>(ctx.GetPlace());
    T *last_c_data = last_c->mutable_data<T>(ctx.GetPlace());

    size_t max_len = ctx.Attr<int>("max_len");
    float dropout_prob = ctx.Attr<float>("dropout_prob");
    bool is_bidirec = ctx.Attr<bool>("is_bidirec");
    int input_size = ctx.Attr<int>("input_size");
    int hidden_size = ctx.Attr<int>("hidden_size");
    int num_layers = ctx.Attr<int>("num_layers");
    bool is_test = ctx.Attr<bool>("is_test");

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto *cache_var = ctx.InputVar("Cache");
    if (!cache_var) {
      // The RAW type cache variable wouldn't be created and broadcasted on
      // multi-devices before the first running.
      // use parent scope to make cache persistable
      auto *scope = const_cast<framework::Scope *>(ctx.scope().parent());
298
      auto cache_var_name = ctx.Inputs("Cache")[0];
L
liuhongyu 已提交
299 300 301 302
      cache_var = scope->Var(cache_var_name);
    }
    CudnnRNNCache *cudnn_rnn_cache = nullptr;
    if (cache_var->IsInitialized()) {
303
      // const_cast is usually bad.
L
liuhongyu 已提交
304 305 306
      cudnn_rnn_cache = const_cast<framework::Variable *>(cache_var)
                            ->GetMutable<CudnnRNNCache>();
    } else {
307
      // const_cast is usually bad.
L
liuhongyu 已提交
308 309 310
      cudnn_rnn_cache = const_cast<framework::Variable *>(cache_var)
                            ->GetMutable<CudnnRNNCache>();
      std::random_device rnd;
P
phlrain 已提交
311 312 313 314
      int seed = ctx.Attr<int>("seed");
      if (seed == -1) {
        seed = rnd();
      }
L
liuhongyu 已提交
315 316

      auto input_w_numel = w->numel();
P
phlrain 已提交
317
      auto batch_size = x->dims()[1];
L
liuhongyu 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
      cudnn_rnn_cache->init(handle, ctx, max_len, batch_size, input_size,
                            hidden_size, num_layers, dropout_prob, is_bidirec,
                            seed, input_w_numel);
    }

    auto run_seq_len = x->dims()[0];

    if (is_test) {
      // for inference
      CUDNN_ENFORCE(platform::dynload::cudnnRNNForwardInference(
          handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
          cudnn_rnn_cache->x_desc_, x_data, cudnn_rnn_cache->hx_desc_,
          init_h_data, cudnn_rnn_cache->cx_desc_, init_c_data,
          cudnn_rnn_cache->w_desc_, w_data, cudnn_rnn_cache->y_desc_, out_data,
          cudnn_rnn_cache->hy_desc_, last_h_data, cudnn_rnn_cache->cy_desc_,
          last_c_data, cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
          cudnn_rnn_cache->workspace_size_));
    } else {
      // for train
      CUDNN_ENFORCE(platform::dynload::cudnnRNNForwardTraining(
          handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
          cudnn_rnn_cache->x_desc_, x_data, cudnn_rnn_cache->hx_desc_,
          init_h_data, cudnn_rnn_cache->cx_desc_, init_c_data,
          cudnn_rnn_cache->w_desc_, w_data, cudnn_rnn_cache->y_desc_, out_data,
          cudnn_rnn_cache->hy_desc_, last_h_data, cudnn_rnn_cache->cy_desc_,
          last_c_data, cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
          cudnn_rnn_cache->workspace_size_,
          cudnn_rnn_cache->reserve_data_.data<uint8_t>(),
          cudnn_rnn_cache->reserve_size_));
    }
  }
};

C
chengduozh 已提交
351
template <typename T>
L
liuhongyu 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
class CudnnLSTMGPUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *input = ctx.Input<Tensor>("Input");
    auto *weight = ctx.Input<Tensor>("W");
    auto *init_h = ctx.Input<Tensor>("InitH");
    auto *init_c = ctx.Input<Tensor>("InitC");
    // auto * last_h = ctx.Input<Tensor>("last_h");
    // auto * last_c = ctx.Input<Tensor>("last_c");
    auto *out = ctx.Input<Tensor>("Out");
    auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *last_h_grad = ctx.Input<Tensor>(framework::GradVarName("last_h"));
    auto *last_c_grad = ctx.Input<Tensor>(framework::GradVarName("last_c"));

    // auto* init_h = ctx.Input<Tensor>("init_h");
    // auto* init_c = ctx.Input<Tensor>("init_c");

    auto *in_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto *weight_grad = ctx.Output<Tensor>(framework::GradVarName("W"));
    auto *init_h_grad = ctx.Output<Tensor>(framework::GradVarName("InitH"));
    auto *init_c_grad = ctx.Output<Tensor>(framework::GradVarName("InitC"));

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto *cache_var = ctx.InputVar("Cache");
    PADDLE_ENFORCE(cache_var->IsInitialized());
    CudnnRNNCache *cudnn_rnn_cache =
        const_cast<framework::Variable *>(cache_var)
            ->GetMutable<CudnnRNNCache>();

    auto input_dims = input->dims();
    auto init_h_dims = init_h->dims();
    auto init_c_dims = init_c->dims();
    in_grad->mutable_data<T>(ctx.GetPlace());
    weight_grad->mutable_data<T>(ctx.GetPlace());
C
chengduozh 已提交
387
    math::SetConstant<paddle::platform::CUDADeviceContext, T> zero;
L
liuhongyu 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    zero(dev_ctx, in_grad, static_cast<T>(0.0));
    zero(dev_ctx, weight_grad, static_cast<T>(0.0));

    T *init_h_grad_data = NULL;
    if (init_h_grad == nullptr) {
      Tensor init_h_grad_temp;
      init_h_grad_temp.mutable_data<T>(init_h_dims, ctx.GetPlace());
      zero(dev_ctx, &init_h_grad_temp, static_cast<T>(0.0));

      init_h_grad_data = init_h_grad_temp.data<T>();
    } else {
      init_h_grad->mutable_data<T>(init_h_dims, ctx.GetPlace());
      zero(dev_ctx, init_h_grad, static_cast<T>(0.0));
      init_h_grad_data = init_h_grad->data<T>();
    }

    T *init_c_grad_data = NULL;
    if (init_c_grad == nullptr) {
      Tensor init_c_grad_temp;
      init_c_grad_temp.mutable_data<T>(init_c_dims, ctx.GetPlace());
      zero(dev_ctx, &init_c_grad_temp, static_cast<T>(0.0));

      init_c_grad_data = init_c_grad_temp.data<T>();
    } else {
      init_c_grad->mutable_data<T>(init_c_dims, ctx.GetPlace());
      zero(dev_ctx, init_c_grad, static_cast<T>(0.0));
      init_c_grad_data = init_c_grad->data<T>();
    }

    const T *last_h_grad_data = NULL;
    if (last_h_grad == nullptr) {
      Tensor last_h_grad_temp;
      last_h_grad_temp.mutable_data<T>(init_h_dims, ctx.GetPlace());
      zero(dev_ctx, &last_h_grad_temp, static_cast<T>(0.0));

      last_h_grad_data = (const T *)last_h_grad_temp.data<T>();
    } else {
      last_h_grad_data = last_h_grad->data<T>();
    }

    const T *last_c_grad_data = NULL;
    if (last_c_grad == nullptr) {
      Tensor last_c_grad_temp;
      last_c_grad_temp.mutable_data<T>(init_c_dims, ctx.GetPlace());
      zero(dev_ctx, &last_c_grad_temp, static_cast<T>(0.0));

      last_c_grad_data = (const T *)last_c_grad_temp.data<T>();
    } else {
      last_c_grad_data = last_c_grad->data<T>();
    }

    const T *out_grad_data = NULL;
    if (out_grad == nullptr) {
      Tensor out_grad_temp;
      out_grad_temp.mutable_data<T>(out->dims(), ctx.GetPlace());
      zero(dev_ctx, &out_grad_temp, static_cast<T>(0.0));

      out_grad_data = (const T *)out_grad_temp.data<T>();
    } else {
      out_grad_data = out_grad->data<T>();
    }

    // zero( dev_ctx, last_h_grad, static_cast<T>(0.0));
    // zero( dev_ctx, last_c_grad, static_cast<T>(0.0));

    auto out_data = out->data<T>();
    // auto out_grad_data = out_grad->data<T>();
    auto weight_data = weight->data<T>();
    auto init_h_data = init_h->data<T>();
    auto init_c_data = init_c->data<T>();
    auto in_grad_data = in_grad->data<T>();

    auto work_data = cudnn_rnn_cache->workspace_data_.data<uint8_t>();
    auto reserve_data = cudnn_rnn_cache->reserve_data_.data<uint8_t>();

    auto run_seq_len = input_dims[0];
    PADDLE_ENFORCE_LE((size_t)run_seq_len, cudnn_rnn_cache->max_length_,
                      "cudnn running seq_len CAN not greater max_lengh");
    CUDNN_ENFORCE(platform::dynload::cudnnRNNBackwardData(
        handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
        cudnn_rnn_cache->y_desc_, out_data, cudnn_rnn_cache->dy_desc_,
        out_grad_data, cudnn_rnn_cache->dhy_desc_, last_h_grad_data,
        cudnn_rnn_cache->dcy_desc_, last_c_grad_data, cudnn_rnn_cache->w_desc_,
        weight_data, cudnn_rnn_cache->hx_desc_, init_h_data,
        cudnn_rnn_cache->cx_desc_, init_c_data, cudnn_rnn_cache->dx_desc_,
        in_grad_data, cudnn_rnn_cache->dhx_desc_, init_h_grad_data,
        cudnn_rnn_cache->dcx_desc_, init_c_grad_data, work_data,
        cudnn_rnn_cache->workspace_size_, reserve_data,
        cudnn_rnn_cache->reserve_size_));

    CUDNN_ENFORCE(platform::dynload::cudnnRNNBackwardWeights(
        handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
        cudnn_rnn_cache->x_desc_, input->data<T>(), cudnn_rnn_cache->hx_desc_,
        init_h->data<T>(), cudnn_rnn_cache->y_desc_, out->data<T>(),
        cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
        cudnn_rnn_cache->workspace_size_, cudnn_rnn_cache->dw_desc_,
        weight_grad->data<T>(), cudnn_rnn_cache->reserve_data_.data<uint8_t>(),
        cudnn_rnn_cache->reserve_size_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduozh 已提交
493 494
REGISTER_OP_CUDA_KERNEL(cudnn_lstm, ops::CudnnLSTMGPUKernel<float>);
REGISTER_OP_CUDA_KERNEL(cudnn_lstm_grad, ops::CudnnLSTMGPUGradKernel<float>);