dataloader_iter.py 31.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
20
import numbers
21 22 23 24 25
import logging
import itertools
import threading
import numpy as np
import multiprocessing
26
from collections import namedtuple
27
from paddle.fluid.framework import _set_expected_place, _current_expected_place, set_flags
28 29

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
30
import queue
31

32
import paddle
C
chenjian 已提交
33
import paddle.profiler as profiler
34
from .. import core, layers
J
Jiabin Yang 已提交
35
from ..framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
36
from ..multiprocess_utils import _set_SIGCHLD_handler, MP_STATUS_CHECK_INTERVAL, CleanupFuncRegistrar
37
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
38
from .batch_sampler import _InfiniteIterableSampler
39 40
from .collate import default_collate_fn, default_convert_fn
from .worker import ParentWatchDog, get_worker_info, _worker_loop, \
K
Kaipeng Deng 已提交
41 42
        _DatasetKind, _IterableDatasetStopIteration, _WorkerException, \
        _ResumeIteration
43
from .flat import _flatten_batch, _restore_batch
44 45

__all__ = ['get_worker_info']
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
93
        self._drop_last = loader.drop_last
94
        self._auto_collate_batch = loader.auto_collate_batch
95 96 97
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
        self._use_shared_memory = loader.use_shared_memory
98
        self._timeout = loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
99
        self._worker_init_fn = loader.worker_init_fn
100
        self._dataset_kind = loader.dataset_kind
101
        self._pin_memory = loader.pin_memory
102

K
Kaipeng Deng 已提交
103
        self._sampler_iter = iter(self._index_sampler)
104 105 106
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
107
            self._collate_fn = loader.collate_fn or default_convert_fn
108

109 110 111 112 113 114 115 116 117
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
118 119 120 121 122 123 124 125 126 127
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

128 129 130 131 132 133
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

134 135 136 137 138 139 140 141 142 143
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

144 145 146 147 148 149 150 151 152 153

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

154
        self._dataset_fetcher = _DatasetKind.create_fetcher(
155
            self._dataset_kind, self._dataset, self._auto_collate_batch,
156
            self._collate_fn, self._drop_last)
157

158 159 160 161 162 163 164 165
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

166 167 168
        # NOTE: len(self._places) batch data compose as an output
        # iteration, set blocking_queue can cache 2 iteration datas
        # at most here
169
        self._blocking_queue_capacity = 1 * len(self._places)
170 171

        self._init_thread()
172 173 174 175
        self._shutdown = False

        global _loader
        _loader = self
176 177 178 179 180 181 182 183

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
184
        # if only 1 place, do not need to keep order
185
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
186 187
            core.Variable(), self._blocking_queue_capacity,
            len(self._places) > 1)
188 189
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
190 191
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
192

193 194
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
195 196 197
        self._thread.daemon = True
        self._thread.start()

198
    def _thread_loop(self, legacy_expected_place):
199 200 201 202 203 204 205 206 207 208 209 210 211
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
212
                # read data from dataset in mini-batch
213 214 215 216 217 218 219 220 221 222 223
                batch = self._dataset_fetcher.fetch(indices,
                                                    self._thread_done_event)
            except StopIteration:
                self._exit_thread_expectedly()
                return

            if batch is None or self._thread_done_event.is_set(): break

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
224

225
            if self._thread_done_event.is_set(): break
226

227
            try:
228 229 230
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
K
Kaipeng Deng 已提交
231 232 233
                    if isinstance(slot, paddle.Tensor):
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
234 235 236 237 238 239
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

240
                if self._thread_done_event.is_set(): break
241

242 243 244 245
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
246

247 248 249 250 251
            except:
                self._exit_thread_unexpectedly()
                six.reraise(*sys.exc_info())

        self._exit_thread_expectedly()
252 253

    def __next__(self):
C
chenjian 已提交
254 255 256 257
        trace_event = profiler.RecordEvent(
            name="_DataLoaderIterSingleProcess",
            event_type=profiler.TracerEventType.Dataloader)
        trace_event.begin()
258 259
        try:
            if in_dygraph_mode():
J
Jiabin Yang 已提交
260 261
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
262
                data = _restore_batch(data, self._structure_infos.pop(0))
263
            else:
J
Jiabin Yang 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
                else:  # in static mode
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
                        data = [
                            _restore_batch(d, s)
                            for d, s in zip(data, self._structure_infos[:len(
                                self._places)])
                        ]
                        self._structure_infos = self._structure_infos[len(
                            self._places):]
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
286 287

            return data
288
        except StopIteration:
289
            self._reader.shutdown()
290
            self._try_shutdown_all()
291
            six.reraise(*sys.exc_info())
C
chenjian 已提交
292 293
        finally:
            trace_event.end()
294

295 296 297
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
298 299 300 301 302 303 304 305 306 307 308
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

309
            self._thread = None
310

311 312 313 314
    # python2 compatibility
    def next(self):
        return self.__next__()

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

330
    def __del__(self):
331
        self._try_shutdown_all()
332

333 334 335 336 337

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

K
Kaipeng Deng 已提交
338 339 340
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

341 342 343 344 345 346 347 348
        assert self._num_workers > 0,  "Multi-process DataLoader " \
                    "invalid num_workers({})".format(self._num_workers)

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
        # for data order keeping, data index not equal _rcvd_idx 
349
        # will be cached in _task_infos
350 351 352
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
353
        self._task_infos = {}
354
        self._structure_infos = []
355 356 357 358 359 360 361 362 363 364

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
        # has at least 2 indices, and outstanding batch cached
        # output data for at least 2 iterations(Note that len(_places)
        # batches will be composed as an iteration output)
        self._outstanding_capacity = 2 * max(self._num_workers,
                                             len(self._places))

365 366 367
        # see _try_put_indices
        self._thread_lock = threading.Lock()

368
        # init workers and indices queues and put 2 indices in each indices queue
369 370 371 372
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

373 374 375
        self._init_thread()
        self._shutdown = False

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

        # event for workers and thread, thread event is only need 
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
395
                target=_worker_loop,
396 397
                args=(self._dataset, self._dataset_kind, indices_queue,
                      self._data_queue, self._workers_done_event,
398
                      self._auto_collate_batch, self._collate_fn,
399 400
                      self._drop_last, self._worker_init_fn, i,
                      self._num_workers, self._use_shared_memory))
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
426
        # if only 1 place, do not need to keep order
427
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
428
            core.Variable(), self._outstanding_capacity, len(self._places) > 1)
429 430
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
431 432
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
433 434

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
435
        # thread event is only need in multi-processing mode
436 437
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
438 439 440
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
J
Jiabin Yang 已提交
459 460
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
K
Kaipeng Deng 已提交
461
            else:
J
Jiabin Yang 已提交
462 463 464 465 466 467
                if _in_legacy_dygraph():
                    self._reader.read_next_var_list()
                elif self._return_list:
                    self._reader.read_next_list()
                else:
                    data = self._reader.read_next()
K
Kaipeng Deng 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
        if self._worker_status[worker_id] or (self._persistent_workers and
                                              shutdown):
488 489 490
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

491
    def _try_shutdown_all(self, timeout=None):
492 493 494 495 496 497 498 499 500 501
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
502
                    self._shutdown_worker(i, shutdown=True)
503

504 505 506 507 508 509
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
510 511 512 513
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

514 515 516 517 518 519 520 521
    def _thread_loop(self, legacy_expected_place):
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

522 523 524 525 526 527
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
528 529 530 531
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
532 533 534 535 536 537 538 539 540 541
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
K
Kaipeng Deng 已提交
542 543 544
                                if isinstance(slot, paddle.Tensor):
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
545 546 547 548 549 550 551
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
552
                    except Exception as e:
553 554 555 556 557 558 559
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
560 561 562 563 564 565
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
            # in _send_idx but will not increase _rcvd_idx, so we check 
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
566 567 568
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
569
                    if len(info) == 3 or self._worker_status[info[0]]:
570 571 572 573 574
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
575 576 577 578 579 580 581 582
                    # NOTE: when _rcvd_idx catch up _send_idx, which means
                    #       one of following:
                    #       1. all 2 * num_workers batches have been loaded
                    #          and stored in _blocking_queue
                    #       2. all data drained
                    #       we need to let _thread blocking at _data_queue
                    #       get_data to inoccupy CPU, otherwise may occupy
                    #       CPU time for model running
K
Kaipeng Deng 已提交
583 584 585 586 587 588 589 590 591
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
592 593

            if self._rcvd_idx in self._task_infos and \
594 595 596 597
                    len(self._task_infos[self._rcvd_idx]) == 3:
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
598

599 600 601
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
602
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
603 604 605 606 607 608 609
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
610 611 612 613 614
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
                    raise RuntimeError("DataLoader {} workers exit unexpectedly, " \
                                "pids: {}".format(len(failed_workers), pids))

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
                logging.error("DataLoader reader thread failed({}) to read data from " \
                              "workers' result queue.".format(e))
                six.reraise(*sys.exc_info())
            else:
636 637 638 639 640 641 642
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
                        data, _IterableDatasetStopIteration):
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
643 644 645 646 647
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
648 649 650
                    self._try_put_indices()
                    continue

651
                idx, batch, structure = data
K
Kaipeng Deng 已提交
652 653 654 655 656

                if isinstance(idx, _ResumeIteration) and batch is None \
                        and structure is None:
                    return idx

657 658 659 660
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

661
                if idx == self._rcvd_idx:
662
                    del self._task_infos[idx]
663
                    self._structure_infos.append(structure)
664 665
                    return batch
                else:
666
                    self._task_infos[idx] += (batch, structure)
667 668 669
                    continue

    def _try_put_indices(self):
670
        assert self._batches_outstanding <= self._outstanding_capacity, \
671
                    "too many indices have been put to queue"
672 673 674 675 676 677 678 679 680 681 682 683 684 685
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
686

687 688 689 690 691 692
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
693

694 695 696 697
            self._indices_queues[worker_idx].put((self._send_idx, indices))
            self._task_infos[self._send_idx] = (worker_idx, )
            self._batches_outstanding += 1
            self._send_idx += 1
698 699 700 701

    def __del__(self):
        self._try_shutdown_all()

702 703 704
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

705
    def __next__(self):
C
chenjian 已提交
706 707 708 709
        trace_event = profiler.RecordEvent(
            name="_DataLoaderIterMultiProcess",
            event_type=profiler.TracerEventType.Dataloader)
        trace_event.begin()
710 711 712 713 714 715 716 717 718
        try:
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
719 720 721 722 723
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
724 725

            if in_dygraph_mode():
J
Jiabin Yang 已提交
726 727
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
728
                data = _restore_batch(data, self._structure_infos.pop(0))
729
            else:
J
Jiabin Yang 已提交
730 731 732
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
733
                else:
J
Jiabin Yang 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
                        data = [
                            _restore_batch(d, s)
                            for d, s in zip(data, self._structure_infos[:len(
                                self._places)])
                        ]
                        self._structure_infos = self._structure_infos[len(
                            self._places):]
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
752 753 754
            self._on_output_batch()
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
755 756 757
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
758
            six.reraise(*sys.exc_info())
C
chenjian 已提交
759 760
        finally:
            trace_event.end()
761 762 763 764 765 766 767 768 769

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()