matmul_op_xpu.cc 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include <algorithm>
#include <utility>
#include <vector>
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

static framework::Tensor FoldInitDims(const framework::Tensor &input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}
/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}
/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

template <typename DeviceContext, typename T>
class MatMulXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *x = context.Input<framework::Tensor>("X");
    auto *y = context.Input<framework::Tensor>("Y");
    auto *out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    auto mat_dim_a = math::CreateMatrixDescriptor(
        RowMatrixFromVector(x->dims()), 0, context.Attr<bool>("transpose_X"));
    auto mat_dim_b =
        math::CreateMatrixDescriptor(ColumnMatrixFromVector(y->dims()), 0,
                                     context.Attr<bool>("transpose_Y"));
    PADDLE_ENFORCE_EQ(
        mat_dim_a.width_, mat_dim_b.height_,
        platform::errors::InvalidArgument("Shape mistake in matmul_op"));
    PADDLE_ENFORCE_EQ(
        mat_dim_a.batch_size_, mat_dim_b.batch_size_,
        platform::errors::InvalidArgument("Shape mistake in matmul_op"));
    T alpha = static_cast<T>(context.Attr<float>("alpha"));

    auto &dev_ctx = context.template device_context<DeviceContext>();
    float *data_c = out->data<T>();
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    int m = mat_dim_a.height_;
    int n = mat_dim_b.width_;
    int k = mat_dim_a.width_;
    int ldx = mat_dim_a.trans_ ? m : k;
    int ldy = mat_dim_b.trans_ ? k : n;
    int ldout = n;
    int batch_size = mat_dim_a.batch_size_;
    if (batch_size == 0 || batch_size == 1) {
      int r = xpu::fc_fusion<float, float, float, int16_t>(
          dev_ctx.x_context(), x->data<T>(), y->data<T>(), data_c, m, n, k,
          mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr, ldx,
          ldy, ldout, alpha, 0, nullptr, xpu::Activation_t::LINEAR);
      PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                        platform::errors::External(
                            "XPU fc_fusion kernel return wrong value[%d %s]", r,
                            XPUAPIErrorMsg[r]));
140 141
    } else {
      // batch matmul
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
      int x_stride = mat_dim_a.stride_;
      int y_stride = mat_dim_b.stride_;
      int out_stride = m * n;
      for (int i = 0; i < batch_size; ++i) {
        const float *x_data = x->data<T>() + x_stride * i;
        const float *y_data = y->data<T>() + y_stride * i;
        float *out_data = data_c + out_stride * i;
        int r = xpu::fc_fusion<float, float, float, int16_t>(
            dev_ctx.x_context(), x_data, y_data, out_data, m, n, k,
            mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr, ldx,
            ldy, ldout, alpha, 0, nullptr, xpu::Activation_t::LINEAR);
        PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                          platform::errors::External(
                              "XPU fc_fusion kernel return wrong value[%d %s]",
                              r, XPUAPIErrorMsg[r]));
      }
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    }
  }
};

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
static framework::Tensor XPUFoldHeadAndLastDims(
    const DeviceContext &context, const framework::Tensor &input) {
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }

  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> in_shape_host = {static_cast<int>(in_dims[0]),
                                    static_cast<int>(in_dims[1]),
                                    static_cast<int>(in_dims[2])};
  std::vector<int> axis_host = {1, 0, 2};

  int r = xpu::transpose(context.x_context(), input.data<T>(), output.data<T>(),
                         in_shape_host.data(), axis_host.data(), /*ndims=*/3);
  PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                    platform::errors::External(
185 186
                        "XPU transpose kernel return wrong value[%d %s]", r,
                        XPUAPIErrorMsg[r]));
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});

  return output;
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradXPUKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
    PADDLE_ENFORCE_EQ(
        mat_dim_a.width_, mat_dim_b.height_,
        platform::errors::InvalidArgument("Shape mistake in matmul_grad_op"));
    PADDLE_ENFORCE_EQ(
        mat_dim_a.batch_size_, mat_dim_b.batch_size_,
        platform::errors::InvalidArgument("Shape mistake in matmul_grad_op"));
    T alpha = static_cast<T>(context.Attr<float>("alpha"));

    auto &dev_ctx = context.template device_context<DeviceContext>();
    float *data_c = out->data<T>();
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    int m = mat_dim_a.height_;
    int n = mat_dim_b.width_;
    int k = mat_dim_a.width_;
    int ldx = mat_dim_a.trans_ ? m : k;
    int ldy = mat_dim_b.trans_ ? k : n;
    int ldout = n;
    int batch_size = mat_dim_a.batch_size_;
    if (batch_size == 0 || batch_size == 1) {
      int r = xpu::fc_fusion<float, float, float, int16_t>(
          dev_ctx.x_context(), a.data<T>(), b.data<T>(), data_c, m, n, k,
          mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr, ldx,
          ldy, ldout, alpha, 0, nullptr, xpu::Activation_t::LINEAR);
      PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                        platform::errors::External(
                            "XPU fc_fusion kernel return wrong value[%d %s]", r,
                            XPUAPIErrorMsg[r]));
254 255
    } else {
      // batch matmul
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
      int x_stride = mat_dim_a.stride_;
      int y_stride = mat_dim_b.stride_;
      int out_stride = m * n;
      for (int i = 0; i < batch_size; ++i) {
        const float *x_data = a.data<T>() + x_stride * i;
        const float *y_data = b.data<T>() + y_stride * i;
        float *out_data = data_c + out_stride * i;
        int r = xpu::fc_fusion<float, float, float, int16_t>(
            dev_ctx.x_context(), x_data, y_data, out_data, m, n, k,
            mat_dim_a.trans_, mat_dim_b.trans_, nullptr, nullptr, nullptr, ldx,
            ldy, ldout, alpha, 0, nullptr, xpu::Activation_t::LINEAR);
        PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                          platform::errors::External(
                              "XPU fc_fusion kernel return wrong value[%d %s]",
                              r, XPUAPIErrorMsg[r]));
      }
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    }
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
                     bool trans_b, bool is_fold_init_dims_b,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
      auto &dev_ctx = context.template device_context<DeviceContext>();
      MatMul(
          context, is_fold_init_dims_a
                       ? FoldInitDims(a)
                       : XPUFoldHeadAndLastDims<DeviceContext, T>(dev_ctx, a),
          trans_a, is_fold_init_dims_b
                       ? FoldInitDims(b)
                       : XPUFoldHeadAndLastDims<DeviceContext, T>(dev_ctx, b),
          trans_b, out);
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(
    matmul, ops::MatMulXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    matmul_grad,
    ops::MatMulGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif