fused_softmax_mask_op.cu 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// this file is inspired by:
// https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/fused_kernels/scaled_masked_softmax.h
Y
Yuang Liu 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#endif
#include <stdint.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform.h>
#include <algorithm>
#include <string>

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/fused_softmax_mask_op.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

using framework::Tensor;

#ifdef PADDLE_WITH_HIP
#define WARP_SIZE 64
#else
#define WARP_SIZE 32
#endif

#define MASK 0xffffffff

namespace plat = paddle::platform;

__device__ __inline__ void load_data(plat::float16* dst,
                                     const plat::float16* src) {
  *(reinterpret_cast<float2*>(dst)) = *(reinterpret_cast<const float2*>(src));
}

__device__ __inline__ void load_data(float* dst, const float* src) {
  *(reinterpret_cast<float4*>(dst)) = *(reinterpret_cast<const float4*>(src));
}

int get_pow2(int value) {
  // get next pow2 index
  int pow2_index = 0;
  while ((1 << pow2_index) < value) {
    ++pow2_index;
  }
  return pow2_index;
}

template <typename T>
struct AddOP {
  __device__ __forceinline__ T operator()(T a, T b) const { return a + b; }
};

template <typename T>
struct MaxOP {
  __device__ __forceinline__ T operator()(T a, T b) const {
    return a < b ? b : a;
  }
};

template <typename T>
__device__ __forceinline__ T warp_shfl_xor(T value, int laneMask, int width,
                                           unsigned int mask = MASK) {
#if CUDA_VERSION >= 9000
  return __shfl_xor_sync(mask, value, laneMask, width);
#else
  return __shfl_xor(value, laneMask, width);
#endif
}

template <typename T, int batch, int width, template <typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce(T* sum) {
  ReduceOp<T> r;
#pragma unroll
  for (int offset = width / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < batch; ++i) {
      T b = warp_shfl_xor(sum[i], offset, width);
      sum[i] = r(sum[i], b);
    }
  }
}

// T == fp16
template <typename T, int pow2_index>
__global__ void SoftmaxMaskFuseGPUKernel(const T* x_data, const T* mask_data,
                                         T* y_data, int batch_count,
                                         int key_seq_len) {
  // the forward gpu kernel
  constexpr int next_pow2 = 1 << pow2_index;
  constexpr int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
  constexpr int kLocalIterations = std::max(next_pow2 / warp_size, 4);
  constexpr int kLocalBatchSize = (next_pow2 <= 128) ? 2 : 1;
  constexpr int kOneLoadingCounts = 4;

  int data_first_idx =
      (blockDim.y *
           (blockIdx.x + gridDim.x * (blockIdx.y + gridDim.y * blockIdx.z)) +
       threadIdx.y) *
      kLocalBatchSize;

  int mask_fist_idx =
      (blockDim.y * (blockIdx.x + gridDim.x * blockIdx.z) + threadIdx.y) *
      kLocalBatchSize;

  // batch_count might not be a multiple of kLocalBatchSize. Check how
  // many batches have to computed within this WARP.
  int local_batches = batch_count - data_first_idx;
  if (local_batches > kLocalBatchSize) local_batches = kLocalBatchSize;

  // might be many batches per warp. compute the index within the batch
  int local_idx = threadIdx.x;

  int x_offset = data_first_idx * key_seq_len + kOneLoadingCounts * local_idx;
  int mask_offset = mask_fist_idx * key_seq_len + kOneLoadingCounts * local_idx;
  x_data += x_offset;
  mask_data += mask_offset;
  y_data += x_offset;

  // using float for all inter compute
  float data[kLocalBatchSize][kLocalIterations];
  T temp_data[kOneLoadingCounts];
  T temp_mask[kOneLoadingCounts];

#pragma unroll
  for (int i = 0; i < kLocalBatchSize; ++i) {
    int batch_data = (i >= local_batches) ? 0 : key_seq_len;

#pragma unroll
    for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
      int data_index = kOneLoadingCounts * local_idx + ii * warp_size;

      if (data_index < batch_data) {
        int itr_idx = i * key_seq_len + ii * warp_size;

        // efficiently load data from global memory
        load_data(temp_data, x_data + itr_idx);
        load_data(temp_mask, mask_data + itr_idx);

#pragma unroll
        for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
          data[i][ii + counter] = static_cast<float>(temp_data[counter]) +
                                  static_cast<float>(temp_mask[counter]);
        }
      } else {
#pragma unroll
        for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
          data[i][ii + counter] = -std::numeric_limits<float>::infinity();
        }
      }
    }
  }

  // compute max_value
  // max value for each batch for current warp
  float samples_max_value[kLocalBatchSize];
#pragma unroll
  for (int i = 0; i < kLocalBatchSize; ++i) {
    samples_max_value[i] = data[i][0];
#pragma unroll
    for (int ii = 1; ii < kLocalIterations; ++ii) {
      samples_max_value[i] = (samples_max_value[i] > data[i][ii])
                                 ? samples_max_value[i]
                                 : data[i][ii];
    }
  }
  // max value for each batch for all warp
  warp_reduce<float, kLocalBatchSize, warp_size, MaxOP>(samples_max_value);

  // compute the sum for each batch for current warp
  float samples_sum[kLocalBatchSize]{0.0f};
#pragma unroll
  for (int i = 0; i < kLocalBatchSize; ++i) {
#pragma unroll
    for (int ii = 0; ii < kLocalIterations; ++ii) {
      data[i][ii] = std::exp((data[i][ii] - samples_max_value[i]));
      samples_sum[i] += data[i][ii];
    }
  }
  // samples_sum for each batch for all warp
  warp_reduce<float, kLocalBatchSize, warp_size, AddOP>(samples_sum);

  // load the result from device back to host
  T samples_out[kOneLoadingCounts];
#pragma unroll
  for (int i = 0; i < kLocalBatchSize; ++i) {
    if (i >= local_batches) break;
#pragma unroll
    for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
      int idx = kOneLoadingCounts * local_idx + ii * warp_size;
      if (idx < key_seq_len) {
#pragma unroll
        for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
          samples_out[counter] = data[i][ii + counter] / samples_sum[i];
        }
        load_data(y_data + i * key_seq_len + ii * warp_size, samples_out);
      } else {
        break;
      }
    }
  }
}

template <typename T, int pow2_index>
__global__ void SoftmaxMaskFuseGradGPUKernel(const T* grad_input,
                                             T* grad_output,
                                             const T* softmax_rst,
                                             int batch_count, int key_seq_len) {
  constexpr int next_pow2 = 1 << pow2_index;
  constexpr int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
  constexpr int kLocalIterations = std::max(next_pow2 / warp_size, 4);
  constexpr int kLocalBatchSize = (next_pow2 <= 128) ? 2 : 1;
  constexpr int kOneLoadingCounts = 4;

  int data_first_idx =
      (blockDim.y * blockIdx.x + threadIdx.y) * kLocalBatchSize;

  // batch_count might not be a multiple of kLocalBatchSize. Check how
  // many batches have to computed within this WARP.
  int local_batches = batch_count - data_first_idx;
  if (local_batches > kLocalBatchSize) local_batches = kLocalBatchSize;

  // might be many batches per warp. compute the index within the batch
  int local_idx = threadIdx.x;

  // the first element to process by the current thread
  int offset = data_first_idx * key_seq_len + kOneLoadingCounts * local_idx;
  grad_input += offset;
  grad_output += offset;
  softmax_rst += offset;

  // using float for all inter compute
  float grad_input_reg[kLocalBatchSize][kLocalIterations]{0.0f};
  float softmax_rst_reg[kLocalBatchSize][kLocalIterations]{0.0f};
  T temp_grad_input[kOneLoadingCounts];
  T temp_softmax_rst[kOneLoadingCounts];

#pragma unroll
  for (int i = 0; i < kLocalBatchSize; ++i) {
    int batch_data = (i >= local_batches) ? 0 : key_seq_len;

#pragma unroll
    for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
      int data_index = kOneLoadingCounts * local_idx + ii * WARP_SIZE;
      if (data_index < batch_data) {
        load_data(temp_grad_input,
                  grad_input + i * key_seq_len + ii * warp_size);
        load_data(temp_softmax_rst,
                  softmax_rst + i * key_seq_len + ii * warp_size);

#pragma unroll
        for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
          softmax_rst_reg[i][ii + counter] =
              static_cast<float>(temp_softmax_rst[counter]);
        }
#pragma unroll
        for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
          grad_input_reg[i][ii + counter] =
              static_cast<float>(temp_grad_input[counter]) *
              softmax_rst_reg[i][ii + counter];
        }
      }
    }
  }

  float samples_sum[kLocalBatchSize];
#pragma unroll
  for (int i = 0; i < kLocalBatchSize; ++i) {
    samples_sum[i] = grad_input_reg[i][0];
#pragma unroll
    for (int ii = 1; ii < kLocalIterations; ++ii) {
      samples_sum[i] += grad_input_reg[i][ii];
    }
  }
  warp_reduce<float, kLocalBatchSize, warp_size, AddOP>(samples_sum);

#pragma unroll
  for (int i = 0; i < kLocalBatchSize; ++i) {
    if (i >= local_batches) break;
#pragma unroll
    for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
      int data_index = kOneLoadingCounts * local_idx + ii * warp_size;
      if (data_index < key_seq_len) {
        // compute gradients
        T samples_out[kOneLoadingCounts];
#pragma unroll
        for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
          samples_out[counter] =
              grad_input_reg[i][ii + counter] -
              softmax_rst_reg[i][ii + counter] * samples_sum[i];
        }
        load_data(grad_output + i * key_seq_len + ii * warp_size, samples_out);
      }
    }
  }
}

// T only supports fp16
// leave as template only for future update
template <typename Place, typename T>
class SoftmaxMaskFuseKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* mask = context.Input<Tensor>("Mask");
    auto* y = context.Output<Tensor>("Out");

    auto* x_data = x->data<T>();
    auto* mask_data = mask->data<T>();
    auto* y_data = y->mutable_data<T>(context.GetPlace());

    auto x_dim = x->dims();
    auto mask_dim = mask->dims();
    auto batches = x_dim[0];
    auto attn_heads = x_dim[1];
    auto query_seq_len = x_dim[2];
    auto key_seq_len = x_dim[3];

    PADDLE_ENFORCE_GT(query_seq_len, 1,
                      platform::errors::InvalidArgument(
                          "Input x's second last dim must be large than 1 but "
                          "received the second last dimension of x is %d",
                          query_seq_len));

    PADDLE_ENFORCE_EQ(key_seq_len >= 32 && key_seq_len < 8192, true,
                      platform::errors::InvalidArgument(
                          "Input x's last dim must be between [32, 8192) "
                          "received the last dimension of x is %d",
                          key_seq_len));

    PADDLE_ENFORCE_EQ(mask_dim[1], 1,
                      platform::errors::InvalidArgument(
                          "Input mask's second dim must be 1 "
                          "received the second dimension of mask is %d",
                          mask_dim[1]));

    // dim of x and mask must be equal
    for (size_t idx = 0; idx < 4; ++idx) {
      if (idx == 1) continue;
      PADDLE_ENFORCE_EQ(
          x_dim[idx], mask_dim[idx],
          platform::errors::InvalidArgument(
              "Input x's %dth dim should be equal with input mask's %dth dim "
              "but "
              "received the %dth dimension of x and mask are not equal "
              "the %dth dim of x is %d, while the %dth dim of mask is %d.",
              idx, idx, idx, idx, x_dim[idx], idx, mask_dim[idx]));
    }

    auto& place = *context.template device_context<Place>().eigen_device();
    auto stream = context.cuda_device_context().stream();

    int pow2_index = get_pow2(key_seq_len);
    const int next_pow2 = 1 << pow2_index;
    int batch_count = batches * attn_heads * query_seq_len;
    int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
    int batches_per_warp = (next_pow2 <= 128) ? 2 : 1;
    // use 128 threads per block to maximum gpu utilization
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / warp_size);
    int batches_per_block = warps_per_block * batches_per_warp;
    PADDLE_ENFORCE_EQ(
        query_seq_len % batches_per_block, 0,
        platform::errors::InvalidArgument(
            "The query seq len (third dim of input X) must can divide the "
            "number of batches per block. The query seq len is %d, while "
            "the number of batches per block is %d.",
            query_seq_len, batches_per_block));
    dim3 blocks(query_seq_len / batches_per_block, attn_heads, batches);
    dim3 threads(warp_size, warps_per_block, 1);

    // launch the kernel based on the pow2_index
    switch (pow2_index) {
      case 5:  // 32
        SoftmaxMaskFuseGPUKernel<T, 5><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 6:  // 64
        SoftmaxMaskFuseGPUKernel<T, 6><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 7:  // 128
        SoftmaxMaskFuseGPUKernel<T, 7><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 8:  // 256
        SoftmaxMaskFuseGPUKernel<T, 8><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 9:  // 512
        SoftmaxMaskFuseGPUKernel<T, 9><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 10:  // 1024
        SoftmaxMaskFuseGPUKernel<T, 10><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 11:  // 2048
        SoftmaxMaskFuseGPUKernel<T, 11><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 12:  // 4096
        SoftmaxMaskFuseGPUKernel<T, 12><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      case 13:  // 8192
        SoftmaxMaskFuseGPUKernel<T, 13><<<blocks, threads, 0, stream>>>(
            x_data, mask_data, y_data, batch_count, key_seq_len);
        break;
      default:
        break;
    }
  }
};

template <typename Place, typename T>
class SoftmaxMaskFuseGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* softmax_rst = context.Input<Tensor>("Softmax");

    auto* grad_x_data = grad_x->mutable_data<T>(context.GetPlace());
    auto* grad_y_data = grad_y->data<T>();
    auto* softmax_rst_data = softmax_rst->data<T>();

    auto y_dim = grad_y->dims();
    auto batches = y_dim[0];
    auto attn_heads = y_dim[1];
    auto query_seq_len = y_dim[2];
    auto key_seq_len = y_dim[3];

    auto& place = *context.template device_context<Place>().eigen_device();
    auto stream = context.cuda_device_context().stream();

    int pow2_index = get_pow2(key_seq_len);
    const int next_pow2 = 1 << pow2_index;
    int batch_count = batches * attn_heads * query_seq_len;
    int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
    int batches_per_warp = (next_pow2 <= 128) ? 2 : 1;
    // use 128 threads per block to maximum gpu utilization
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / warp_size);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = batch_count / batches_per_block;
    dim3 threads(warp_size, warps_per_block, 1);

    // launch the kernel based on the pow2_index
    switch (pow2_index) {
      case 5:  // 32
        SoftmaxMaskFuseGradGPUKernel<T, 5><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 6:  // 64
        SoftmaxMaskFuseGradGPUKernel<T, 6><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 7:  // 128
        SoftmaxMaskFuseGradGPUKernel<T, 7><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 8:  // 256
        SoftmaxMaskFuseGradGPUKernel<T, 8><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 9:  // 512
        SoftmaxMaskFuseGradGPUKernel<T, 9><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 10:  // 1024
        SoftmaxMaskFuseGradGPUKernel<T, 10><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 11:  // 2048
        SoftmaxMaskFuseGradGPUKernel<T, 11><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 12:  // 4096
        SoftmaxMaskFuseGradGPUKernel<T, 12><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      case 13:  // 8192
        SoftmaxMaskFuseGradGPUKernel<T, 13><<<blocks, threads, 0, stream>>>(
            grad_y_data, grad_x_data, softmax_rst_data, batch_count,
            key_seq_len);
        break;
      default:
        break;
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
    fused_softmax_mask,
    ops::SoftmaxMaskFuseKernel<plat::CUDADeviceContext, plat::float16>,
    ops::SoftmaxMaskFuseKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    fused_softmax_mask_grad,
    ops::SoftmaxMaskFuseGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::SoftmaxMaskFuseGradKernel<plat::CUDADeviceContext, float>);