elementwise_div_op_npu.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>

#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ElementwiseDivNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    auto runner = NpuOpRunner("Div", {*x, *y}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    auto place = ctx.GetPlace();

    auto stream =
       ctx.template device_context<paddle::platform::NPUDeviceContext>()
           .stream();

    Tensor y_power(y->type());
    y_power.mutable_data<T>(y->dims(), place);
    auto y_power_runner = NpuOpRunner("Power", {*y},
             {y_power}, {{"power", static_cast<float>(-1)}});
    y_power_runner.Run(stream);

    if (dx) {
      dx->mutable_data<T>(place);

      Tensor tensor_zeros(x->type());
      tensor_zeros.mutable_data<T>(x->dims(), place);
      auto tensor_zeros_runner = NpuOpRunner("ZerosLike", {*x},
               {tensor_zeros}, {});
      tensor_zeros_runner.Run(stream);

      Tensor x_zero(paddle::framework::proto::VarType::BOOL);
      x_zero.mutable_data<bool>(x->dims(), place);
      auto x_zero_runner = NpuOpRunner("Equal", {*x, tensor_zeros},
              {x_zero}, {});
      x_zero_runner.Run(stream);

      Tensor x_nozero(paddle::framework::proto::VarType::BOOL);
      x_nozero.mutable_data<bool>(x->dims(), place);
      auto x_nozero_runner = NpuOpRunner("LogicalNot", {x_zero},
              {x_nozero}, {});
      x_nozero_runner.Run(stream);

      Tensor x_nozero_f(x->type());
      x_nozero_f.mutable_data<T>(x->dims(), place);
      auto x_nozero_f_runner = NpuOpRunner("Cast", {x_nozero},
               {x_nozero_f}, {{"dst_type", static_cast<int32_t>(0)}});
      x_nozero_f_runner.Run(stream);

      Tensor x_grad_w(x->type());
      x_grad_w.mutable_data<T>(x->dims(), place);
      auto x_grad_w_runner = NpuOpRunner("Mul", {x_nozero_f, y_power},
               {x_grad_w}, {});
      x_grad_w_runner.Run(stream);

      auto x_grad_runner = NpuOpRunner("Mul", {x_grad_w, *dout}, {*dx}, {});
      x_grad_runner.Run(stream);
    }

    if (dy) {
      dy->mutable_data<T>(place);

113 114 115 116 117 118 119
      Tensor neg_out(y->type());
      neg_out.mutable_data<T>(y->dims(), place);
      auto neg_out_runner = NpuOpRunner("Neg", {*out},
              {neg_out}, {});
      neg_out_runner.Run(stream);

      Tensor y_grad_w(y->type());
120
      y_grad_w.mutable_data<T>(y->dims(), place);
121
      auto y_grad_w_runner = NpuOpRunner("Div", {neg_out, *y},
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
              {y_grad_w}, {});
      y_grad_w_runner.Run(stream);

      auto y_grad_runner = NpuOpRunner("Mul", {y_grad_w, *dout}, {*dy}, {});
      y_grad_runner.Run(stream);
    }
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    elementwise_div,
    ops::ElementwiseDivNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ElementwiseDivNPUKernel<paddle::platform::NPUDeviceContext,
                                 paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    elementwise_div_grad,
    ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext,
                                     paddle::platform::float16>);
#endif