lstm_cpu_kernel.h 10.6 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <type_traits>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
D
dangqingqing 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {
namespace detail {

#ifndef __NVCC__

template <class T, class Op>
28
void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
D
dangqingqing 已提交
29
                                     int frame_size, ActivationType active_node,
30 31
                                     ActivationType active_gate,
                                     ActivationType active_state) {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_state;
  T r_prev_state = 0;
  T r_state_atv;
  T r_out;

  T *value_in = value.gate_value;
  T *value_ig = value.gate_value + frame_size;
  T *value_fg = value.gate_value + frame_size * 2;
  T *value_og = value.gate_value + frame_size * 3;

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;

    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
60 61
    }

62 63 64 65 66 67 68 69 70 71 72
    op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_prev_state, r_state,
       r_state_atv, r_out, r_checkI, r_checkF, r_checkO, active_node,
       active_gate, active_state);

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
    value.state_value[i] = r_state;
    value.state_active_value[i] = r_state_atv;
    value.output_value[i] = r_out;
D
dangqingqing 已提交
73 74 75 76
  }
}

template <class T, class Op>
77
void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
78
                                      LstmMetaGrad<T> grad, int frame_size,
79 80 81
                                      ActivationType active_node,
                                      ActivationType active_gate,
                                      ActivationType active_state) {
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_grad_in;
  T r_grad_ig;
  T r_grad_fg;
  T r_grad_og;
  T r_prev_state = 0;
  T r_prev_state_grad;
  T r_state;
  T r_state_grad;
  T r_state_atv;
  T r_output_grad;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_checkIGrad;
  T r_checkFGrad;
  T r_checkOGrad;

  T *value_in = value.gate_value;
  T *value_ig = value.gate_value + frame_size;
  T *value_fg = value.gate_value + frame_size * 2;
  T *value_og = value.gate_value + frame_size * 3;
  T *grad_in = grad.gate_grad;
  T *grad_ig = grad.gate_grad + frame_size;
  T *grad_fg = grad.gate_grad + frame_size * 2;
  T *grad_og = grad.gate_grad + frame_size * 3;

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;
    r_state = value.state_value[i];
    r_state_atv = value.state_active_value[i];
    r_output_grad = grad.output_grad[i];
    r_state_grad = grad.state_grad[i];
    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
126 127
    }

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_grad_in, r_grad_ig,
       r_grad_fg, r_grad_og, r_prev_state, r_prev_state_grad, r_state,
       r_state_grad, r_state_atv, r_output_grad, r_checkI, r_checkF, r_checkO,
       r_checkIGrad, r_checkFGrad, r_checkOGrad, active_node, active_gate,
       active_state);

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
    grad.state_grad[i] = r_state_grad;

    if (grad.prev_state_grad) grad.prev_state_grad[i] = r_prev_state_grad;
    if (value.prev_state_value) {
      if (grad.check_ig_grad) grad.check_ig_grad[i] += r_checkIGrad;
      if (grad.check_fg_grad) grad.check_fg_grad[i] += r_checkFGrad;
D
dangqingqing 已提交
144
    }
145
    if (grad.check_og_grad) grad.check_og_grad[i] += r_checkOGrad;
D
dangqingqing 已提交
146 147 148
  }
}

149
template <class T, class Op>
150
void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
D
dangqingqing 已提交
151
                                   int frame_size, ActivationType active_node,
152 153
                                   ActivationType active_gate,
                                   ActivationType active_state) {
D
dangqingqing 已提交
154
#ifdef __AVX__
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_state;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_state_atv;
  __m256 r_out;

  __m256 *value_in = (__m256 *)value.gate_value;
  __m256 *value_ig = (__m256 *)(value.gate_value + frame_size);
  __m256 *value_fg = (__m256 *)(value.gate_value + frame_size * 2);
  __m256 *value_og = (__m256 *)(value.gate_value + frame_size * 3);

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
      r_checkI = ((__m256 *)value.check_ig)[i];
      r_checkF = ((__m256 *)value.check_fg)[i];
      r_checkO = ((__m256 *)value.check_og)[i];
D
dangqingqing 已提交
181
    }
D
dangqingqing 已提交
182

183 184
    if (value.prev_state_value) {
      r_prev_state = ((__m256 *)value.prev_state_value)[i];
D
dangqingqing 已提交
185 186
    }

187 188 189 190 191 192 193 194 195 196 197
    op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_prev_state, r_state,
       r_state_atv, r_out, r_checkI, r_checkF, r_checkO, active_node,
       active_gate, active_state);

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
    ((__m256 *)value.state_value)[i] = r_state;
    ((__m256 *)value.state_active_value)[i] = r_state_atv;
    ((__m256 *)value.output_value)[i] = r_out;
D
dangqingqing 已提交
198 199 200 201
  }
#endif
}

202 203
template <class T, class Op>
void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
204
                                    LstmMetaGrad<T> grad, int frame_size,
205 206 207
                                    ActivationType active_node,
                                    ActivationType active_gate,
                                    ActivationType active_state) {
D
dangqingqing 已提交
208
#ifdef __AVX__
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_grad_in;
  __m256 r_grad_ig;
  __m256 r_grad_fg;
  __m256 r_grad_og;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_prev_state_grad;
  __m256 r_state_grad;
  __m256 r_state;
  __m256 r_state_atv;
  __m256 r_output_grad;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_checkIGrad;
  __m256 r_checkFGrad;
  __m256 r_checkOGrad;

  __m256 *value_in = (__m256 *)value.gate_value;
  __m256 *value_ig = (__m256 *)(value.gate_value + frame_size);
  __m256 *value_fg = (__m256 *)(value.gate_value + frame_size * 2);
  __m256 *value_og = (__m256 *)(value.gate_value + frame_size * 3);
  __m256 *grad_in = (__m256 *)grad.gate_grad;
  __m256 *grad_ig = (__m256 *)(grad.gate_grad + frame_size);
  __m256 *grad_fg = (__m256 *)(grad.gate_grad + frame_size * 2);
  __m256 *grad_og = (__m256 *)(grad.gate_grad + frame_size * 3);

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
      r_checkI = ((__m256 *)value.check_ig)[i];
      r_checkF = ((__m256 *)value.check_fg)[i];
      r_checkO = ((__m256 *)value.check_og)[i];
D
dangqingqing 已提交
248
    }
249 250 251 252 253 254
    r_state = ((__m256 *)value.state_value)[i];
    r_state_atv = ((__m256 *)value.state_active_value)[i];
    r_output_grad = ((__m256 *)grad.output_grad)[i];
    r_state_grad = ((__m256 *)grad.state_grad)[i];
    if (value.prev_state_value) {
      r_prev_state = ((__m256 *)value.prev_state_value)[i];
D
dangqingqing 已提交
255 256
    }

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_grad_in, r_grad_ig,
       r_grad_fg, r_grad_og, r_prev_state, r_prev_state_grad, r_state,
       r_state_grad, r_state_atv, r_output_grad, r_checkI, r_checkF, r_checkO,
       r_checkIGrad, r_checkFGrad, r_checkOGrad, active_node, active_gate,
       active_state);

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
    ((__m256 *)grad.state_grad)[i] = r_state_grad;

    if (grad.prev_state_grad)
      ((__m256 *)grad.prev_state_grad)[i] = r_prev_state_grad;
    if (value.prev_state_value) {
      if (grad.check_ig_grad) ((__m256 *)grad.check_ig_grad)[i] += r_checkIGrad;
      if (grad.check_fg_grad) ((__m256 *)grad.check_fg_grad)[i] += r_checkFGrad;
D
dangqingqing 已提交
274
    }
275
    if (grad.check_og_grad) ((__m256 *)grad.check_og_grad)[i] += r_checkOGrad;
D
dangqingqing 已提交
276 277 278 279 280
  }
#endif
}

template <class T, class Op>
281
void cpu_lstm_forward(Op op, LstmMetaValue<T> value, int frame_size,
D
dangqingqing 已提交
282
                      ActivationType active_node, ActivationType active_gate,
283
                      ActivationType active_state) {
284 285
  if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
    avx_lstm_forward_one_sequence<T>(op, value, frame_size, active_node,
286
                                     active_gate, active_state);
D
dangqingqing 已提交
287
  } else {
288
    naive_lstm_forward_one_sequence<T>(op, value, frame_size, active_node,
289
                                       active_gate, active_state);
D
dangqingqing 已提交
290 291 292 293
  }
}

template <class T, class Op>
294
void cpu_lstm_backward(Op op, LstmMetaValue<T> value, LstmMetaGrad<T> grad,
295 296 297
                       int frame_size, ActivationType active_node,
                       ActivationType active_gate,
                       ActivationType active_state) {
298 299
  if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
    avx_lstm_backward_one_sequence<T>(op, value, grad, frame_size, active_node,
300
                                      active_gate, active_state);
D
dangqingqing 已提交
301
  } else {
302 303
    naive_lstm_backward_one_sequence<T>(op, value, grad, frame_size,
                                        active_node, active_gate, active_state);
D
dangqingqing 已提交
304 305 306 307 308 309 310 311 312
  }
}

#endif

}  // namespace detail
}  // namespace math
}  // namespace operators
}  // namespace paddle