node.py 9.4 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import ps_pb2 as pslib


class Server(object):
    """
        A Server basic class.
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
45 46 47 48 49 50 51
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64

    def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
                         slot_value_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
65 66 67 68 69 70 71
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
D
dongdaxiang 已提交
72
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
73 74 75
        table.table_id = table_id
        table.table_class = "DownpourSparseTable"
        table.type = pslib.PS_SPARSE_TABLE
76
        table.compress_in_save = True
D
dongdaxiang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        table.accessor.accessor_class = "DownpourFeatureValueAccessor"
        table.accessor.sparse_sgd_param.learning_rate = learning_rate
        table.accessor.sparse_sgd_param.initial_g2sum = 3
        table.accessor.sparse_sgd_param.initial_range = 1e-4
        table.accessor.sparse_sgd_param.weight_bounds.extend([-10, 10])

        table.accessor.embedx_dim = 8
        table.accessor.embedx_threshold = 5
        table.accessor.fea_dim = 11
        table.accessor.downpour_accessor_param.nonclk_coeff = 0.1
        table.accessor.downpour_accessor_param.click_coeff = 2
        table.accessor.downpour_accessor_param.base_threshold = 0.2
        table.accessor.downpour_accessor_param.delta_threshold = 0.15
        table.accessor.downpour_accessor_param.delta_keep_days = 31
        table.accessor.downpour_accessor_param.show_click_decay_rate = 0.999
        table.accessor.downpour_accessor_param.delete_threshold = 0.8

    def add_dense_table(self, table_id, learning_rate, param_var, grad_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
105 106 107 108 109 110 111 112 113 114 115 116 117
        fea_dim = 0
        for param in filter(lambda x: x.name.find("embedding") == -1,
                            param_var):
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
T
tangwei12 已提交
118
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
119 120 121
        table.table_id = table_id
        table.table_class = "DownpourDenseTable"
        table.type = pslib.PS_DENSE_TABLE
122
        table.compress_in_save = True
D
dongdaxiang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        table.accessor.accessor_class = "DownpourDenseValueAccessor"
        table.accessor.dense_sgd_param.name = "adam"
        table.accessor.dense_sgd_param.adam.learning_rate = learning_rate
        table.accessor.dense_sgd_param.adam.avg_decay_rate = 0.999993
        table.accessor.dense_sgd_param.adam.ada_decay_rate = 0.9999
        table.accessor.dense_sgd_param.adam.ada_epsilon = 1e-8
        table.accessor.dense_sgd_param.adam.mom_decay_rate = 0.99
        table.accessor.dense_sgd_param.naive.learning_rate = 0.0002
        table.accessor.fea_dim = fea_dim

    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
144 145 146 147 148 149 150 151 152 153 154 155 156
        fea_dim = 0
        for param in filter(lambda x: x.name.find("embedding") == -1,
                            param_var):
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
D
dongdaxiang 已提交
157
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
158 159 160
        table.table_id = table_id
        table.table_class = "DownpourDenseTable"
        table.type = pslib.PS_DENSE_TABLE
161
        table.compress_in_save = True
D
dongdaxiang 已提交
162 163 164 165 166 167 168 169 170
        table.accessor.accessor_class = "DownpourDenseValueAccessor"
        table.accessor.dense_sgd_param.name = "summary"
        table.accessor.dense_sgd_param.summary.summary_decay_rate = 0.999999
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
171
        return self._server
D
dongdaxiang 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
186
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199

    def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
                         slot_value_vars):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
200 201 202
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
                return
T
tangwei12 已提交
203
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        table.table_id = table_id
        table.slot_key.extend([var.name for var in slot_key_vars])
        table.slot_value.extend([var.name for var in slot_value_vars])
        table.slot_gradient.extend(
            [var.name + "@GRAD" for var in slot_value_vars])

    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
221 222 223
        for table in self._worker.dense_table:
            if table.table_id == table_id:
                return
D
dongdaxiang 已提交
224
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
225 226 227 228 229 230 231 232 233 234 235 236
        table.table_id = table_id
        table.dense_variable_name.extend(
            filter(lambda x: x.find("embedding") == -1,
                   [p.name for p in param_vars]))
        table.dense_gradient_variable_name.extend(
            filter(lambda x: x.find("embedding") == -1,
                   [g.name for g in grad_vars]))

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
237
        return self._worker