test_gradient_checker.py 1.4 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9
import unittest
import numpy
from paddle.v2.framework.op import Operator
from gradient_checker import GradientChecker
from gradient_checker import get_numeric_gradient


class GetNumericGradientTest(unittest.TestCase):
    def test_add_op(self):
10
        add_op = Operator('add', X="X", Y="Y", Out="Z")
D
dangqingqing 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
        x = numpy.random.random((10, 1)).astype("float32")
        y = numpy.random.random((10, 1)).astype("float32")

        arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
        self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)

    def test_softmax_op(self):
        def stable_softmax(x):
            """Compute the softmax of vector x in a numerically stable way."""
            shiftx = x - numpy.max(x)
            exps = numpy.exp(shiftx)
            return exps / numpy.sum(exps)

        def label_softmax_grad(Y, dY):
            dX = Y * 0.0
            for i in range(Y.shape[0]):
                d = numpy.dot(Y[i, :], dY[i, :])
                dX[i, :] = Y[i, :] * (dY[i, :] - d)
            return dX

        softmax_op = Operator("softmax", X="X", Y="Y")

        X = numpy.random.random((2, 2)).astype("float32")
        Y = numpy.apply_along_axis(stable_softmax, 1, X)
        dY = numpy.ones(Y.shape)
        dX = label_softmax_grad(Y, dY)

        arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X')
        numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2)


if __name__ == '__main__':
    unittest.main()