categorical.py 12.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings

import numpy as np
19
import paddle
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
from paddle import _C_ops

from ..fluid import core
from ..fluid.data_feeder import (check_dtype, check_type,
                                 check_variable_and_dtype, convert_dtype)
from ..fluid.framework import in_dygraph_mode
from ..fluid.layers import (control_flow, elementwise_add, elementwise_div,
                            elementwise_mul, elementwise_sub, nn, ops, tensor)
from ..tensor import arange, concat, gather_nd, multinomial
from .distribution import Distribution


class Categorical(Distribution):
    r"""
    Categorical distribution is a discrete probability distribution that 
    describes the possible results of a random variable that can take on 
    one of K possible categories, with the probability of each category 
    separately specified.

    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

    Args:
        logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distribution import Categorical

            paddle.seed(100) # on CPU device
            x = paddle.rand([6])
            print(x)
            # [0.5535528  0.20714243 0.01162981
            #  0.51577556 0.36369765 0.2609165 ]

            paddle.seed(200) # on CPU device
            y = paddle.rand([6])
            print(y)
            # [0.77663314 0.90824795 0.15685187
            #  0.04279523 0.34468332 0.7955718 ]

            cat = Categorical(x)
            cat2 = Categorical(y)

            paddle.seed(1000) # on CPU device
            cat.sample([2,3])
            # [[0, 0, 5],
            #  [3, 4, 5]]

            cat.entropy()
            # [1.77528]

            cat.kl_divergence(cat2)
            # [0.071952]

            value = paddle.to_tensor([2,1,3])
            cat.probs(value)
            # [0.00608027 0.108298 0.269656]

            cat.log_prob(value)
            # [-5.10271 -2.22287 -1.31061]

    """

    def __init__(self, logits, name=None):
        """
        Args:
            logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
            name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        """
        if not in_dygraph_mode():
            check_type(logits, 'logits',
                       (np.ndarray, tensor.Variable, list, tuple),
                       'Categorical')

        self.name = name if name is not None else 'Categorical'
        self.dtype = 'float32'

        if self._validate_args(logits):
            self.logits = logits
            self.dtype = convert_dtype(logits.dtype)
        else:
            if isinstance(logits, np.ndarray) and str(
                    logits.dtype) in ['float32', 'float64']:
                self.dtype = logits.dtype
            self.logits = self._to_tensor(logits)[0]
            if self.dtype != convert_dtype(self.logits.dtype):
                self.logits = tensor.cast(self.logits, dtype=self.dtype)

    def sample(self, shape):
        """Generate samples of the specified shape.

        Args:
            shape (list): Shape of the generated samples.

        Returns:
            Tensor: A tensor with prepended dimensions shape.
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                paddle.seed(1000) # on CPU device
                cat.sample([2,3])
                # [[0, 0, 5],
                #  [3, 4, 5]]

        """
        name = self.name + '_sample'
        if not in_dygraph_mode():
            check_type(shape, 'shape', (list), 'sample')

        num_samples = np.prod(np.array(shape))

        logits_shape = list(self.logits.shape)
        if len(logits_shape) > 1:
            sample_shape = shape + logits_shape[:-1]
157 158
            logits = paddle.reshape(
                self.logits, [np.prod(logits_shape[:-1]), logits_shape[-1]])
159 160 161 162
        else:
            sample_shape = shape
            logits = self.logits

163 164 165 166 167 168 169 170 171 172
        sample_index = multinomial(
            self._logits_to_probs(logits), num_samples, True)

        # multinomial sample shape is (logits.shape[:-1], num_samples), need to
        # tanspose to (num_samples, logits.shape[:-1])
        permute = list(range(sample_index.dim()))
        permute.insert(0, permute.pop(-1))
        sample_index = sample_index.transpose(permute)

        return paddle.reshape(sample_index, sample_shape, name=name)
173 174 175 176 177 178 179 180 181

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
            other (Categorical): instance of Categorical. The data type is float32.

        Returns:
            Tensor: kl-divergence between two Categorical distributions.
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                paddle.seed(200) # on CPU device
                y = paddle.rand([6])
                print(y)
                # [0.77663314 0.90824795 0.15685187
                #  0.04279523 0.34468332 0.7955718 ]

                cat = Categorical(x)
                cat2 = Categorical(y)

                cat.kl_divergence(cat2)
                # [0.071952]

        """
        name = self.name + '_kl_divergence'
        if not in_dygraph_mode():
            check_type(other, 'other', Categorical, 'kl_divergence')

212 213 214 215
        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
        other_logits = other.logits - paddle.max(
            other.logits, axis=-1, keepdim=True)
216 217
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
218 219
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
        other_z = paddle.sum(other_e_logits, axis=-1, keepdim=True)
220
        prob = e_logits / z
221 222 223 224 225
        kl = paddle.sum(prob * (
            logits - paddle.log(z) - other_logits + paddle.log(other_z)),
                        axis=-1,
                        keepdim=True,
                        name=name)
226 227 228 229 230 231 232 233

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
            Tensor: Shannon entropy of Categorical distribution. The data type is float32.
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                cat.entropy()
                # [1.77528]

        """
        name = self.name + '_entropy'
254 255
        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
256
        e_logits = ops.exp(logits)
257
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
258 259
        prob = e_logits / z

260 261
        neg_entropy = paddle.sum(prob * (logits - paddle.log(z)), axis=-1)
        entropy = paddle.scale(neg_entropy, scale=-1.0, name=name)
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        return entropy

    def probs(self, value):
        """Probabilities of the given category (``value``).

        If ``logits`` is 2-D or higher dimension, the last dimension will be regarded as 
        category, and the others represents the different distributions.
        At the same time, if ``vlaue`` is 1-D Tensor, ``value`` will be broadcast to the 
        same number of distributions as ``logits``.
        If ``value`` is not 1-D Tensor, ``value`` should have the same number distributions
        with ``logits. That is, ``value[:-1] = logits[:-1]``.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: probability according to the category index.
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.probs(value)
                # [0.00608027 0.108298 0.269656]

        """
        name = self.name + '_probs'

301
        dist_sum = paddle.sum(self.logits, axis=-1, keepdim=True)
302 303 304 305 306 307
        prob = self.logits / dist_sum

        shape = list(prob.shape)
        value_shape = list(value.shape)
        if len(shape) == 1:
            num_value_in_one_dist = np.prod(value_shape)
308
            index_value = paddle.reshape(value, [num_value_in_one_dist, 1])
309 310 311 312
            index = index_value
        else:
            num_dist = np.prod(shape[:-1])
            num_value_in_one_dist = value_shape[-1]
313
            prob = paddle.reshape(prob, [num_dist, shape[-1]])
314 315 316
            if len(value_shape) == 1:
                value = nn.expand(value, [num_dist])
                value_shape = shape[:-1] + value_shape
317
            index_value = paddle.reshape(value, [num_dist, -1, 1])
318 319 320 321 322
            if shape[:-1] != value_shape[:-1]:
                raise ValueError(
                    "shape of value {} must match shape of logits {}".format(
                        str(value_shape[:-1]), str(shape[:-1])))

323
            index_prefix = paddle.unsqueeze(
324
                arange(
325
                    num_dist, dtype=index_value.dtype), axis=-1)
326
            index_prefix = nn.expand(index_prefix, [1, num_value_in_one_dist])
327
            index_prefix = paddle.unsqueeze(index_prefix, axis=-1)
328 329 330 331 332 333 334

            if index_value.dtype != index_prefix.dtype:
                tensor.cast(index_prefix, dtype=index_value.dtype)
            index = concat([index_prefix, index_value], axis=-1)

        # value is the category index to search for the corresponding probability.
        select_prob = gather_nd(prob, index)
335
        return paddle.reshape(select_prob, value_shape, name=name)
336 337 338 339 340 341 342 343 344

    def log_prob(self, value):
        """Log probabilities of the given category. Refer to ``probs`` method.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: Log probability.
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.log_prob(value)
                # [-5.10271 -2.22287 -1.31061]

        """
        name = self.name + '_log_prob'

367
        return paddle.log(self.probs(value), name=name)