interface.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17 18
from paddle.fluid import core
from .process_mesh import ProcessMesh
from .process_mesh import get_current_process_mesh
19 20
from .dist_context import get_default_distributed_context
from .dist_tensor import DistributedTensor
21 22
from .dist_op import DistributedOperatorHelper
from .utils import verify_shard_spec, convert_to_dims_mapping
23 24


25
def shard_tensor(x, process_mesh=None, shard_spec=None):
26
    """
27
    Shard a tensor on a process mesh according to the shard specification.
28 29

    Args:
30
        x (Tensor): the tensor to be sharded.
31 32
        process_mesh (ProcessMesh, optional): An instance of ProcessMesh describes a mesh
            topology of the used logical processes where the tensor is sharded. If it is None,
33
            the found current process mesh will be used. And an error will be raised if the
34 35 36
            current process mesh cannot be found. Default: None.
        shard_spec (list, optional): a list to describe the sharding mapping between `x` and `process_mesh`,
            which means the dimension `i` of `x` is split across the dimension `shard_spec[i]` of `process_mesh`,
37
            where `None` means that tensor dimension is not split. For example, given a tensor wih
38 39 40 41 42 43 44 45 46 47
            the shape [6, 12] and a process mesh with the shape [2, 3] and the dimension names ["x", "y"]:
                If `shard_spec=["x", "y"]`, each shard of the tensor will have a shape [3, 4];
                If `shard_spec=["y", "x"]`, each shard of the tensor will have a shape [2, 6];
                If `shard_spec=["x", None]`, each shard of the tensor will have a shape [3, 12];
                If `shard_spec=[None, "x"]`, each shard of the tensor will have a shape [6, 4];
                If `shard_spec=["y", None]`, each shard of the tensor will have a shape [2, 12];
                If `shard_spec=[None, "y"]`, each shard of the tensor will have a shape [6, 4];
                If `shard_spec=[None, None]`, each shard of the tensor will have a shape [6, 12];
        If the `shard_spec` is None, the tensor will be replicated across all the processes of `process_mesh`.
        In the above example, the `shard_spec=None` is same as 'shard_spec=[None, None]'. Defaults: None.
48 49

    Returns:
50
        Tensor: the tensor `x` annotated with sharding information.
51 52 53 54 55

    Examples:
        .. code-block:: python

            import paddle
56
            from paddle.distributed.fleet import auto
57

58
            mesh = auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"])
59
            x = paddle.ones([4, 6])
60 61
            shard_spec = ["x", "y"]
            auto.shard_tensor(x, mesh, shard_spec)
62 63

    """
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    if process_mesh is not None:
        assert isinstance(process_mesh, ProcessMesh), \
            "Argument process_mesh {} is not an instance of ProcessMesh".format(process_mesh)
    else:
        process_mesh = get_current_process_mesh()
        assert  process_mesh is not None, \
            "Specify the process mesh argument or use ProcessMesh context manager first."
    assert isinstance(shard_spec, list), \
        "Argument shard_spec {} is not an instance of list".format(shard_spec)
    dist_tensor = DistributedTensor(x)
    serial_tensor = dist_tensor.serial_tensor
    dist_tensor.dist_attr.process_mesh = process_mesh
    if serial_tensor.type == core.VarDesc.VarType.READER \
        or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
        or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
        tensor_shape = []
    else:
        tensor_shape = serial_tensor.shape
    if shard_spec is not None:
        assert verify_shard_spec(shard_spec, tensor_shape, process_mesh), \
            "For tensor {}, shard_spec {} is invalid with tensor_shape {} and process_mesh {}.".format(
                serial_tensor.name, shard_spec, tensor_shape, process_mesh)
        dist_tensor.dist_attr.dims_mapping = convert_to_dims_mapping(
            shard_spec, process_mesh)
    if process_mesh is not None:
        dist_tensor.dist_attr.mark_annotated("process_mesh")
    if shard_spec is not None:
        dist_tensor.dist_attr.mark_annotated("dims_mapping")
93 94
    default_dist_ctx = get_default_distributed_context()
    default_dist_ctx.add_dist_tensor_for_program(dist_tensor)
95
    dist_tensor = default_dist_ctx.get_dist_tensor_for_program(x)
96 97 98
    return x


99
def shard_op(op, process_mesh=None, in_shard_specs=None, out_shard_specs=None):
100
    """
101
    Shard an operation on a process mesh according to its input and output shard specification.
102 103

    Args:
104 105 106 107 108 109 110 111 112
        op (Callable): a callable operator or module to be sharded.
        process_mesh (ProcessMesh, optional): An instance of ProcessMesh describes a mesh
            topology of the used logical processes where the op is sharded. All of its inputs and
            outputs are sharded by this process mesh. If it is None, the found current process mesh
            will be used. And an error will be raised if the current process mesh cannot be found.
            Default: None.
        in_shard_specs (list of list, optional): a list of list to describe the sharding specifications
            for the inputs. Each item of `in_shard_specs` is a `shard_spec` between the correspoinding input
            and `process_mesh`. If one item is None, the cooresponding input is replicated across all processes
113
            If it is None, all inputs are replicated accross all processes. Note that the lenght of the
114 115 116 117 118
            `in_shard_specs` should be equal to the actual number of inputs when calling this operation.
            Default: None.
        out_shard_specs (list of list, optional): a list of list to describe the sharding specifications
            for the outputs. Each item of `out_shard_specs` is a `shard_spec` between the correspoinding output
            and `process_mesh`. If one item is None, the cooresponding output is replicated across all processes
119
            If it is None, all outputs are replicated accross all processes. Note that the lenght of the
120 121
            `in_shard_specs` should be equal to the actual number of inputs when calling this operation.
            Default: None. Default: None.
122 123

    Returns:
124
        Outputs of `op`, each of which is annotated with sharding information.
125 126 127 128 129

    Examples:
        .. code-block:: python

            import paddle
130
            from paddle.distributed.fleet import auto
131

132 133
            x = paddle.ones([4, 6])
            y = paddle.zeros([4, 6])
134 135 136 137
            mesh = auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"])
            dist_add = auto.shard_op(paddle.add,
                                     in_shard_specs=[["x", "y"], ["y", None]],
                                     out_shard_specs=[[None, "x"]])
138
            dist_add(x, y)
139 140

    """
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

    if process_mesh is not None:
        assert isinstance(process_mesh, ProcessMesh), \
            "Argument process_mesh {} is not an instance of ProcessMesh".format(process_mesh)
    else:
        process_mesh = get_current_process_mesh()
        assert  process_mesh is not None, \
            "Specify the process mesh argument or use ProcessMesh context manager first."
    in_dims_mappings = []
    if in_shard_specs is not None:
        assert all((isinstance(shard_spec, list) or shard_spec is None) for shard_spec in in_shard_specs), \
            "in_shard_spec {} is not a list of list or None".format(in_shard_specs)
        for shard_spec in in_shard_specs:
            if shard_spec is not None:
                in_dims_mappings.append(
                    convert_to_dims_mapping(shard_spec, process_mesh))
            else:
                in_dims_mappings.append(None)
    out_dims_mappings = []
    if out_shard_specs is not None:
        assert all((isinstance(shard_spec, list) or shard_spec is None) for shard_spec in out_shard_specs), \
            "out_shard_spec {} is not a list of list or None".format(out_shard_specs)
        for shard_spec in out_shard_specs:
            if shard_spec is not None:
                out_dims_mappings.append(
                    convert_to_dims_mapping(shard_spec, process_mesh))
            else:
                out_dims_mappings.append(None)
    op = DistributedOperatorHelper(op, process_mesh, in_dims_mappings,
                                   out_dims_mappings)
    return op


def recompute(op):

    class RecomputeOperator:

        def __init__(self, op):
            self._op = op

        def __call__(self, *args, **kwargs):
            default_prog = paddle.fluid.default_main_program()
            cur_block = default_prog.current_block()
            op_size = len(cur_block.ops)
            output = self._op(*args, **kwargs)
            new_op_size = len(cur_block.ops)

            for idx in range(op_size, new_op_size):
                op = cur_block.ops[idx]
                op._set_attr("is_recompute@auto_parallel", True)

            return output

    return RecomputeOperator(op)


197 198 199 200 201
_g_collections = {}


class CollectionNames(object):
    FETCHES = "fetches"
202
    LOGGING = "logging"
203 204 205 206 207 208 209 210 211 212 213 214 215


def get_collection(name):
    collection = _g_collections.get(name, None)
    if collection is None:
        collection = []
        _g_collections[name] = collection
    return _g_collections[name]


def add_to_collection(collection_name, value, value_name=None):
    if collection_name not in _g_collections:
        _g_collections[collection_name] = []
216 217
    if value_name is not None:
        _g_collections[collection_name].append((value_name, value))
218
    else:
219
        _g_collections[collection_name].append((None, value))
220 221


222
def fetch(tensor, name=None, logging=False):
223
    add_to_collection(CollectionNames.FETCHES, tensor, name)
224 225
    if logging:
        add_to_collection(CollectionNames.LOGGING, tensor, name)