pad_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pad_op.h"
S
sneaxiy 已提交
16
#include <memory>
W
wanghaoshuang 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
28 29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Pad");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Pad");
Q
Qiao Longfei 已提交
30 31

    auto x_dim = ctx->GetInputDim("X");
S
sneaxiy 已提交
32
    auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
33 34 35 36 37 38 39
    PADDLE_ENFORCE_EQ(
        static_cast<int>(paddings.size()), x_dim.size() * 2,
        platform::errors::InvalidArgument(
            "Size of 'paddings' dimension should be equal to 2 * size of "
            "Input(X)'s dimension, but received (size of 'paddings' dimension "
            "is) %d vs (2 * size of Input(X)'s dimension is) %d.",
            static_cast<int>(paddings.size()), x_dim.size() * 2));
S
SunGaofeng 已提交
40
    for (size_t i = 0; i < paddings.size(); ++i) {
41 42 43 44 45
      PADDLE_ENFORCE_GE(paddings[i], 0,
                        platform::errors::InvalidArgument(
                            "The element of 'paddings' should >= 0, but "
                            "received %d for index %d.",
                            paddings[i], static_cast<int>(i)));
S
SunGaofeng 已提交
46
    }
W
wanghaoshuang 已提交
47
    std::vector<int64_t> out_dims(x_dim.size());
W
wanghaoshuang 已提交
48
    for (int i = 0; i < x_dim.size(); ++i) {
49 50 51 52 53
      if ((!ctx->IsRuntime()) && (x_dim[i] == -1)) {
        out_dims[i] = -1;
      } else {
        out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
      }
W
wanghaoshuang 已提交
54
    }
Q
Qiao Longfei 已提交
55
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
D
Fix bug  
dangqingqing 已提交
56 57 58
    if (out_dims[0] == x_dim[0]) {
      // Only pass LoD when the first dimension is equal between
      // output and input.
Q
Qiao Longfei 已提交
59
      ctx->ShareLoD("X", /*->*/ "Out");
D
Fix bug  
dangqingqing 已提交
60
    }
W
wanghaoshuang 已提交
61 62 63
  }
};

W
wanghaoshuang 已提交
64
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
65
 public:
Y
Yu Yang 已提交
66
  void Make() override {
W
wanghaoshuang 已提交
67 68 69 70
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
K
kexinzhao 已提交
71
              "The output of pad op. "
72
              "A tensor with the same shape as X.");
K
kexinzhao 已提交
73 74 75 76 77 78 79 80 81 82 83 84
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules for each dimension. "
        "For 2-D image tensor, paddings=[0, 1, 2, 3] means "
        "padding 0 row to top, 1 row to bottom, 2 columns to left "
        "and 3 columns to right. Size of paddings should be equal to "
        "2 * dimension size of the input tensor.");
    AddAttr<float>("pad_value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas.")
        .SetDefault(0.0f);
W
wanghaoshuang 已提交
85
    AddComment(R"DOC(
K
kexinzhao 已提交
86 87 88 89
Pad Operator.

Pad input into output, as specified by paddings and pad_value. 
The input should be a k-D tensor(k > 0 and k < 7). As an example:
W
wanghaoshuang 已提交
90 91 92 93

Given:

X = [[1, 2],
K
kexinzhao 已提交
94
     [3, 4]],
W
wanghaoshuang 已提交
95

K
kexinzhao 已提交
96
paddings = [0, 1, 1, 2],
W
wanghaoshuang 已提交
97 98 99

and

K
kexinzhao 已提交
100
pad_value = 0,
Q
Qiao Longfei 已提交
101

K
kexinzhao 已提交
102
we have:
W
wanghaoshuang 已提交
103 104 105 106

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
K
kexinzhao 已提交
107

W
wanghaoshuang 已提交
108 109 110 111 112 113 114 115
)DOC");
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

116
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
117 118
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
S
sneaxiy 已提交
119 120 121
      auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
      auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
      for (int i = 0; i < dout_dims.size(); ++i) {
122 123 124
        if (ctx->IsRuntime() || (dout_dims[i] != -1)) {
          dout_dims[i] -= (paddings[i * 2] + paddings[i * 2 + 1]);
        }
S
sneaxiy 已提交
125 126
      }
      ctx->SetOutputDim(x_grad_name, dout_dims);
W
wanghaoshuang 已提交
127
    }
W
wanghaoshuang 已提交
128 129 130
  }
};

H
hong 已提交
131 132
template <typename T>
class PadOpGradMaker : public framework::SingleGradOpMaker<T> {
133
 public:
H
hong 已提交
134
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
135 136

 protected:
137
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
138 139 140
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    bind->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
141
    bind->SetType("pad_grad");
Y
Yu Yang 已提交
142
  }
143 144
};

C
ceci3 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename T>
class PadOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("pad");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

W
wanghaoshuang 已提交
158 159 160 161
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
162

H
hong 已提交
163 164 165
REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker,
                  ops::PadOpGradMaker<paddle::framework::OpDesc>,
                  ops::PadOpGradMaker<paddle::imperative::OpBase>);
C
ceci3 已提交
166 167 168
REGISTER_OPERATOR(pad_grad, ops::PadOpGrad,
                  ops::PadOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::PadOpDoubleGradMaker<paddle::imperative::OpBase>);
Q
QI JUN 已提交
169
REGISTER_OP_CPU_KERNEL(
170 171 172 173
    pad, ops::PadKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PadKernel<paddle::platform::CPUDeviceContext, double>,
    ops::PadKernel<paddle::platform::CPUDeviceContext, int>,
    ops::PadKernel<paddle::platform::CPUDeviceContext, int64_t>);
Q
QI JUN 已提交
174
REGISTER_OP_CPU_KERNEL(
175 176
    pad_grad, ops::PadGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PadGradKernel<paddle::platform::CPUDeviceContext, double>);
177 178 179 180 181 182 183 184 185 186 187 188 189

REGISTER_OP_CUDA_KERNEL(
    pad, ops::PadKernel<paddle::platform::CUDADeviceContext, double>,
    ops::PadKernel<paddle::platform::CUDADeviceContext, float>,
    ops::PadKernel<paddle::platform::CUDADeviceContext, int>,
    ops::PadKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::PadKernel<paddle::platform::CUDADeviceContext,
                   paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
    pad_grad, ops::PadGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::PadGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::PadGradKernel<paddle::platform::CUDADeviceContext,
                       paddle::platform::float16>);