base.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import contextlib
16 17 18
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
M
minqiyang 已提交
19
from .tracer import Tracer
Z
Zeng Jinle 已提交
20
import logging
J
Jiabin Yang 已提交
21
import objgraph
22

23 24 25 26 27
__all__ = [
    'no_grad',
    'guard',
    'to_variable',
]
28 29


30 31 32 33 34 35 36 37 38 39 40
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
    yield
    if tracer:
        tracer._enable_program_desc_tracing = original_val


L
lujun 已提交
41
# This function should be removed in V1.6, because it can easily lead to cyclic dependencies.
42
def enabled():
L
lujun 已提交
43
    # Internal use only
L
lujun 已提交
44
    return framework.in_dygraph_mode()
45 46


47 48 49 50 51 52 53 54 55 56 57 58 59
@contextlib.contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
        mode = tracer._train_mode
        tracer._train_mode = is_train
        yield
        tracer._train_mode = mode
    else:
        yield


def _no_grad_(func):
60 61 62
    """
    This Decorator will avoid the func being decorated creating backward network in dygraph mode

63 64
    Parameter:
        - **func** (python func): the func don't need grad
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 32, 32], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                fc1 = fluid.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
                fc2 = fluid.FC('fc2', size=4)
                ret = fc1(t)
                dy_ret = fc2(ret)

        test_layer()

    """

87 88 89 90 91 92 93 94
    def __impl__(*args, **kwargs):
        with _switch_tracer_mode_guard_(is_train=False):
            return func(*args, **kwargs)

    return __impl__


no_grad = wrap_decorator(_no_grad_)
L
lujun 已提交
95 96
# for fluidDoc
no_grad.__doc__ = _no_grad_.__doc__
97 98


S
rename  
sneaxiy 已提交
99
@signature_safe_contextmanager
P
Paddle CI 已提交
100
def guard(place=None):
101
    """
102
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
103

104 105 106
    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation. Default: None
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
            inp = np.ones([3, 32, 32], dtype='float32')
            t = fluid.dygraph.base.to_variable(inp)
            fc1 = fluid.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
            fc2 = fluid.FC('fc2', size=4)
            ret = fc1(t)
            dy_ret = fc2(ret)

    """
127 128
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
129
    tracer = Tracer()
130
    core._switch_tracer(tracer)
M
minqiyang 已提交
131

P
Paddle CI 已提交
132
    if place is None:
M
minqiyang 已提交
133
        if core.is_compiled_with_cuda():
P
Paddle CI 已提交
134
            place = core.CUDAPlace(0)
M
minqiyang 已提交
135 136
        else:
            place = core.CPUPlace()
137
    tracer._expected_place = place
M
minqiyang 已提交
138

139 140
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
141 142
            with framework._dygraph_guard(tracer):
                with framework._dygraph_place_guard(place):
P
Paddle CI 已提交
143
                    yield
144 145


J
Jiabin Yang 已提交
146
def _print_debug_msg(limit=5, is_test=False):
Z
Zeng Jinle 已提交
147 148 149 150 151 152 153 154
    if not core._is_dygraph_debug_enabled():
        logging.warn(
            'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
        )
        return
    unique_name_size = len(framework.unique_name.generator.ids)
    tracer_var_size = len(framework._dygraph_tracer()._vars)
    alive_cpp_var_size = len(core.VarBase._alive_vars())
J
Jiabin Yang 已提交
155 156 157 158 159 160 161
    if not is_test:
        logging.warn(
            'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
            .format(unique_name_size, tracer_var_size, alive_cpp_var_size))
        objgraph.show_growth(limit=limit)
    else:
        return unique_name_size, tracer_var_size, alive_cpp_var_size
Z
Zeng Jinle 已提交
162 163


164
@framework.dygraph_only
165
def to_variable(value, block=None, name=None):
166
    """
167
    The API will create a ``Variable`` object from numpy\.ndarray or Variable object.
168

169 170 171 172
    Parameters:
        value(ndarray): The numpy\.ndarray object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
        block(fluid.Block, optional): Which block this variable will be in. Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
173

174 175
    Returns:
        Variable: ``Tensor`` created from the specified numpy\.ndarray object, data type and shape is the same as ``value`` .
176 177 178 179 180 181 182 183 184 185 186 187 188

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            y = fluid.dygraph.to_variable(x)

    """
189
    if isinstance(value, np.ndarray):
L
lujun 已提交
190 191
        assert framework.in_dygraph_mode(
        ), "to_variable could only be called in dygraph mode"
192

193 194 195 196 197
        if not block:
            block = framework.default_main_program().current_block()
        py_var = framework.Variable(
            block,
            type=core.VarDesc.VarType.LOD_TENSOR,
198
            name=name,
199
            shape=value.shape,
X
Xin Pan 已提交
200 201
            dtype=value.dtype,
            stop_gradient=True)
M
minqiyang 已提交
202
        var = py_var._ivar.value()
203
        tensor = var.get_tensor()
M
minqiyang 已提交
204
        tensor.set(value, framework._current_expected_place())
205 206 207
        return py_var
    elif isinstance(value, framework.Variable):
        return value
208 209 210
    else:
        raise TypeError(
            "to_variable only accepts 'ndarray' and 'Variable' as value's input")