fsl_enet.c 106.7 KB
Newer Older
T
tanek liang 已提交
1
/*
2
 * The Clear BSD License
T
tanek liang 已提交
3 4
 * Copyright (c) 2015 - 2016, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
5 6
 * All rights reserved.
 * 
T
tanek liang 已提交
7
 * Redistribution and use in source and binary forms, with or without modification,
8 9
 * are permitted (subject to the limitations in the disclaimer below) provided
 *  that the following conditions are met:
T
tanek liang 已提交
10 11 12 13 14 15 16 17 18 19 20 21
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
22
 * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
T
tanek liang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_enet.h"
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
#include "fsl_cache.h"
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */

/*******************************************************************************
 * Definitions
 ******************************************************************************/
43 44 45 46 47 48

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.enet"
#endif

T
tanek liang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/*! @brief IPv4 PTP message IP version offset. */
#define ENET_PTP1588_IPVERSION_OFFSET 0x0EU
/*! @brief IPv4 PTP message UDP protocol offset. */
#define ENET_PTP1588_IPV4_UDP_PROTOCOL_OFFSET 0x17U
/*! @brief IPv4 PTP message UDP port offset. */
#define ENET_PTP1588_IPV4_UDP_PORT_OFFSET 0x24U
/*! @brief IPv4 PTP message UDP message type offset. */
#define ENET_PTP1588_IPV4_UDP_MSGTYPE_OFFSET 0x2AU
/*! @brief IPv4 PTP message UDP version offset. */
#define ENET_PTP1588_IPV4_UDP_VERSION_OFFSET 0x2BU
/*! @brief IPv4 PTP message UDP clock id offset. */
#define ENET_PTP1588_IPV4_UDP_CLKID_OFFSET 0x3EU
/*! @brief IPv4 PTP message UDP sequence id offset. */
#define ENET_PTP1588_IPV4_UDP_SEQUENCEID_OFFSET 0x48U
/*! @brief IPv4 PTP message UDP control offset. */
#define ENET_PTP1588_IPV4_UDP_CTL_OFFSET 0x4AU
/*! @brief IPv6 PTP message UDP protocol offset. */
#define ENET_PTP1588_IPV6_UDP_PROTOCOL_OFFSET 0x14U
/*! @brief IPv6 PTP message UDP port offset. */
#define ENET_PTP1588_IPV6_UDP_PORT_OFFSET 0x38U
/*! @brief IPv6 PTP message UDP message type offset. */
#define ENET_PTP1588_IPV6_UDP_MSGTYPE_OFFSET 0x3EU
/*! @brief IPv6 PTP message UDP version offset. */
#define ENET_PTP1588_IPV6_UDP_VERSION_OFFSET 0x3FU
/*! @brief IPv6 PTP message UDP clock id offset. */
#define ENET_PTP1588_IPV6_UDP_CLKID_OFFSET 0x52U
/*! @brief IPv6 PTP message UDP sequence id offset. */
#define ENET_PTP1588_IPV6_UDP_SEQUENCEID_OFFSET 0x5CU
/*! @brief IPv6 PTP message UDP control offset. */
#define ENET_PTP1588_IPV6_UDP_CTL_OFFSET 0x5EU
/*! @brief PTPv2 message Ethernet packet type offset. */
#define ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET 0x0CU
/*! @brief PTPv2 message Ethernet message type offset. */
#define ENET_PTP1588_ETHL2_MSGTYPE_OFFSET 0x0EU
/*! @brief PTPv2 message Ethernet version type offset. */
#define ENET_PTP1588_ETHL2_VERSION_OFFSET 0X0FU
/*! @brief PTPv2 message Ethernet clock id offset. */
#define ENET_PTP1588_ETHL2_CLOCKID_OFFSET 0x22
/*! @brief PTPv2 message Ethernet sequence id offset. */
#define ENET_PTP1588_ETHL2_SEQUENCEID_OFFSET 0x2c
/*! @brief Packet type Ethernet IEEE802.3 for PTPv2. */
#define ENET_ETHERNETL2 0x88F7U
/*! @brief Packet type IPv4. */
#define ENET_IPV4 0x0800U
/*! @brief Packet type IPv6. */
#define ENET_IPV6 0x86ddU
/*! @brief Packet type VLAN. */
#define ENET_8021QVLAN 0x8100U
/*! @brief UDP protocol type. */
#define ENET_UDPVERSION 0x0011U
/*! @brief Packet IP version IPv4. */
#define ENET_IPV4VERSION 0x0004U
/*! @brief Packet IP version IPv6. */
#define ENET_IPV6VERSION 0x0006U
/*! @brief Ethernet mac address length. */
#define ENET_FRAME_MACLEN 6U
/*! @brief Ethernet VLAN header length. */
#define ENET_FRAME_VLAN_TAGLEN 4U
/*! @brief MDC frequency. */
#define ENET_MDC_FREQUENCY 2500000U
/*! @brief NanoSecond in one second. */
#define ENET_NANOSECOND_ONE_SECOND 1000000000U
/*! @brief Define a common clock cycle delays used for time stamp capture. */
112 113 114
#ifndef ENET_1588TIME_DELAY_COUNT
#define ENET_1588TIME_DELAY_COUNT 10U
#endif
T
tanek liang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

/*! @brief Defines the macro for converting constants from host byte order to network byte order. */
#define ENET_HTONS(n) __REV16(n)
#define ENET_HTONL(n) __REV(n)
#define ENET_NTOHS(n) __REV16(n)
#define ENET_NTOHL(n) __REV(n)

/*! @brief Define the ENET ring/class bumber . */
enum _enet_ring_number
{
    kENET_Ring0 = 0U, /*!< ENET ring/class 0. */
#if FSL_FEATURE_ENET_QUEUE > 1
    kENET_Ring1 = 1U, /*!< ENET ring/class 1. */
    kENET_Ring2 = 2U  /*!< ENET ring/class 2. */
#endif                /* FSL_FEATURE_ENET_QUEUE > 1 */
};

/*! @brief Define interrupt IRQ handler. */
#if FSL_FEATURE_ENET_QUEUE > 1
typedef void (*enet_isr_ring_t)(ENET_Type *base, enet_handle_t *handle, uint32_t ringId);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
typedef void (*enet_isr_t)(ENET_Type *base, enet_handle_t *handle);

/*******************************************************************************
* Prototypes
******************************************************************************/

/*!
 * @brief Get the ENET instance from peripheral base address.
 *
 * @param base ENET peripheral base address.
 * @return ENET instance.
 */
uint32_t ENET_GetInstance(ENET_Type *base);
/*!
 * @brief Set ENET MAC controller with the configuration.
 *
 * @param base ENET peripheral base address.
 * @param handle The ENET handle pointer.
 * @param config ENET Mac configuration.
 * @param bufferConfig ENET buffer configuration.
 * @param macAddr ENET six-byte mac address.
 * @param srcClock_Hz ENET module clock source, normally it's system clock.
 */
static void ENET_SetMacController(ENET_Type *base,
                                  enet_handle_t *handle,
                                  const enet_config_t *config,
                                  const enet_buffer_config_t *bufferConfig,
                                  uint8_t *macAddr,
                                  uint32_t srcClock_Hz);
/*!
 * @brief Set ENET handler.
 *
 * @param base ENET peripheral base address.
 * @param handle The ENET handle pointer.
 * @param config ENET configuration stucture pointer.
 * @param bufferConfig ENET buffer configuration.
 */
static void ENET_SetHandler(ENET_Type *base,
                            enet_handle_t *handle,
                            const enet_config_t *config,
                            const enet_buffer_config_t *bufferConfig);
/*!
 * @brief Set ENET MAC transmit buffer descriptors.
 *
 * @param handle The ENET handle pointer.
 * @param config The ENET configuration structure.
 * @param bufferConfig The ENET buffer configuration.
 */
static void ENET_SetTxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig);

/*!
 * @brief Set ENET MAC receive buffer descriptors.
 *
 * @param handle The ENET handle pointer.
 * @param config The ENET configuration structure.
 * @param bufferConfig The ENET buffer configuration.
 */
static void ENET_SetRxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig);

/*!
 * @brief Updates the ENET read buffer descriptors.
 *
 * @param base ENET peripheral base address.
 * @param handle The ENET handle pointer.
 * @param ringId The descriptor ring index, range from 0 ~ FSL_FEATURE_ENET_QUEUE - 1.
 *               0 ----- for single ring kinetis platform.
 *               0 ~ 2 for mulit-ring supported IMX8qm.
 */
static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint32_t ringId);

/*!
 * @brief Activates ENET send for multiple tx rings.
 *
 * @param base  ENET peripheral base address.
 * @param ringId The descriptor ring index, range from 0 ~ FSL_FEATURE_ENET_QUEUE - 1.
 *               0 ----- for single ring kinetis platform.
 *               0 ~ 2 for mulit-ring supported IMX8qm.
 *
 * @note This must be called after the MAC configuration and
 * state are ready. It must be called after the ENET_Init() and
 * this should be called when the ENET receive required.
 */
static void ENET_ActiveSend(ENET_Type *base, uint32_t ringId);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/*!
 * @brief Parses the ENET frame for time-stamp process of PTP 1588 frame.
 *
 * @param data  The ENET read data for frame parse.
 * @param ptpTsData The ENET PTP message and time-stamp data pointer.
 * @param isFastEnabled The fast parse flag.
 *        - true , Fast processing, only check if this is a PTP message.
 *        - false, Store the PTP message data after check the PTP message.
 */
static bool ENET_Ptp1588ParseFrame(const uint8_t *data, enet_ptp_time_data_t *ptpTsData, bool isFastEnabled);

/*!
 * @brief Updates the new PTP 1588 time-stamp to the time-stamp buffer ring.
 *
 * @param ptpTsDataRing The PTP message and time-stamp data ring pointer.
 * @param ptpTimeData   The new PTP 1588 time-stamp data pointer.
 */
static status_t ENET_Ptp1588UpdateTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimeData);

/*!
 * @brief Search up the right PTP 1588 time-stamp from the time-stamp buffer ring.
 *
 * @param ptpTsDataRing The PTP message and time-stamp data ring pointer.
 * @param ptpTimeData   The find out right PTP 1588 time-stamp data pointer with the specific PTP message.
 */
static status_t ENET_Ptp1588SearchTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimedata);

/*!
 * @brief Store the transmit time-stamp for event PTP frame in the time-stamp buffer ring.
 *
 * @param base   ENET peripheral base address.
 * @param handle The ENET handle pointer.
 * @param ringId The descriptor ring index, range from 0 ~ FSL_FEATURE_ENET_QUEUE - 1.
 *               0 ----- for single ring kinetis platform.
 *               0 ~ 2 for mulit-ring supported IMX8qm.
 */
static status_t ENET_StoreTxFrameTime(ENET_Type *base, enet_handle_t *handle, uint32_t ringId);

/*!
 * @brief Store the receive time-stamp for event PTP frame in the time-stamp buffer ring.
 *
 * @param base   ENET peripheral base address.
 * @param handle The ENET handle pointer.
 * @param ptpTimeData The PTP 1588 time-stamp data pointer.
 */
static status_t ENET_StoreRxFrameTime(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData);

#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_AVB
/*!
 * @brief Gets the ring index for transmission.
 *
 * @param base  ENET peripheral base address.
 * @param data The ENET transmit data.
 * @param handle The ENET handle pointer.
 *
 * @note This must be called after the MAC configuration and
 * state are ready. It must be called after the ENET_Init() and
 * this should be called when the ENET receive required.
 */
static uint8_t ENET_GetTxRingId(ENET_Type *base, uint8_t *data, enet_handle_t *handle);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*! @brief Pointers to enet handles for each instance. */
static enet_handle_t *s_ENETHandle[FSL_FEATURE_SOC_ENET_COUNT] = {NULL};

/*! @brief Pointers to enet clocks for each instance. */
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
const clock_ip_name_t s_enetClock[] = ENET_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointers to enet transmit IRQ number for each instance. */
static const IRQn_Type s_enetTxIrqId[] = ENET_Transmit_IRQS;
/*! @brief Pointers to enet receive IRQ number for each instance. */
static const IRQn_Type s_enetRxIrqId[] = ENET_Receive_IRQS;
#if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/*! @brief Pointers to enet timestamp IRQ number for each instance. */
static const IRQn_Type s_enetTsIrqId[] = ENET_1588_Timer_IRQS;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/*! @brief Pointers to enet error IRQ number for each instance. */
static const IRQn_Type s_enetErrIrqId[] = ENET_Error_IRQS;

/*! @brief Pointers to enet bases for each instance. */
static ENET_Type *const s_enetBases[] = ENET_BASE_PTRS;

/* ENET ISR for transactional APIs. */
#if FSL_FEATURE_ENET_QUEUE > 1
static enet_isr_ring_t s_enetTxIsr;
static enet_isr_ring_t s_enetRxIsr;
#else
static enet_isr_t s_enetTxIsr;
static enet_isr_t s_enetRxIsr;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
static enet_isr_t s_enetErrIsr;
static enet_isr_t s_enetTsIsr;
/*******************************************************************************
 * Code
 ******************************************************************************/

uint32_t ENET_GetInstance(ENET_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_enetBases); instance++)
    {
        if (s_enetBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_enetBases));

    return instance;
}

void ENET_GetDefaultConfig(enet_config_t *config)
{
    /* Checks input parameter. */
    assert(config);

    /* Initializes the MAC configure structure to zero. */
    memset(config, 0, sizeof(enet_config_t));

    /* Sets MII mode, full duplex, 100Mbps for MAC and PHY data interface. */
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB 
    config->miiMode = kENET_RgmiiMode;
#else
    config->miiMode = kENET_RmiiMode;
#endif
    config->miiSpeed = kENET_MiiSpeed100M; 
    config->miiDuplex = kENET_MiiFullDuplex;

    config->ringNum = 1;

    /* Sets the maximum receive frame length. */
    config->rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN;
}

void ENET_Init(ENET_Type *base,
               enet_handle_t *handle,
               const enet_config_t *config,
               const enet_buffer_config_t *bufferConfig,
               uint8_t *macAddr,
               uint32_t srcClock_Hz)
{
    /* Checks input parameters. */
    assert(handle);
    assert(config);
    assert(bufferConfig);
    assert(macAddr);
    assert(config->ringNum <= FSL_FEATURE_ENET_QUEUE);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    uint32_t instance = ENET_GetInstance(base);

    /* Ungate ENET clock. */
    CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
    /* Reset ENET module. */
    ENET_Reset(base);

    /* Initializes the ENET transmit buffer descriptors. */
    ENET_SetTxBufferDescriptors(handle, config, bufferConfig);

    /* Initializes the ENET receive buffer descriptors. */
    ENET_SetRxBufferDescriptors(handle, config, bufferConfig);

    /* Initializes the ENET MAC controller with basic function. */
    ENET_SetMacController(base, handle, config, bufferConfig, macAddr, srcClock_Hz);

    /* Set all buffers or data in handler for data transmit/receive process. */
    ENET_SetHandler(base, handle, config, bufferConfig);
}

void ENET_Deinit(ENET_Type *base)
{
    /* Disable interrupt. */
    base->EIMR = 0;

    /* Disable ENET. */
    base->ECR &= ~ENET_ECR_ETHEREN_MASK;


#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Disables the clock source. */
    CLOCK_DisableClock(s_enetClock[ENET_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

void ENET_SetCallback(enet_handle_t *handle, enet_callback_t callback, void *userData)
{
    assert(handle);

    /* Set callback and userData. */
    handle->callback = callback;
    handle->userData = userData;
}

static void ENET_SetHandler(ENET_Type *base,
                            enet_handle_t *handle,
                            const enet_config_t *config,
                            const enet_buffer_config_t *bufferConfig)
{
    uint8_t count;
    uint32_t instance = ENET_GetInstance(base);
    const enet_buffer_config_t *buffCfg = bufferConfig;

    /* Store transfer parameters in handle pointer. */
    memset(handle, 0, sizeof(enet_handle_t));

    handle->ringNum = (config->ringNum > FSL_FEATURE_ENET_QUEUE) ? FSL_FEATURE_ENET_QUEUE : config->ringNum;
    for (count = 0; count < handle->ringNum; count++)
    {
        assert(buffCfg->rxBuffSizeAlign * buffCfg->rxBdNumber > config->rxMaxFrameLen);

        handle->rxBdBase[count] = buffCfg->rxBdStartAddrAlign;
        handle->rxBdCurrent[count] = buffCfg->rxBdStartAddrAlign;
        handle->rxBuffSizeAlign[count] = buffCfg->rxBuffSizeAlign;
        handle->txBdBase[count] = buffCfg->txBdStartAddrAlign;
        handle->txBdCurrent[count] = buffCfg->txBdStartAddrAlign;
        handle->txBuffSizeAlign[count] = buffCfg->txBuffSizeAlign;
        buffCfg++;
    }

    /* Save the handle pointer in the global variables. */
    s_ENETHandle[instance] = handle;

    /* Set the IRQ handler when the interrupt is enabled. */
    if (config->interrupt & ENET_TX_INTERRUPT)
    {
        s_enetTxIsr = ENET_TransmitIRQHandler;
        EnableIRQ(s_enetTxIrqId[instance]);
    }
    if (config->interrupt & ENET_RX_INTERRUPT)
    {
        s_enetRxIsr = ENET_ReceiveIRQHandler;
        EnableIRQ(s_enetRxIrqId[instance]);
    }
    if (config->interrupt & ENET_ERR_INTERRUPT)
    {
        s_enetErrIsr = ENET_ErrorIRQHandler;
        EnableIRQ(s_enetErrIrqId[instance]);
    }
}

static void ENET_SetMacController(ENET_Type *base,
                                  enet_handle_t *handle,
                                  const enet_config_t *config,
                                  const enet_buffer_config_t *bufferConfig,
                                  uint8_t *macAddr,
                                  uint32_t srcClock_Hz)
{
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
    /* Check the MII mode/speed/duplex setting. */
    if (config->miiSpeed == kENET_MiiSpeed1000M)
    {
        /* Only RGMII mode has the 1000M bit/s. The 1000M only support full duplex. */
        assert(config->miiMode == kENET_RgmiiMode);
        assert(config->miiDuplex == kENET_MiiFullDuplex);
    }
#endif /* FSL_FEATURE_ENET_HAS_AVB */

    uint32_t rcr = 0;
    uint32_t tcr = 0;
    uint32_t ecr = base->ECR;
    uint32_t macSpecialConfig = config->macSpecialConfig;
    uint32_t maxFrameLen = config->rxMaxFrameLen;

    /* Maximum frame length check. */
    if ((macSpecialConfig & kENET_ControlVLANTagEnable) && (maxFrameLen <= ENET_FRAME_MAX_FRAMELEN))
    {
        maxFrameLen = (ENET_FRAME_MAX_FRAMELEN + ENET_FRAME_VLAN_TAGLEN);
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
        if (macSpecialConfig & kENET_ControlSVLANEnable)
        {
            /* Double vlan tag (SVLAN) supported. */
            maxFrameLen += ENET_FRAME_VLAN_TAGLEN;
        }
        ecr |= ((macSpecialConfig & kENET_ControlSVLANEnable) ? (ENET_ECR_SVLANEN_MASK | ENET_ECR_SVLANDBL_MASK) : 0) |
               ((macSpecialConfig & kENET_ControlVLANUseSecondTag) ? ENET_ECR_VLANUSE2ND_MASK : 0);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
    }

    /* Configures MAC receive controller with user configure structure. */
    rcr = ((macSpecialConfig & kENET_ControlRxPayloadCheckEnable) ? ENET_RCR_NLC_MASK : 0) |
          ((macSpecialConfig & kENET_ControlFlowControlEnable) ? ENET_RCR_CFEN_MASK : 0) |
          ((macSpecialConfig & kENET_ControlFlowControlEnable) ? ENET_RCR_FCE_MASK : 0) |
          ((macSpecialConfig & kENET_ControlRxPadRemoveEnable) ? ENET_RCR_PADEN_MASK : 0) |
          ((macSpecialConfig & kENET_ControlRxBroadCastRejectEnable) ? ENET_RCR_BC_REJ_MASK : 0) |
          ((macSpecialConfig & kENET_ControlPromiscuousEnable) ? ENET_RCR_PROM_MASK : 0) |
          ENET_RCR_MAX_FL(maxFrameLen) | ENET_RCR_CRCFWD_MASK;    

/* Set the RGMII or RMII, MII mode and control register. */
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
    if (config->miiMode == kENET_RgmiiMode)
    {
        rcr |= ENET_RCR_RGMII_EN_MASK;
        rcr &= ~ENET_RCR_MII_MODE_MASK;
    }
    else
    {
        rcr &= ~ENET_RCR_RGMII_EN_MASK;
#endif /* FSL_FEATURE_ENET_HAS_AVB */
        rcr |= ENET_RCR_MII_MODE_MASK;
        if (config->miiMode == kENET_RmiiMode)
        {
            rcr |= ENET_RCR_RMII_MODE_MASK;
        }
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
    }
#endif /* FSL_FEATURE_ENET_HAS_AVB */
    /* Speed. */
    if (config->miiSpeed == kENET_MiiSpeed10M)
    {
        rcr |= ENET_RCR_RMII_10T_MASK;
    }
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
    if (config->miiSpeed == kENET_MiiSpeed1000M)
    {
        ecr |= ENET_ECR_SPEED_MASK;
    }
#endif /* FSL_FEATURE_ENET_HAS_AVB */

    /* Receive setting for half duplex. */
    if (config->miiDuplex == kENET_MiiHalfDuplex)
    {
        rcr |= ENET_RCR_DRT_MASK;
    }
    /* Sets internal loop only for MII mode. */
    if ((config->macSpecialConfig & kENET_ControlMIILoopEnable) && (config->miiMode != kENET_RmiiMode))
    {
        rcr |= ENET_RCR_LOOP_MASK;
        rcr &= ~ENET_RCR_DRT_MASK;
    }
    base->RCR = rcr;

    /* Configures MAC transmit controller: duplex mode, mac address insertion. */
    tcr = base->TCR & ~(ENET_TCR_FDEN_MASK | ENET_TCR_ADDINS_MASK);
    tcr |= (config->miiDuplex ? ENET_TCR_FDEN_MASK : 0) |
           ((macSpecialConfig & kENET_ControlMacAddrInsert) ? ENET_TCR_ADDINS_MASK : 0);
    base->TCR = tcr;

    /* Configures receive and transmit accelerator. */
    base->TACC = config->txAccelerConfig;
    base->RACC = config->rxAccelerConfig;

    /* Sets the pause duration and FIFO threshold for the flow control enabled case. */
    if (macSpecialConfig & kENET_ControlFlowControlEnable)
    {
        uint32_t reemReg;
        base->OPD = config->pauseDuration;
        reemReg = ENET_RSEM_RX_SECTION_EMPTY(config->rxFifoEmptyThreshold);
#if defined(FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD) && FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD
        reemReg |= ENET_RSEM_STAT_SECTION_EMPTY(config->rxFifoStatEmptyThreshold);
#endif /* FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD */
        base->RSEM = reemReg;
    }

    /* FIFO threshold setting for store and forward enable/disable case. */
    if (macSpecialConfig & kENET_ControlStoreAndFwdDisable)
    {
        /* Transmit fifo watermark settings. */
        base->TFWR = config->txFifoWatermark & ENET_TFWR_TFWR_MASK;
        /* Receive fifo full threshold settings. */
        base->RSFL = config->rxFifoFullThreshold & ENET_RSFL_RX_SECTION_FULL_MASK;
    }
    else
    {
        /* Transmit fifo watermark settings. */
        base->TFWR = ENET_TFWR_STRFWD_MASK;
        base->RSFL = 0;
    }

    /* Enable store and forward when accelerator is enabled */
    if (config->txAccelerConfig & (kENET_TxAccelIpCheckEnabled | kENET_TxAccelProtoCheckEnabled))
    {
        base->TFWR = ENET_TFWR_STRFWD_MASK;
    }
    if (config->rxAccelerConfig & (kENET_RxAccelIpCheckEnabled | kENET_RxAccelProtoCheckEnabled))
    {
        base->RSFL = 0;
    }

    /* Initializes the ring 0. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
    base->TDSR = MEMORY_ConvertMemoryMapAddress((uint32_t)bufferConfig->txBdStartAddrAlign, kMEMORY_Local2DMA);
    base->RDSR = MEMORY_ConvertMemoryMapAddress((uint32_t)bufferConfig->rxBdStartAddrAlign, kMEMORY_Local2DMA);    
#else
    base->TDSR = (uint32_t)bufferConfig->txBdStartAddrAlign;
    base->RDSR = (uint32_t)bufferConfig->rxBdStartAddrAlign;
#endif    
    base->MRBR = bufferConfig->rxBuffSizeAlign;

#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
    const enet_buffer_config_t *buffCfg = bufferConfig;

    if (config->ringNum > 1)
    {
        /* Initializes the ring 1. */
        buffCfg++;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
        base->TDSR1 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA);
        base->RDSR1 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
        base->TDSR1 = (uint32_t)buffCfg->txBdStartAddrAlign;
        base->RDSR1 = (uint32_t)buffCfg->rxBdStartAddrAlign;     
#endif
        base->MRBR1 = buffCfg->rxBuffSizeAlign;
        /* Enable the DMAC for ring 1 and with no rx classification set. */
        base->DMACFG[0] = ENET_DMACFG_DMA_CLASS_EN_MASK;
    }
    if (config->ringNum > 2)
    {
        /* Initializes the ring 2. */
        buffCfg++;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
        base->TDSR2 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA);
        base->RDSR2 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
        base->TDSR2 = (uint32_t)buffCfg->txBdStartAddrAlign;
        base->RDSR2 = (uint32_t)buffCfg->rxBdStartAddrAlign;
#endif
        base->MRBR2 = buffCfg->rxBuffSizeAlign;
        /* Enable the DMAC for ring 2 and with no rx classification set. */
        base->DMACFG[1] = ENET_DMACFG_DMA_CLASS_EN_MASK;
    }

    /* Default the class/ring 1 and 2 are not enabled and the receive classification is disabled
     * so we set the default transmit scheme with the round-robin mode. beacuse the legacy bd mode
     * only support the round-robin mode. if the avb feature is required, just call the setup avb
     * feature API. */
    base->QOS |= ENET_QOS_TX_SCHEME(1);
#endif /*  FSL_FEATURE_ENET_HAS_AVB */

    /* Configures the Mac address. */
    ENET_SetMacAddr(base, macAddr);

    /* Initialize the SMI if uninitialized. */
    if (!ENET_GetSMI(base))
    {
        ENET_SetSMI(base, srcClock_Hz, !!(config->macSpecialConfig & kENET_ControlSMIPreambleDisable));
    }

/* Enables Ethernet interrupt, enables the interrupt coalsecing if it is required. */
#if defined(FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE) && FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE
    if (config->intCoalesceCfg)
    {
        uint32_t intMask = (ENET_EIMR_TXB_MASK | ENET_EIMR_RXB_MASK);

#if FSL_FEATURE_ENET_QUEUE > 1
        uint8_t queue = 0;
        intMask |= ENET_EIMR_TXB2_MASK | ENET_EIMR_RXB2_MASK | ENET_EIMR_TXB1_MASK | ENET_EIMR_RXB1_MASK;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */

        /* Clear all buffer interrupts. */
        base->EIMR &= ~intMask;

/* Set the interrupt coalescence. */
#if FSL_FEATURE_ENET_QUEUE > 1
        for (queue = 0; queue < FSL_FEATURE_ENET_QUEUE; queue++)
        {
            base->TXIC[queue] = ENET_TXIC_ICFT(config->intCoalesceCfg->txCoalesceFrameCount[queue]) |
                                config->intCoalesceCfg->txCoalesceTimeCount[queue] | ENET_TXIC_ICCS_MASK |
                                ENET_TXIC_ICEN_MASK;
            base->RXIC[queue] = ENET_RXIC_ICFT(config->intCoalesceCfg->rxCoalesceFrameCount[queue]) |
                                config->intCoalesceCfg->rxCoalesceTimeCount[queue] | ENET_RXIC_ICCS_MASK |
                                ENET_RXIC_ICEN_MASK;
        }
#else
        base->TXIC = ENET_TXIC_ICFT(config->intCoalesceCfg->txCoalesceFrameCount[0]) |
                     config->intCoalesceCfg->txCoalesceTimeCount[0] | ENET_TXIC_ICCS_MASK | ENET_TXIC_ICEN_MASK;
        base->RXIC = ENET_RXIC_ICFT(config->intCoalesceCfg->rxCoalesceFrameCount[0]) |
                     config->intCoalesceCfg->rxCoalesceTimeCount[0] | ENET_RXIC_ICCS_MASK | ENET_RXIC_ICEN_MASK;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
    }
#endif /* FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE */
    ENET_EnableInterrupts(base, config->interrupt);

#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
    /* Sets the 1588 enhanced feature. */
    ecr |= ENET_ECR_EN1588_MASK;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
    /* Enables Ethernet module after all configuration except the buffer descriptor active. */
    ecr |= ENET_ECR_ETHEREN_MASK | ENET_ECR_DBSWP_MASK;
    base->ECR = ecr;
}

static void ENET_SetTxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig)
{
    assert(config);
    assert(bufferConfig);

    /* Default single ring is supported. */
    uint8_t ringNum;
    uint32_t count;
    uint32_t txBuffSizeAlign;
    uint8_t *txBuffer;
    const enet_buffer_config_t *buffCfg = bufferConfig;

    /* Check the input parameters. */
    for (ringNum = 0; ringNum < config->ringNum; ringNum++)
    {
        if ((buffCfg->txBdStartAddrAlign > 0) && (buffCfg->txBufferAlign > 0))
        {
            volatile enet_tx_bd_struct_t *curBuffDescrip = buffCfg->txBdStartAddrAlign;
            txBuffSizeAlign = buffCfg->txBuffSizeAlign;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
            txBuffer = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBufferAlign, kMEMORY_Local2DMA);
#else
            txBuffer = buffCfg->txBufferAlign;
#endif
            for (count = 0; count < buffCfg->txBdNumber; count++)
            {
                /* Set data buffer address. */
                curBuffDescrip->buffer = (uint8_t *)((uint32_t)&txBuffer[count * txBuffSizeAlign]);
                /* Initializes data length. */
                curBuffDescrip->length = 0;
                /* Sets the crc. */
                curBuffDescrip->control = ENET_BUFFDESCRIPTOR_TX_TRANMITCRC_MASK;
                /* Sets the last buffer descriptor with the wrap flag. */
                if (count == buffCfg->txBdNumber - 1)
                {
                    curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_WRAP_MASK;
                }

#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
                /* Enable transmit interrupt for store the transmit timestamp. */
                curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_INTERRUPT_MASK;
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
                /* Set the type of the frame when the credit-based scheme is used. */
                curBuffDescrip->controlExtend1 |= ENET_BD_FTYPE(ringNum);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
                /* Increase the index. */
                curBuffDescrip++;
            }
        }
        buffCfg++;
    }
}

static void ENET_SetRxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig)
{
    assert(config);
    assert(bufferConfig);

    /* Default single ring is supported. */
    uint8_t ringNum;
    uint32_t count;
    uint32_t rxBuffSizeAlign;
    uint8_t *rxBuffer;
    const enet_buffer_config_t *buffCfg = bufferConfig;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
    uint32_t mask = (kENET_RxFrameInterrupt | kENET_RxBufferInterrupt);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

    /* Check the input parameters. */
    for (ringNum = 0; ringNum < config->ringNum; ringNum++)
    {
        assert(buffCfg->rxBuffSizeAlign >= ENET_RX_MIN_BUFFERSIZE);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
#if FSL_FEATURE_ENET_QUEUE > 1
        if (ringNum == 1)
        {
            mask = (kENET_RxFrame1Interrupt | kENET_RxBuffer1Interrupt);
        }
        else if (ringNum == 2)
        {
            mask = (kENET_RxFrame2Interrupt | kENET_RxBuffer2Interrupt);
        }
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

        if ((buffCfg->rxBdStartAddrAlign > 0) && (buffCfg->rxBufferAlign > 0))
        {
            volatile enet_rx_bd_struct_t *curBuffDescrip = buffCfg->rxBdStartAddrAlign;
            rxBuffSizeAlign = buffCfg->rxBuffSizeAlign;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
            rxBuffer = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBufferAlign, kMEMORY_Local2DMA);
#else
            rxBuffer = buffCfg->rxBufferAlign;
#endif
808 809 810 811 812 813

#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
            /* Invalidate rx buffers before DMA transfer data into them. */
           DCACHE_InvalidateByRange((uint32_t)rxBuffer,  (buffCfg->rxBdNumber * rxBuffSizeAlign));
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */

T
tanek liang 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            for (count = 0; count < buffCfg->rxBdNumber; count++)
            {
                /* Set data buffer and the length. */
                curBuffDescrip->buffer = (uint8_t *)((uint32_t)&rxBuffer[count * rxBuffSizeAlign]);
                curBuffDescrip->length = 0;

                /* Initializes the buffer descriptors with empty bit. */
                curBuffDescrip->control = ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
                /* Sets the last buffer descriptor with the wrap flag. */
                if (count == buffCfg->rxBdNumber - 1)
                {
                    curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
                }

#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
                if (config->interrupt & mask)
                {
                    /* Enable receive interrupt. */
                    curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_RX_INTERRUPT_MASK;
                }
                else
                {
                    curBuffDescrip->controlExtend1 = 0;
                }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
                /* Increase the index. */
                curBuffDescrip++;
            }
        }
        buffCfg++;
    }
}

static void ENET_ActiveSend(ENET_Type *base, uint32_t ringId)
{
    assert(ringId < FSL_FEATURE_ENET_QUEUE);

    switch (ringId)
    {
        case kENET_Ring0:
            base->TDAR = ENET_TDAR_TDAR_MASK;
            break;
#if FSL_FEATURE_ENET_QUEUE > 1
        case kENET_Ring1:
            base->TDAR1 = ENET_TDAR1_TDAR_MASK;
            break;
        case kENET_Ring2:
            base->TDAR2 = ENET_TDAR2_TDAR_MASK;
            break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        default:
            base->TDAR = ENET_TDAR_TDAR_MASK;
            break;
    }
}

void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex)
{
    uint32_t rcr = base->RCR;
    uint32_t tcr = base->TCR;

#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
    uint32_t ecr = base->ECR;

    if (kENET_MiiSpeed1000M == speed)
    {
        assert(duplex == kENET_MiiFullDuplex);
        ecr |= ENET_ECR_SPEED_MASK;
    }
    else
    {
        ecr &= ~ENET_ECR_SPEED_MASK;
    }

    base->ECR = ecr;
#endif /* FSL_FEATURE_ENET_HAS_AVB */

    /* Sets speed mode. */
    if (kENET_MiiSpeed10M == speed)
    {
        rcr |= ENET_RCR_RMII_10T_MASK;
    }
    else
    {
        rcr &= ~ENET_RCR_RMII_10T_MASK;
    }
    /* Set duplex mode. */
    if (duplex == kENET_MiiHalfDuplex)
    {
        rcr |= ENET_RCR_DRT_MASK;
        tcr &= ~ENET_TCR_FDEN_MASK;
    }
    else
    {
        rcr &= ~ENET_RCR_DRT_MASK;
        tcr |= ENET_TCR_FDEN_MASK;
    }

    base->RCR = rcr;
    base->TCR = tcr;
}

void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)
{
    uint32_t address;

    /* Set physical address lower register. */
    address = (uint32_t)(((uint32_t)macAddr[0] << 24U) | ((uint32_t)macAddr[1] << 16U) | ((uint32_t)macAddr[2] << 8U) |
                         (uint32_t)macAddr[3]);
    base->PALR = address;
    /* Set physical address high register. */
    address = (uint32_t)(((uint32_t)macAddr[4] << 8U) | ((uint32_t)macAddr[5]));
    base->PAUR = address << ENET_PAUR_PADDR2_SHIFT;
}

void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)
{
    assert(macAddr);

    uint32_t address;

    /* Get from physical address lower register. */
    address = base->PALR;
    macAddr[0] = 0xFFU & (address >> 24U);
    macAddr[1] = 0xFFU & (address >> 16U);
    macAddr[2] = 0xFFU & (address >> 8U);
    macAddr[3] = 0xFFU & address;

    /* Get from physical address high register. */
    address = (base->PAUR & ENET_PAUR_PADDR2_MASK) >> ENET_PAUR_PADDR2_SHIFT;
    macAddr[4] = 0xFFU & (address >> 8U);
    macAddr[5] = 0xFFU & address;
}

void ENET_SetSMI(ENET_Type *base, uint32_t srcClock_Hz, bool isPreambleDisabled)
{
    assert(srcClock_Hz);

    uint32_t clkCycle = 0;
    uint32_t speed = 0;
    uint32_t mscr = 0;

    /* Calculate the MII speed which controls the frequency of the MDC. */
    speed = srcClock_Hz / (2 * ENET_MDC_FREQUENCY);
    /* Calculate the hold time on the MDIO output. */
    clkCycle = (10 + ENET_NANOSECOND_ONE_SECOND / srcClock_Hz - 1) / (ENET_NANOSECOND_ONE_SECOND / srcClock_Hz) - 1;
    /* Build the configuration for MDC/MDIO control. */
    mscr = ENET_MSCR_MII_SPEED(speed) | ENET_MSCR_HOLDTIME(clkCycle) | (isPreambleDisabled ? ENET_MSCR_DIS_PRE_MASK : 0);
    base->MSCR = mscr;
}

void ENET_StartSMIWrite(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, enet_mii_write_t operation, uint32_t data)
{
    uint32_t mmfr = 0;

    /* Build MII write command. */
    mmfr = ENET_MMFR_ST(1) | ENET_MMFR_OP(operation) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(phyReg) | ENET_MMFR_TA(2) |
           (data & 0xFFFF);
    base->MMFR = mmfr;
}

void ENET_StartSMIRead(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, enet_mii_read_t operation)
{
    uint32_t mmfr = 0;

    /* Build MII read command. */
    mmfr = ENET_MMFR_ST(1) | ENET_MMFR_OP(operation) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(phyReg) | ENET_MMFR_TA(2);
    base->MMFR = mmfr;
}

#if defined(FSL_FEATURE_ENET_HAS_EXTEND_MDIO) && FSL_FEATURE_ENET_HAS_EXTEND_MDIO
void ENET_StartExtC45SMIWrite(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
    uint32_t mmfr = 0;

    /* Parse the address from the input register. */
    uint16_t devAddr = (phyReg >> ENET_MMFR_TA_SHIFT) & 0x1FU;
    uint16_t regAddr = (uint16_t)(phyReg & 0xFFFFU);

    /* Address write firstly. */
    mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiAddrWrite_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
           ENET_MMFR_TA(2) | ENET_MMFR_DATA(regAddr);
    base->MMFR = mmfr;

    /* Build MII write command. */
    mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiWriteFrame_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
           ENET_MMFR_TA(2) | ENET_MMFR_DATA(data);
    base->MMFR = mmfr;
}

void ENET_StartExtC45SMIRead(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg)
{
    uint32_t mmfr = 0;

    /* Parse the address from the input register. */
    uint16_t devAddr = (phyReg >> ENET_MMFR_TA_SHIFT) & 0x1FU;
    uint16_t regAddr = (uint16_t)(phyReg & 0xFFFFU);

    /* Address write firstly. */
    mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiAddrWrite_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
           ENET_MMFR_TA(2) | ENET_MMFR_DATA(regAddr);
    base->MMFR = mmfr;

    /* Build MII read command. */
    mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiReadFrame_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
           ENET_MMFR_TA(2);
    base->MMFR = mmfr;
}
#endif /* FSL_FEATURE_ENET_HAS_EXTEND_MDIO */

void ENET_GetRxErrBeforeReadFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic)
{
    assert(handle);
    assert(handle->rxBdCurrent[0]);
    assert(eErrorStatic);

    uint16_t control = 0;
    volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[0];

    do
    {
        /* The last buffer descriptor of a frame. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
        {
            control = curBuffDescrip->control;
            if (control & ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK)
            {
                /* The receive truncate error. */
                eErrorStatic->statsRxTruncateErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK)
            {
                /* The receive over run error. */
                eErrorStatic->statsRxOverRunErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK)
            {
                /* The receive length violation error. */
                eErrorStatic->statsRxLenGreaterErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK)
            {
                /* The receive alignment error. */
                eErrorStatic->statsRxAlignErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_CRC_MASK)
            {
                /* The receive CRC error. */
                eErrorStatic->statsRxFcsErr++;
            }
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
            uint16_t controlExt = curBuffDescrip->controlExtend1;
            if (controlExt & ENET_BUFFDESCRIPTOR_RX_MACERR_MASK)
            {
                /* The MAC error. */
                eErrorStatic->statsRxMacErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_RX_PHYERR_MASK)
            {
                /* The PHY error. */
                eErrorStatic->statsRxPhyErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_RX_COLLISION_MASK)
            {
                /* The receive collision error. */
                eErrorStatic->statsRxCollisionErr++;
            }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

            break;
        }

        /* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
        {
            curBuffDescrip = handle->rxBdBase[0];
        }
        else
        {
            curBuffDescrip++;
        }

    } while (curBuffDescrip != handle->rxBdCurrent[0]);
}

status_t ENET_GetRxFrameSize(enet_handle_t *handle, uint32_t *length)
{
    assert(handle);
    assert(handle->rxBdCurrent[0]);
    assert(length);

    /* Reset the length to zero. */
    *length = 0;

    uint16_t validLastMask = ENET_BUFFDESCRIPTOR_RX_LAST_MASK | ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
    volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[0];

    /* Check the current buffer descriptor's empty flag.  if empty means there is no frame received. */
    if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)
    {
        return kStatus_ENET_RxFrameEmpty;
    }

    do
    {
        /* Add check for abnormal case. */
        if ((!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)) && (!curBuffDescrip->length))
        {
            return kStatus_ENET_RxFrameError;
        }

        /* Find the last buffer descriptor. */
        if ((curBuffDescrip->control & validLastMask) == ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
        {
            /* The last buffer descriptor in the frame check the status of the received frame. */
            if ((curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK)
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
                || (curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK)
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
                    )
            {
                return kStatus_ENET_RxFrameError;
            }
            /* FCS is removed by MAC. */
            *length = curBuffDescrip->length;
            return kStatus_Success;
        }
        /* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
        {
            curBuffDescrip = handle->rxBdBase[0];
        }
        else
        {
            curBuffDescrip++;
        }

    } while (curBuffDescrip != handle->rxBdCurrent[0]);

    /* The frame is on processing - set to empty status to make application to receive it next time. */
    return kStatus_ENET_RxFrameEmpty;
}

status_t ENET_ReadFrame(ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length)
{
    assert(handle);
    assert(handle->rxBdCurrent[0]);

    uint32_t len = 0;
    uint32_t offset = 0;
    uint16_t control;
    bool isLastBuff = false;
    volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[0];
    status_t result = kStatus_Success;
    uint32_t address;

    /* For data-NULL input, only update the buffer descriptor. */
    if (!data)
    {
        do
        {
            /* Update the control flag. */
            control = handle->rxBdCurrent[0]->control;
            /* Updates the receive buffer descriptors. */
            ENET_UpdateReadBuffers(base, handle, 0);

            /* Find the last buffer descriptor for the frame. */
            if (control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
            {
                break;
            }

        } while (handle->rxBdCurrent[0] != curBuffDescrip);

        return result;
    }
    else
    {
        /* A frame on one buffer or several receive buffers are both considered. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
        address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
        address = (uint32_t)curBuffDescrip->buffer;
1197 1198 1199
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */        
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
        /* Add the cache invalidate maintain. */
T
tanek liang 已提交
1200
        DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[0]);
1201
#endif  /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */        
T
tanek liang 已提交
1202 1203
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
        enet_ptp_time_data_t ptpTimestamp;
1204
        bool isPtpEventMessage = false;    
T
tanek liang 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        /* Parse the PTP message according to the header message. */
        isPtpEventMessage = ENET_Ptp1588ParseFrame((uint8_t *)address, &ptpTimestamp, false);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

        while (!isLastBuff)
        {
            /* The last buffer descriptor of a frame. */
            if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
            {
                /* This is a valid frame. */
                isLastBuff = true;
                if (length == curBuffDescrip->length)
                {
                    /* Copy the frame to user's buffer without FCS. */
                    len = curBuffDescrip->length - offset;
                    memcpy(data + offset, (void *)address, len);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
                    /* Store the PTP 1588 timestamp for received PTP event frame. */
                    if (isPtpEventMessage)
                    {
                        /* Set the timestamp to the timestamp ring. */
                        ptpTimestamp.timeStamp.nanosecond = curBuffDescrip->timestamp;
                        result = ENET_StoreRxFrameTime(base, handle, &ptpTimestamp);
                    }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

                    /* Updates the receive buffer descriptors. */
                    ENET_UpdateReadBuffers(base, handle, 0);
                    return result;
                }
                else
                {
                    /* Updates the receive buffer descriptors. */
                    ENET_UpdateReadBuffers(base, handle, 0);
                }
            }
            else
            {
                /* Store a frame on several buffer descriptors. */
                isLastBuff = false;
                /* Length check. */
                if (offset >= length)
                {
                    break;
                }
1250

T
tanek liang 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
                memcpy(data + offset, (void *)address, handle->rxBuffSizeAlign[0]);
                offset += handle->rxBuffSizeAlign[0];

                /* Updates the receive buffer descriptors. */
                ENET_UpdateReadBuffers(base, handle, 0);
            }

            /* Get the current buffer descriptor. */
            curBuffDescrip = handle->rxBdCurrent[0];
            /* Add the cache invalidate maintain. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
            address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
            address = (uint32_t)curBuffDescrip->buffer;
1265 1266
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */                
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL        
T
tanek liang 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
            DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[0]);
#endif  /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
        }
    }

    return kStatus_ENET_RxFrameFail;
}

static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
{
    assert(handle);
    assert(ringId < FSL_FEATURE_ENET_QUEUE);

    /* Clears status. */
    handle->rxBdCurrent[ringId]->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
    /* Sets the receive buffer descriptor with the empty flag. */
    handle->rxBdCurrent[ringId]->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;

    /* Increase current buffer descriptor to the next one. */
    if (handle->rxBdCurrent[ringId]->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
    {
        handle->rxBdCurrent[ringId] = handle->rxBdBase[ringId];
    }
    else
    {
        handle->rxBdCurrent[ringId]++;
    }

    /* Actives the receive buffer descriptor. */
    switch (ringId)
    {
        case kENET_Ring0:
            base->RDAR = ENET_RDAR_RDAR_MASK;
            break;
#if FSL_FEATURE_ENET_QUEUE > 1
        case kENET_Ring1:
            base->RDAR1 = ENET_RDAR1_RDAR_MASK;
            break;
        case kENET_Ring2:
            base->RDAR2 = ENET_RDAR2_RDAR_MASK;
            break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        default:
            base->RDAR = ENET_RDAR_RDAR_MASK;
            break;
    }
}

status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, const uint8_t *data, uint32_t length)
{
    assert(handle);
    assert(data);

    volatile enet_tx_bd_struct_t *curBuffDescrip;
    uint32_t len = 0;
    uint32_t sizeleft = 0;
    uint32_t address;

    /* Check the frame length. */
    if (length > ENET_FRAME_MAX_FRAMELEN)
    {
        return kStatus_ENET_TxFrameOverLen;
    }

    /* Check if the transmit buffer is ready. */
    curBuffDescrip = handle->txBdCurrent[0];
    if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
    {
        return kStatus_ENET_TxFrameBusy;
    }
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
    bool isPtpEventMessage = false;
    /* Check PTP message with the PTP header. */
    isPtpEventMessage = ENET_Ptp1588ParseFrame(data, NULL, true);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
    /* One transmit buffer is enough for one frame. */
    if (handle->txBuffSizeAlign[0] >= length)
    {
        /* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
        address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
        address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
1351
        memcpy((void *)address, data, length);
1352 1353 1354
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
        DCACHE_CleanByRange(address, length);
#endif  /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
T
tanek liang 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        /* Set data length. */
        curBuffDescrip->length = length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
        /* For enable the timestamp. */
        if (isPtpEventMessage)
        {
            curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
        }
        else
        {
            curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
        }

#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
        curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);

        /* Increase the buffer descriptor address. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
        {
            handle->txBdCurrent[0] = handle->txBdBase[0];
        }
        else
        {
            handle->txBdCurrent[0]++;
        }
        /* Active the transmit buffer descriptor. */
        ENET_ActiveSend(base, 0);

        return kStatus_Success;
    }
    else
    {
        /* One frame requires more than one transmit buffers. */
        do
        {
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
            /* For enable the timestamp. */
            if (isPtpEventMessage)
            {
                curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
            }
            else
            {
                curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
            }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

            /* Increase the buffer descriptor address. */
            if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
            {
                handle->txBdCurrent[0] = handle->txBdBase[0];
            }
            else
            {
                handle->txBdCurrent[0]++;
            }
            /* update the size left to be transmit. */
            sizeleft = length - len;
1413 1414 1415 1416 1417
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
            address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
            address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */            
T
tanek liang 已提交
1418 1419 1420 1421
            if (sizeleft > handle->txBuffSizeAlign[0])
            {
                /* Data copy. */
                memcpy((void *)address, data + len, handle->txBuffSizeAlign[0]);
1422 1423 1424 1425
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
                /* Add the cache clean maintain. */
                DCACHE_CleanByRange(address, handle->txBuffSizeAlign[0]);
#endif  /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
T
tanek liang 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
                /* Data length update. */
                curBuffDescrip->length = handle->txBuffSizeAlign[0];
                len += handle->txBuffSizeAlign[0];
                /* Sets the control flag. */
                curBuffDescrip->control &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
                curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
                /* Active the transmit buffer descriptor*/
                ENET_ActiveSend(base, 0);
            }
            else
            {
1437

T
tanek liang 已提交
1438 1439 1440
                memcpy((void *)address, data + len, sizeleft);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
                /* Add the cache clean maintain. */
1441 1442 1443 1444 1445
                DCACHE_CleanByRange(address, sizeleft);
#endif  /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */ 
                curBuffDescrip->length = sizeleft;
                /* Set Last buffer wrap flag. */
                curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;                
T
tanek liang 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
                /* Active the transmit buffer descriptor. */
                ENET_ActiveSend(base, 0);

                return kStatus_Success;
            }

            /* Get the current buffer descriptor address. */
            curBuffDescrip = handle->txBdCurrent[0];

        } while (!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));

        return kStatus_ENET_TxFrameBusy;
    }
}

#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_GetRxErrBeforeReadFrameMultiRing(enet_handle_t *handle,
                                           enet_data_error_stats_t *eErrorStatic,
                                           uint32_t ringId)
{
    assert(handle);
    assert(eErrorStatic);
    assert(ringId < FSL_FEATURE_ENET_QUEUE);

    uint16_t control = 0;
    volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[ringId];

    do
    {
        /* The last buffer descriptor of a frame. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
        {
            control = curBuffDescrip->control;
            if (control & ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK)
            {
                /* The receive truncate error. */
                eErrorStatic->statsRxTruncateErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK)
            {
                /* The receive over run error. */
                eErrorStatic->statsRxOverRunErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK)
            {
                /* The receive length violation error. */
                eErrorStatic->statsRxLenGreaterErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK)
            {
                /* The receive alignment error. */
                eErrorStatic->statsRxAlignErr++;
            }
            if (control & ENET_BUFFDESCRIPTOR_RX_CRC_MASK)
            {
                /* The receive CRC error. */
                eErrorStatic->statsRxFcsErr++;
            }
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
            uint16_t controlExt = curBuffDescrip->controlExtend1;
            if (controlExt & ENET_BUFFDESCRIPTOR_RX_MACERR_MASK)
            {
                /* The MAC error. */
                eErrorStatic->statsRxMacErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_RX_PHYERR_MASK)
            {
                /* The PHY error. */
                eErrorStatic->statsRxPhyErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_RX_COLLISION_MASK)
            {
                /* The receive collision error. */
                eErrorStatic->statsRxCollisionErr++;
            }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

            break;
        }

        /* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
        {
            curBuffDescrip = handle->rxBdBase[ringId];
        }
        else
        {
            curBuffDescrip++;
        }

    } while (curBuffDescrip != handle->rxBdCurrent[ringId]);
}

status_t ENET_GetRxFrameSizeMultiRing(enet_handle_t *handle, uint32_t *length, uint32_t ringId)
{
    assert(handle);
    assert(length);
    assert(ringId < FSL_FEATURE_ENET_QUEUE);

    /* Reset the length to zero. */
    *length = 0;
    uint16_t validLastMask = ENET_BUFFDESCRIPTOR_RX_LAST_MASK | ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
    volatile enet_rx_bd_struct_t *curBuffDescrip;

    curBuffDescrip = handle->rxBdCurrent[ringId];
    /* Check the current buffer descriptor's empty flag.  if empty means there is no frame received. */
    if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)
    {
        return kStatus_ENET_RxFrameEmpty;
    }

    do
    {
        /* Add check for abnormal case. */
        if ((!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)) && (!curBuffDescrip->length))
        {
            return kStatus_ENET_RxFrameError;
        }        
        /* Find the last buffer descriptor. */
        if ((curBuffDescrip->control & validLastMask) == ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
        {
            /* The last buffer descriptor in the frame check the status of the received frame. */
            if ((curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK)
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
                || (curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK)
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
                    )
            {
                return kStatus_ENET_RxFrameError;
            }
            /* FCS is removed by MAC. */
            *length = curBuffDescrip->length;
            return kStatus_Success;
        }
        /* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
        {
            curBuffDescrip = handle->rxBdBase[ringId];
        }
        else
        {
            curBuffDescrip++;
        }
    } while (curBuffDescrip != handle->rxBdCurrent[ringId]);

    /* The frame is on processing - set to empty status to make application to receive it next time. */
    return kStatus_ENET_RxFrameEmpty;
}

status_t ENET_ReadFrameMultiRing(
    ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint32_t ringId)
{
    assert(handle);
    assert(ringId < FSL_FEATURE_ENET_QUEUE);

    uint32_t len = 0;
    uint32_t offset = 0;
    uint16_t control;
    bool isLastBuff = false;
    volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[ringId];
    status_t result = kStatus_Success;
    uint32_t address;

    /* For data-NULL input, only update the buffer descriptor. */
    if (!data)
    {
        do
        {
            /* Update the control flag. */
            control = handle->rxBdCurrent[ringId]->control;
            /* Updates the receive buffer descriptors. */
            ENET_UpdateReadBuffers(base, handle, ringId);

            /* Find the last buffer descriptor for the frame. */
            if (control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
            {
                break;
            }

        } while (handle->rxBdCurrent[ringId] != curBuffDescrip);

        return result;
    }
    else
    {
        /* A frame on one buffer or several receive buffers are both considered. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
        address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
        address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
1637 1638
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
        /* Add the cache invalidate maintain. */
T
tanek liang 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
        enet_ptp_time_data_t ptpTimestamp;
        bool isPtpEventMessage = false;
        /* Parse the PTP message according to the header message. */
        isPtpEventMessage = ENET_Ptp1588ParseFrame((uint8_t *)address, &ptpTimestamp, false);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

        while (!isLastBuff)
        {
            /* The last buffer descriptor of a frame. */
            if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
            {
                /* This is a valid frame. */
                isLastBuff = true;
                if (length == curBuffDescrip->length)
                {
                    /* Copy the frame to user's buffer without FCS. */
                    len = curBuffDescrip->length - offset;
                    memcpy(data + offset, (void *)address, len);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
                    /* Store the PTP 1588 timestamp for received PTP event frame. */
                    if (isPtpEventMessage)
                    {
                        /* Set the timestamp to the timestamp ring. */
                        ptpTimestamp.timeStamp.nanosecond = curBuffDescrip->timestamp;
                        result = ENET_StoreRxFrameTime(base, handle, &ptpTimestamp);
                    }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

                    /* Updates the receive buffer descriptors. */
                    ENET_UpdateReadBuffers(base, handle, ringId);
                    return result;
                }
                else
                {
                    /* Updates the receive buffer descriptors. */
                    ENET_UpdateReadBuffers(base, handle, ringId);
                }
            }
            else
            {
                /* Store a frame on several buffer descriptors. */
                isLastBuff = false;
                /* Length check. */
                if (offset >= length)
                {
                    break;
                }
                memcpy(data + offset, (void *)address, handle->rxBuffSizeAlign[ringId]);
                offset += handle->rxBuffSizeAlign[ringId];


                /* Updates the receive buffer descriptors. */
                ENET_UpdateReadBuffers(base, handle, ringId);
            }

            /* Get the current buffer descriptor. */

            curBuffDescrip = handle->rxBdCurrent[ringId];
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
            address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
            address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
1705 1706
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
            /* Add the cache invalidate maintain. */
T
tanek liang 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
            DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
        }
    }

    return kStatus_ENET_RxFrameFail;
}


status_t ENET_SendFrameMultiRing(
    ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint32_t ringId)
{
    assert(handle);
    assert(data);
    assert(ringId < FSL_FEATURE_ENET_QUEUE);

    volatile enet_tx_bd_struct_t *curBuffDescrip;
    uint32_t len = 0;
    uint32_t sizeleft = 0;
    uint32_t address;

    /* Check the frame length. */
    if (length > ENET_FRAME_MAX_FRAMELEN)
    {
        return kStatus_ENET_TxFrameOverLen;
    }

    /* Check if the transmit buffer is ready. */
    curBuffDescrip = handle->txBdCurrent[ringId];
    if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
    {
        return kStatus_ENET_TxFrameBusy;
    }
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
    bool isPtpEventMessage = false;
    /* Check PTP message with the PTP header. */
    isPtpEventMessage = ENET_Ptp1588ParseFrame(data, NULL, true);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
    /* One transmit buffer is enough for one frame. */
    if (handle->txBuffSizeAlign[ringId] >= length)
    {
        /* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
        address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
        address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
        memcpy((void *)address, data, length);

1756 1757 1758 1759 1760
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
        /* Add the cache clean maintain. */
        DCACHE_CleanByRange(address, length);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */

T
tanek liang 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        /* Set data length. */
        curBuffDescrip->length = length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
        /* For enable the timestamp. */
        if (isPtpEventMessage)
        {
            curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
        }
        else
        {
            curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
        }

#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
        curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);

        /* Increase the buffer descriptor address. */
        if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
        {
            handle->txBdCurrent[ringId] = handle->txBdBase[ringId];
        }
        else
        {
            handle->txBdCurrent[ringId]++;
        }
1786

T
tanek liang 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
        /* Active the transmit buffer descriptor. */
        ENET_ActiveSend(base, ringId);

        return kStatus_Success;
    }
    else
    {
        /* One frame requires more than one transmit buffers. */
        do
        {
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
            /* For enable the timestamp. */
            if (isPtpEventMessage)
            {
                curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
            }
            else
            {
                curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
            }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

            /* Increase the buffer descriptor address. */
            if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
            {
                handle->txBdCurrent[ringId] = handle->txBdBase[ringId];
            }
            else
            {
                handle->txBdCurrent[ringId]++;
            }
            /* update the size left to be transmit. */
            sizeleft = length - len;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
1821
            address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
T
tanek liang 已提交
1822
#else
1823
            address = (uint32_t)curBuffDescrip->buffer;
T
tanek liang 已提交
1824
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
1825 1826 1827
            if (sizeleft > handle->txBuffSizeAlign[ringId])
            {
                /* Data copy. */
T
tanek liang 已提交
1828
                memcpy((void*)address, data + len, handle->txBuffSizeAlign[ringId]);
1829 1830 1831 1832
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
                /* Add the cache clean maintain. */
                DCACHE_CleanByRange(address, handle->txBuffSizeAlign[ringId]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
T
tanek liang 已提交
1833 1834 1835 1836 1837 1838
                /* Data length update. */
                curBuffDescrip->length = handle->txBuffSizeAlign[ringId];
                len += handle->txBuffSizeAlign[ringId];
                /* Sets the control flag. */
                curBuffDescrip->control &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
                curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
1839

T
tanek liang 已提交
1840 1841 1842 1843 1844
                /* Active the transmit buffer descriptor*/
                ENET_ActiveSend(base, ringId);
            }
            else
            {
1845

T
tanek liang 已提交
1846 1847 1848 1849 1850
                memcpy((void *)address, data + len, sizeleft);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
                /* Add the cache clean maintain. */
                DCACHE_CleanByRange(address, sizeleft);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
1851 1852 1853 1854
                curBuffDescrip->length = sizeleft;
                /* Set Last buffer wrap flag. */
                curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;

T
tanek liang 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
                /* Active the transmit buffer descriptor. */
                ENET_ActiveSend(base, ringId);

                return kStatus_Success;
            }

            /* Get the current buffer descriptor address. */
            curBuffDescrip = handle->txBdCurrent[ringId];
        } while (!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));

        return kStatus_ENET_TxFrameBusy;
    }
}
#endif /*  FSL_FEATURE_ENET_QUEUE > 1 */

void ENET_AddMulticastGroup(ENET_Type *base, uint8_t *address)
{
    assert(address);

    uint32_t crc = 0xFFFFFFFFU;
    uint32_t count1 = 0;
    uint32_t count2 = 0;

    /* Calculates the CRC-32 polynomial on the multicast group address. */
    for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++)
    {
        uint8_t c = address[count1];
        for (count2 = 0; count2 < 0x08U; count2++)
        {
            if ((c ^ crc) & 1U)
            {
                crc >>= 1U;
                c >>= 1U;
                crc ^= 0xEDB88320U;
            }
            else
            {
                crc >>= 1U;
                c >>= 1U;
            }
        }
    }

    /* Enable a multicast group address. */
    if (!((crc >> 0x1FU) & 1U))
    {
        base->GALR |= 1U << ((crc >> 0x1AU) & 0x1FU);
    }
    else
    {
        base->GAUR |= 1U << ((crc >> 0x1AU) & 0x1FU);
    }
}

void ENET_LeaveMulticastGroup(ENET_Type *base, uint8_t *address)
{
    assert(address);

    uint32_t crc = 0xFFFFFFFFU;
    uint32_t count1 = 0;
    uint32_t count2 = 0;

    /* Calculates the CRC-32 polynomial on the multicast group address. */
    for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++)
    {
        uint8_t c = address[count1];
        for (count2 = 0; count2 < 0x08U; count2++)
        {
            if ((c ^ crc) & 1U)
            {
                crc >>= 1U;
                c >>= 1U;
                crc ^= 0xEDB88320U;
            }
            else
            {
                crc >>= 1U;
                c >>= 1U;
            }
        }
    }

    /* Set the hash table. */
    if (!((crc >> 0x1FU) & 1U))
    {
        base->GALR &= ~(1U << ((crc >> 0x1AU) & 0x1FU));
    }
    else
    {
        base->GAUR &= ~(1U << ((crc >> 0x1AU) & 0x1FU));
    }
}

#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
status_t ENET_GetTxErrAfterSendFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic)
{
    assert(handle);
    assert(eErrorStatic);

    uint16_t control = 0;
    uint16_t controlExt = 0;

    do
    {
        /* Get the current dirty transmit buffer descriptor. */
    control = handle->txBdDirtyStatic[0]->control;
    controlExt = handle->txBdDirtyStatic[0]->controlExtend0;

        /* Get the control status data, If the buffer descriptor has not been processed break out. */
        if (control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
        {
            return kStatus_ENET_TxFrameBusy;
        }
        /* Increase the transmit dirty static pointer. */
        if (handle->txBdDirtyStatic[0]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
        {
            handle->txBdDirtyStatic[0] = handle->txBdBase[0];
        }
        else
        {
            handle->txBdDirtyStatic[0]++;
        }

        /* If the transmit buffer descriptor is ready and the last buffer descriptor, store packet statistic. */
        if (control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK)
        {
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_ERR_MASK)
            {
                /* Transmit error. */
                eErrorStatic->statsTxErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_EXCCOLLISIONERR_MASK)
            {
                /* Transmit excess collision error. */
                eErrorStatic->statsTxExcessCollisionErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_LATECOLLISIONERR_MASK)
            {
                /* Transmit late collision error. */
                eErrorStatic->statsTxLateCollisionErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_UNDERFLOWERR_MASK)
            {
                /* Transmit under flow error. */
                eErrorStatic->statsTxUnderFlowErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_OVERFLOWERR_MASK)
            {
                /* Transmit over flow error. */
                eErrorStatic->statsTxOverFlowErr++;
            }
            return kStatus_Success;
        }

    } while (handle->txBdDirtyStatic[0] != handle->txBdCurrent[0]);

    return kStatus_ENET_TxFrameFail;
}

#if FSL_FEATURE_ENET_QUEUE > 1 
status_t ENET_GetTxErrAfterSendFrameMultiRing(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic,
                                                                             uint32_t ringId)
{
    assert(handle);
    assert(eErrorStatic);
    assert(ringId < FSL_FEATURE_ENET_QUEUE);

    uint16_t control = 0;
    uint16_t controlExt = 0;

    do
    {
        /* Get the current dirty transmit buffer descriptor. */
        control = handle->txBdDirtyStatic[ringId]->control;
        controlExt = handle->txBdDirtyStatic[ringId]->controlExtend0;
        /* Get the control status data, If the buffer descriptor has not been processed break out. */
        if (control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
        {
            return kStatus_ENET_TxFrameBusy;
        }
        /* Increase the transmit dirty static pointer. */
        if (handle->txBdDirtyStatic[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
        {
            handle->txBdDirtyStatic[ringId] = handle->txBdBase[ringId];
        }
        else
        {
            handle->txBdDirtyStatic[ringId]++;
        }

        /* If the transmit buffer descriptor is ready and the last buffer descriptor, store packet statistic. */
        if (control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK)
        {
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_ERR_MASK)
            {
                /* Transmit error. */
                eErrorStatic->statsTxErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_EXCCOLLISIONERR_MASK)
            {
                /* Transmit excess collision error. */
                eErrorStatic->statsTxExcessCollisionErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_LATECOLLISIONERR_MASK)
            {
                /* Transmit late collision error. */
                eErrorStatic->statsTxLateCollisionErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_UNDERFLOWERR_MASK)
            {
                /* Transmit under flow error. */
                eErrorStatic->statsTxUnderFlowErr++;
            }
            if (controlExt & ENET_BUFFDESCRIPTOR_TX_OVERFLOWERR_MASK)
            {
                /* Transmit over flow error. */
                eErrorStatic->statsTxOverFlowErr++;
            }
            return kStatus_Success;
        }

    } while (handle->txBdDirtyStatic[ringId] != handle->txBdCurrent[ringId]);

    return kStatus_ENET_TxFrameFail;
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */

static bool ENET_Ptp1588ParseFrame(const uint8_t *data, enet_ptp_time_data_t *ptpTsData, bool isFastEnabled)
{
    assert(data);
    if (!isFastEnabled)
    {
        assert(ptpTsData);
    }

    bool isPtpMsg = false;
    const uint8_t *buffer = data;
    uint16_t ptpType;

    /* Check for VLAN frame.
     * Add Double vlan tag check for receiving extended QIN vlan frame. */
    if (*(uint16_t *)(buffer + ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET) == (ENET_HTONS(ENET_8021QVLAN)
#if defined(FSL_FEATUR_ENET_HAS_AVB) && FSL_FEATURE_HAS_AVB
      || ENET_HTONS(ENET_8021QSVLAN)
#endif /* FSL_FEATURE_ENET_HAS_AVB */
    ))
    {
        buffer += ENET_FRAME_VLAN_TAGLEN;
#if defined(FSL_FEATUR_ENET_HAS_AVB) && FSL_FEATURE_HAS_AVB
        if (*(uint16_t *)(buffer + ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET) == ENET_HTONS(ENET_8021QVLAN)
        {
            buffer += ENET_FRAME_VLAN_TAGLEN;          
        }
#endif /* FSL_FEATURE_ENET_HAS_AVB */
    }

    ptpType = *(uint16_t *)(buffer + ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET);
    switch (ENET_HTONS(ptpType))
    { /* Ethernet layer 2. */
        case ENET_ETHERNETL2:
2115
            if ((*(uint8_t *)(buffer + ENET_PTP1588_ETHL2_MSGTYPE_OFFSET) & 0x0F) <= kENET_PtpEventMsgType)
T
tanek liang 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
            {
                isPtpMsg = true;
                if (!isFastEnabled)
                {
                    /* It's a ptpv2 message and store the ptp header information. */
                    ptpTsData->version = (*(uint8_t *)(buffer + ENET_PTP1588_ETHL2_VERSION_OFFSET)) & 0x0F;
                    ptpTsData->messageType = (*(uint8_t *)(buffer + ENET_PTP1588_ETHL2_MSGTYPE_OFFSET)) & 0x0F;
                    ptpTsData->sequenceId = ENET_HTONS(*(uint16_t *)(buffer + ENET_PTP1588_ETHL2_SEQUENCEID_OFFSET));
                    memcpy((void *)&ptpTsData->sourcePortId[0], (void *)(buffer + ENET_PTP1588_ETHL2_CLOCKID_OFFSET),
                           kENET_PtpSrcPortIdLen);
                }
            }
            break;
        /* IPV4. */
        case ENET_IPV4:
            if ((*(uint8_t *)(buffer + ENET_PTP1588_IPVERSION_OFFSET) >> 4) == ENET_IPV4VERSION)
            {
                if (((*(uint16_t *)(buffer + ENET_PTP1588_IPV4_UDP_PORT_OFFSET)) == ENET_HTONS(kENET_PtpEventPort)) &&
                    (*(uint8_t *)(buffer + ENET_PTP1588_IPV4_UDP_PROTOCOL_OFFSET) == ENET_UDPVERSION))
                {
                    /* Set the PTP message flag. */
                    isPtpMsg = true;
                    if (!isFastEnabled)
                    {
                        /* It's a IPV4 ptp message and store the ptp header information. */
                        ptpTsData->version = (*(uint8_t *)(buffer + ENET_PTP1588_IPV4_UDP_VERSION_OFFSET)) & 0x0F;
                        ptpTsData->messageType = (*(uint8_t *)(buffer + ENET_PTP1588_IPV4_UDP_MSGTYPE_OFFSET)) & 0x0F;
                        ptpTsData->sequenceId =
                            ENET_HTONS(*(uint16_t *)(buffer + ENET_PTP1588_IPV4_UDP_SEQUENCEID_OFFSET));
                        memcpy((void *)&ptpTsData->sourcePortId[0],
                               (void *)(buffer + ENET_PTP1588_IPV4_UDP_CLKID_OFFSET), kENET_PtpSrcPortIdLen);
                    }
                }
            }
            break;
        /* IPV6. */
        case ENET_IPV6:
            if ((*(uint8_t *)(buffer + ENET_PTP1588_IPVERSION_OFFSET) >> 4) == ENET_IPV6VERSION)
            {
                if (((*(uint16_t *)(buffer + ENET_PTP1588_IPV6_UDP_PORT_OFFSET)) == ENET_HTONS(kENET_PtpEventPort)) &&
                    (*(uint8_t *)(buffer + ENET_PTP1588_IPV6_UDP_PROTOCOL_OFFSET) == ENET_UDPVERSION))
                {
                    /* Set the PTP message flag. */
                    isPtpMsg = true;
                    if (!isFastEnabled)
                    {
                        /* It's a IPV6 ptp message and store the ptp header information. */
                        ptpTsData->version = (*(uint8_t *)(buffer + ENET_PTP1588_IPV6_UDP_VERSION_OFFSET)) & 0x0F;
                        ptpTsData->messageType = (*(uint8_t *)(buffer + ENET_PTP1588_IPV6_UDP_MSGTYPE_OFFSET)) & 0x0F;
                        ptpTsData->sequenceId =
                            ENET_HTONS(*(uint16_t *)(buffer + ENET_PTP1588_IPV6_UDP_SEQUENCEID_OFFSET));
                        memcpy((void *)&ptpTsData->sourcePortId[0],
                               (void *)(buffer + ENET_PTP1588_IPV6_UDP_CLKID_OFFSET), kENET_PtpSrcPortIdLen);
                    }
                }
            }
            break;
        default:
            break;
    }
    return isPtpMsg;
}

void ENET_Ptp1588Configure(ENET_Type *base, enet_handle_t *handle, enet_ptp_config_t *ptpConfig)
{
    assert(handle);
    assert(ptpConfig);
    uint8_t count;

    uint32_t instance = ENET_GetInstance(base);
    uint32_t mask = kENET_TxBufferInterrupt;
#if FSL_FEATURE_ENET_QUEUE > 1
    mask |= kENET_TxBuffer1Interrupt | kENET_TxBuffer2Interrupt;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */

    /* Start the 1588 timer. */
    ENET_Ptp1588StartTimer(base, ptpConfig->ptp1588ClockSrc_Hz);

    for (count = 0; count < handle->ringNum; count++)
    {
        handle->txBdDirtyTime[count] = handle->txBdBase[count];
        handle->txBdDirtyStatic[count] = handle->txBdBase[count];
    }

    /* Setting the receive and transmit state for transaction. */
    handle->rxPtpTsDataRing.ptpTsData = ptpConfig->rxPtpTsData;
    handle->rxPtpTsDataRing.size = ptpConfig->ptpTsRxBuffNum;
    handle->rxPtpTsDataRing.front = 0;
    handle->rxPtpTsDataRing.end = 0;
    handle->txPtpTsDataRing.ptpTsData = ptpConfig->txPtpTsData;
    handle->txPtpTsDataRing.size = ptpConfig->ptpTsTxBuffNum;
    handle->txPtpTsDataRing.front = 0;
    handle->txPtpTsDataRing.end = 0;
    handle->msTimerSecond = 0;

    /* Set the IRQ handler when the interrupt is enabled. */
    s_enetTxIsr = ENET_TransmitIRQHandler;
    s_enetTsIsr = ENET_Ptp1588TimerIRQHandler;

    /* Enables the time stamp interrupt and transmit frame interrupt to
     * handle the time-stamp . */
    ENET_EnableInterrupts(base, (ENET_TS_INTERRUPT | ENET_TX_INTERRUPT));
    ENET_DisableInterrupts(base, mask);

    EnableIRQ(s_enetTsIrqId[instance]);
    EnableIRQ(s_enetTxIrqId[instance]);
}

void ENET_Ptp1588StartTimer(ENET_Type *base, uint32_t ptpClkSrc)
{
    /* Restart PTP 1588 timer, master clock. */
    base->ATCR = ENET_ATCR_RESTART_MASK;

    /* Initializes PTP 1588 timer. */
    base->ATINC = ENET_ATINC_INC(ENET_NANOSECOND_ONE_SECOND / ptpClkSrc);
    base->ATPER = ENET_NANOSECOND_ONE_SECOND;
    /* Sets periodical event and the event signal output assertion and Actives PTP 1588 timer.  */
    base->ATCR = ENET_ATCR_PEREN_MASK | ENET_ATCR_PINPER_MASK | ENET_ATCR_EN_MASK;
}

void ENET_Ptp1588GetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)
{
    assert(handle);
    assert(ptpTime);
    uint16_t count = ENET_1588TIME_DELAY_COUNT;
    uint32_t primask;

    /* Disables the interrupt. */
    primask = DisableGlobalIRQ();

    /* Get the current PTP time. */
    ptpTime->second = handle->msTimerSecond;
    /* Get the nanosecond from the master timer. */
    base->ATCR |= ENET_ATCR_CAPTURE_MASK;
    /* Add at least six clock cycle delay to get accurate time.
       It's the requirement when the 1588 clock source is slower
       than the register clock.
    */
    while (count--)
    {
        __NOP();
    }
    /* Get the captured time. */
    ptpTime->nanosecond = base->ATVR;

    /* Enables the interrupt. */
    EnableGlobalIRQ(primask);
}

void ENET_Ptp1588SetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)
{
    assert(handle);
    assert(ptpTime);

    uint32_t primask;

    /* Disables the interrupt. */
    primask = DisableGlobalIRQ();

    /* Sets PTP timer. */
    handle->msTimerSecond = ptpTime->second;
    base->ATVR = ptpTime->nanosecond;

    /* Enables the interrupt. */
    EnableGlobalIRQ(primask);
}

void ENET_Ptp1588AdjustTimer(ENET_Type *base, uint32_t corrIncrease, uint32_t corrPeriod)
{
    /* Set correction for PTP timer increment. */
    base->ATINC = (base->ATINC & ~ENET_ATINC_INC_CORR_MASK) | (corrIncrease << ENET_ATINC_INC_CORR_SHIFT);
    /* Set correction for PTP timer period. */
    base->ATCOR = (base->ATCOR & ~ENET_ATCOR_COR_MASK) | (corrPeriod << ENET_ATCOR_COR_SHIFT);
}

static status_t ENET_Ptp1588UpdateTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimeData)
{
    assert(ptpTsDataRing);
    assert(ptpTsDataRing->ptpTsData);
    assert(ptpTimeData);

    uint16_t usedBuffer = 0;

    /* Check if the buffers ring is full. */
    if (ptpTsDataRing->end >= ptpTsDataRing->front)
    {
        usedBuffer = ptpTsDataRing->end - ptpTsDataRing->front;
    }
    else
    {
        usedBuffer = ptpTsDataRing->size - (ptpTsDataRing->front - ptpTsDataRing->end);
    }

    if (usedBuffer == ptpTsDataRing->size)
    {
        return kStatus_ENET_PtpTsRingFull;
    }

    /* Copy the new data into the buffer. */
    memcpy((ptpTsDataRing->ptpTsData + ptpTsDataRing->end), ptpTimeData, sizeof(enet_ptp_time_data_t));

    /* Increase the buffer pointer to the next empty one. */
    ptpTsDataRing->end = (ptpTsDataRing->end + 1) % ptpTsDataRing->size;

    return kStatus_Success;
}

static status_t ENET_Ptp1588SearchTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimedata)
{
    assert(ptpTsDataRing);
    assert(ptpTsDataRing->ptpTsData);
    assert(ptpTimedata);

    uint32_t index;
    uint32_t size;
    uint16_t usedBuffer = 0;

    /* Check the PTP 1588 timestamp ring. */
    if (ptpTsDataRing->front == ptpTsDataRing->end)
    {
        return kStatus_ENET_PtpTsRingEmpty;
    }

    /* Search the element in the ring buffer */
    index = ptpTsDataRing->front;
    size = ptpTsDataRing->size;
    while (index != ptpTsDataRing->end)
    {
        if (((ptpTsDataRing->ptpTsData + index)->sequenceId == ptpTimedata->sequenceId) &&
            (!memcmp(((void *)&(ptpTsDataRing->ptpTsData + index)->sourcePortId[0]),
                     (void *)&ptpTimedata->sourcePortId[0], kENET_PtpSrcPortIdLen)) &&
            ((ptpTsDataRing->ptpTsData + index)->version == ptpTimedata->version) &&
            ((ptpTsDataRing->ptpTsData + index)->messageType == ptpTimedata->messageType))
        {
            break;
        }

        /* Increase the ptp ring index. */
        index = (index + 1) % size;
    }

    if (index == ptpTsDataRing->end)
    {
        /* Check if buffers is full. */
        if (ptpTsDataRing->end >= ptpTsDataRing->front)
        {
            usedBuffer = ptpTsDataRing->end - ptpTsDataRing->front;
        }
        else
        {
            usedBuffer = ptpTsDataRing->size - (ptpTsDataRing->front - ptpTsDataRing->end);
        }

        if (usedBuffer == ptpTsDataRing->size)
        { /* Drop one in the front. */
            ptpTsDataRing->front = (ptpTsDataRing->front + 1) % size;
        }
        return kStatus_ENET_PtpTsRingFull;
    }

    /* Get the right timestamp of the required ptp messag. */
    ptpTimedata->timeStamp.second = (ptpTsDataRing->ptpTsData + index)->timeStamp.second;
    ptpTimedata->timeStamp.nanosecond = (ptpTsDataRing->ptpTsData + index)->timeStamp.nanosecond;

    /* Increase the index. */
    ptpTsDataRing->front = (ptpTsDataRing->front + 1) % size;

    return kStatus_Success;
}

static status_t ENET_StoreRxFrameTime(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData)
{
    assert(handle);
    assert(ptpTimeData);

    bool ptpTimerWrap = false;
    enet_ptp_time_t ptpTimer;
    uint32_t primask;

    /* Disables the interrupt. */
    primask = DisableGlobalIRQ();

    /* Get current PTP timer nanosecond value. */
    ENET_Ptp1588GetTimer(base, handle, &ptpTimer);

    /* Get PTP timer wrap event. */
    ptpTimerWrap = base->EIR & kENET_TsTimerInterrupt;

    /* Get transmit time stamp second. */
    if ((ptpTimer.nanosecond > ptpTimeData->timeStamp.nanosecond) ||
        ((ptpTimer.nanosecond < ptpTimeData->timeStamp.nanosecond) && ptpTimerWrap))
    {
        ptpTimeData->timeStamp.second = handle->msTimerSecond;
    }
    else
    {
        ptpTimeData->timeStamp.second = handle->msTimerSecond - 1;
    }
    /* Enable the interrupt. */
    EnableGlobalIRQ(primask);

    /* Store the timestamp to the receive time stamp ring. */
    /* Check if the buffers ring is full. */
    return ENET_Ptp1588UpdateTimeRing(&handle->rxPtpTsDataRing, ptpTimeData);
}

static status_t ENET_StoreTxFrameTime(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
{
    assert(handle);

    uint32_t primask;
    bool ptpTimerWrap;
    bool isPtpEventMessage = false;
    enet_ptp_time_data_t ptpTimeData;
    volatile enet_tx_bd_struct_t *curBuffDescrip = handle->txBdDirtyTime[ringId];
    uint32_t address;

    /* Get the control status data, If the buffer descriptor has not been processed break out. */
    if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
    {
        return kStatus_ENET_TxFrameBusy;
    }

    /* Parse the PTP message. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
    address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
    address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
    isPtpEventMessage = ENET_Ptp1588ParseFrame((uint8_t *)address, &ptpTimeData, false);
    if (isPtpEventMessage)
    {
2448
         /* Only store tx timestamp for ptp event message. */  
T
tanek liang 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        do
        {
            /* Increase current buffer descriptor to the next one. */
            if (handle->txBdDirtyTime[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
            {
                handle->txBdDirtyTime[ringId] = handle->txBdBase[ringId];
            }
            else
            {
                handle->txBdDirtyTime[ringId]++;
            }

            /* Do time stamp check on the last buffer descriptor of the frame. */
            if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK)
            {
                /* Disables the interrupt. */
                primask = DisableGlobalIRQ();

                /* Get current PTP timer nanosecond value. */
                ENET_Ptp1588GetTimer(base, handle, &ptpTimeData.timeStamp);

                /* Get PTP timer wrap event. */
                ptpTimerWrap = base->EIR & kENET_TsTimerInterrupt;

                /* Get transmit time stamp second. */
                if ((ptpTimeData.timeStamp.nanosecond > curBuffDescrip->timestamp) ||
                    ((ptpTimeData.timeStamp.nanosecond < curBuffDescrip->timestamp) && ptpTimerWrap))
                {
                    ptpTimeData.timeStamp.second = handle->msTimerSecond;
                }
                else
                {
                    ptpTimeData.timeStamp.second = handle->msTimerSecond - 1;
                }

2484 2485 2486
                /* Save transmit time stamp nanosecond. */
                ptpTimeData.timeStamp.nanosecond = curBuffDescrip->timestamp;

T
tanek liang 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
                /* Enable the interrupt. */
                EnableGlobalIRQ(primask);

                /* Store the timestamp to the transmit timestamp ring. */
                return ENET_Ptp1588UpdateTimeRing(&handle->txPtpTsDataRing, &ptpTimeData);
            }

            /* Get the current transmit buffer descriptor. */
            curBuffDescrip = handle->txBdDirtyTime[ringId];

            /* Get the control status data, If the buffer descriptor has not been processed break out. */
            if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
            {
                return kStatus_ENET_TxFrameBusy;
            }
        } while (handle->txBdDirtyTime[ringId] != handle->txBdCurrent[ringId]);
        return kStatus_ENET_TxFrameFail;
    }
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
    else
    {
        /* Only increase current buffer descriptor to the next one. */
        if (handle->txBdDirtyTime[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
        {
            handle->txBdDirtyTime[ringId] = handle->txBdBase[ringId];
        }
        else
        {
            handle->txBdDirtyTime[ringId]++;
        } 
    }
T
tanek liang 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
    return kStatus_Success;
}

status_t ENET_GetTxFrameTime(enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData)
{
    assert(handle);
    assert(ptpTimeData);

    return ENET_Ptp1588SearchTimeRing(&handle->txPtpTsDataRing, ptpTimeData);
}

status_t ENET_GetRxFrameTime(enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData)
{
    assert(handle);
    assert(ptpTimeData);

    return ENET_Ptp1588SearchTimeRing(&handle->rxPtpTsDataRing, ptpTimeData);
}

#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
void ENET_AVBConfigure(ENET_Type *base, enet_handle_t *handle, const enet_avb_config_t *config)
{
    assert(config);

    uint8_t count = 0;

    for (count = 0; count < FSL_FEATURE_ENET_QUEUE - 1; count++)
    {
        /* Set the AVB receive ring classification match when the match is not 0. */
        if (config->rxClassifyMatch[count])
        {
            base->RCMR[count] = (config->rxClassifyMatch[count] & 0xFFFF) | ENET_RCMR_MATCHEN_MASK;
        }
        /* Set the dma controller for the extended ring. */
        base->DMACFG[count] |= ENET_DMACFG_IDLE_SLOPE(config->idleSlope[count]);
    }

    /* Shall use the credit-based scheme for avb. */
    base->QOS &= ~ENET_QOS_TX_SCHEME_MASK;
    base->QOS |= ENET_QOS_RX_FLUSH0_MASK;
}
#endif /* FSL_FETAURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
#else
void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle)
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
{
    assert(handle);
    uint32_t mask = kENET_TxBufferInterrupt | kENET_TxFrameInterrupt;
#if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) || (FSL_FEATURE_ENET_QUEUE > 1)
    uint32_t index = 0;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTORMODE  || (FSL_FEATURE_ENET_QUEUE > 1) */

/* Check if the transmit interrupt happen. */
#if FSL_FEATURE_ENET_QUEUE > 1
    switch (ringId)
    {
        case kENET_Ring1:
            mask = (kENET_TxFrame1Interrupt | kENET_TxBuffer1Interrupt);
            break;
        case kENET_Ring2:
            mask = (kENET_TxFrame2Interrupt | kENET_TxBuffer2Interrupt);
            break;
        default:
            break;
    }
    index = ringId;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */

    while (mask & base->EIR)
    {
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
        if (base->EIR & kENET_TxFrameInterrupt)
        {
            /* Store the transmit timestamp from the buffer descriptor should be done here. */
            ENET_StoreTxFrameTime(base, handle, index);
        }
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

        /* Clear the transmit interrupt event. */
        base->EIR = mask;

        /* Callback function. */
        if (handle->callback)
        {
#if FSL_FEATURE_ENET_QUEUE > 1
            handle->callback(base, handle, index, kENET_TxEvent, handle->userData);
#else
            handle->callback(base, handle, kENET_TxEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        }
    }
}

#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
#else
void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle)
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
{
    assert(handle);
    uint32_t mask = kENET_RxFrameInterrupt | kENET_RxBufferInterrupt;

/* Check if the receive interrupt happen. */
#if FSL_FEATURE_ENET_QUEUE > 1
    switch (ringId)
    {
        case kENET_Ring1:
            mask = (kENET_RxFrame1Interrupt | kENET_RxBuffer1Interrupt);
            break;
        case kENET_Ring2:
            mask = (kENET_RxFrame2Interrupt | kENET_RxBuffer2Interrupt);
            break;
        default:
            break;
    }
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */

    while (mask & base->EIR)
    {
        /* Clear the transmit interrupt event. */
        base->EIR = mask;

        /* Callback function. */
        if (handle->callback)
        {
#if FSL_FEATURE_ENET_QUEUE > 1
            handle->callback(base, handle, ringId, kENET_RxEvent, handle->userData);
#else
            handle->callback(base, handle, kENET_RxEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        }
    }
}

void ENET_ErrorIRQHandler(ENET_Type *base, enet_handle_t *handle)
{
    assert(handle);

    uint32_t errMask = kENET_BabrInterrupt | kENET_BabtInterrupt | kENET_EBusERInterrupt | kENET_PayloadRxInterrupt |
                       kENET_LateCollisionInterrupt | kENET_RetryLimitInterrupt | kENET_UnderrunInterrupt;

    /* Check if the error interrupt happen. */
    if (kENET_WakeupInterrupt & base->EIR)
    {
        /* Clear the wakeup interrupt. */
        base->EIR = kENET_WakeupInterrupt;
        /* wake up and enter the normal mode. */
        ENET_EnableSleepMode(base, false);
        /* Callback function. */
        if (handle->callback)
        {
#if FSL_FEATURE_ENET_QUEUE > 1
            handle->callback(base, handle, 0, kENET_WakeUpEvent, handle->userData);
#else
            handle->callback(base, handle, kENET_WakeUpEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        }
    }
    else
    {
        /* Clear the error interrupt event status. */
        errMask &= base->EIR;
        base->EIR = errMask;
        /* Callback function. */
        if (handle->callback)
        {
#if FSL_FEATURE_ENET_QUEUE > 1
            handle->callback(base, handle, 0, kENET_ErrEvent, handle->userData);
#else
            handle->callback(base, handle, kENET_ErrEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        }
    }
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
void ENET_Ptp1588TimerIRQHandler(ENET_Type *base, enet_handle_t *handle)
{
    assert(handle);

    /* Check if the PTP time stamp interrupt happen. */
    if (kENET_TsTimerInterrupt & base->EIR)
    {
        /* Clear the time stamp interrupt. */
        base->EIR = kENET_TsTimerInterrupt;

        /* Increase timer second counter. */
        handle->msTimerSecond++;

        /* Callback function. */
        if (handle->callback)
        {
#if FSL_FEATURE_ENET_QUEUE > 1
            handle->callback(base, handle, 0, kENET_TimeStampEvent, handle->userData);
#else
            handle->callback(base, handle, kENET_TimeStampEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        }
    }
    else
    {
        /* Clear the time stamp interrupt. */
        base->EIR = kENET_TsAvailInterrupt;
        /* Callback function. */
        if (handle->callback)
        {
#if FSL_FEATURE_ENET_QUEUE > 1
            handle->callback(base, handle, 0, kENET_TimeStampAvailEvent, handle->userData);
#else
            handle->callback(base, handle, kENET_TimeStampAvailEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
        }
    }
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */

void ENET_CommonFrame0IRQHandler(ENET_Type *base)
{
    uint32_t event = base->EIR;
    uint32_t instance = ENET_GetInstance(base);

    if (event & (kENET_TxBufferInterrupt | kENET_TxFrameInterrupt))
    {
#if FSL_FEATURE_ENET_QUEUE > 1
        s_enetTxIsr(base, s_ENETHandle[instance], 0);
#else
        s_enetTxIsr(base, s_ENETHandle[instance]);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
    }

    if (event & (kENET_RxBufferInterrupt | kENET_RxFrameInterrupt))
    {
#if FSL_FEATURE_ENET_QUEUE > 1
        s_enetRxIsr(base, s_ENETHandle[instance], 0);
#else
        s_enetRxIsr(base, s_ENETHandle[instance]);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
    }

    if (event & ENET_TS_INTERRUPT)
    {
        s_enetTsIsr(base, s_ENETHandle[instance]);
    }
    if (event & ENET_ERR_INTERRUPT)
    {
        s_enetErrIsr(base, s_ENETHandle[instance]);
    }
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_CommonFrame1IRQHandler(ENET_Type *base)
{
    uint32_t event = base->EIR;
    uint32_t instance = ENET_GetInstance(base);

    if (event & (kENET_TxBuffer1Interrupt | kENET_TxFrame1Interrupt))
    {
        s_enetTxIsr(base, s_ENETHandle[instance], 1);
    }

    if (event & (kENET_RxBuffer1Interrupt | kENET_RxFrame1Interrupt))
    {
        s_enetRxIsr(base, s_ENETHandle[instance], 1);
    }
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void ENET_CommonFrame2IRQHandler(ENET_Type *base)
{
    uint32_t event = base->EIR;
    uint32_t instance = ENET_GetInstance(base);

    if (event & (kENET_TxBuffer2Interrupt | kENET_TxFrame2Interrupt))
    {
        s_enetTxIsr(base, s_ENETHandle[instance], 2);
    }

    if (event & (kENET_RxBuffer2Interrupt | kENET_RxFrame2Interrupt))
    {
        s_enetRxIsr(base, s_ENETHandle[instance], 2);
    }
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */

#if defined(ENET)
void ENET_Transmit_IRQHandler(void)
{
    s_enetTxIsr(ENET, s_ENETHandle[0]);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void ENET_Receive_IRQHandler(void)
{
    s_enetRxIsr(ENET, s_ENETHandle[0]);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void ENET_Error_IRQHandler(void)
{
    s_enetErrIsr(ENET, s_ENETHandle[0]);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void ENET_1588_Timer_IRQHandler(void)
{
    s_enetTsIsr(ENET, s_ENETHandle[0]);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void ENET_DriverIRQHandler(void)
{
    ENET_CommonFrame0IRQHandler(ENET);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif    
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

#endif


#if defined(ENET1) 
void ENET1_DriverIRQHandler(void)
{
    ENET_CommonFrame0IRQHandler(ENET1);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(ENET2)
void ENET2_DriverIRQHandler(void)
{
    ENET_CommonFrame0IRQHandler(ENET2);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif


#if defined(CONNECTIVITY__ENET0) 
void CONNECTIVITY_ENET0_FRAME0_EVENT_INT_DriverIRQHandler(void)
{
    ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET0);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#if FSL_FEATURE_ENET_QUEUE > 1
void CONNECTIVITY_ENET0_FRAME1_INT_DriverIRQHandler(void)
{
    ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET0);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
void CONNECTIVITY_ENET0_FRAME2_INT_DriverIRQHandler(void)
{
    ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET0);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif
#endif
#if defined(CONNECTIVITY__ENET1)
void CONNECTIVITY_ENET1_FRAME0_EVENT_INT_DriverIRQHandler(void)
{
    ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET1);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#if FSL_FEATURE_ENET_QUEUE > 1
void CONNECTIVITY_ENET1_FRAME1_INT_DriverIRQHandler(void)
{
    ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET1);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
void CONNECTIVITY_ENET1_FRAME2_INT_DriverIRQHandler(void)
{
    ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET1);
    /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
      exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif
#endif