booke_guest.c 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <asm/cputable.h>
#include <asm/uaccess.h>
#include <asm/kvm_ppc.h>

#include "44x_tlb.h"

#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "exits",      VCPU_STAT(sum_exits) },
	{ "mmio",       VCPU_STAT(mmio_exits) },
	{ "dcr",        VCPU_STAT(dcr_exits) },
	{ "sig",        VCPU_STAT(signal_exits) },
	{ "light",      VCPU_STAT(light_exits) },
	{ "itlb_r",     VCPU_STAT(itlb_real_miss_exits) },
	{ "itlb_v",     VCPU_STAT(itlb_virt_miss_exits) },
	{ "dtlb_r",     VCPU_STAT(dtlb_real_miss_exits) },
	{ "dtlb_v",     VCPU_STAT(dtlb_virt_miss_exits) },
	{ "sysc",       VCPU_STAT(syscall_exits) },
	{ "isi",        VCPU_STAT(isi_exits) },
	{ "dsi",        VCPU_STAT(dsi_exits) },
	{ "inst_emu",   VCPU_STAT(emulated_inst_exits) },
	{ "dec",        VCPU_STAT(dec_exits) },
	{ "ext_intr",   VCPU_STAT(ext_intr_exits) },
52
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	{ NULL }
};

static const u32 interrupt_msr_mask[16] = {
	[BOOKE_INTERRUPT_CRITICAL]      = MSR_ME,
	[BOOKE_INTERRUPT_MACHINE_CHECK] = 0,
	[BOOKE_INTERRUPT_DATA_STORAGE]  = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_INST_STORAGE]  = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_EXTERNAL]      = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_ALIGNMENT]     = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_PROGRAM]       = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_FP_UNAVAIL]    = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_SYSCALL]       = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_AP_UNAVAIL]    = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_DECREMENTER]   = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_FIT]           = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_WATCHDOG]      = MSR_ME,
	[BOOKE_INTERRUPT_DTLB_MISS]     = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_ITLB_MISS]     = MSR_CE|MSR_ME|MSR_DE,
	[BOOKE_INTERRUPT_DEBUG]         = MSR_ME,
};

const unsigned char exception_priority[] = {
	[BOOKE_INTERRUPT_DATA_STORAGE] = 0,
	[BOOKE_INTERRUPT_INST_STORAGE] = 1,
	[BOOKE_INTERRUPT_ALIGNMENT] = 2,
	[BOOKE_INTERRUPT_PROGRAM] = 3,
	[BOOKE_INTERRUPT_FP_UNAVAIL] = 4,
	[BOOKE_INTERRUPT_SYSCALL] = 5,
	[BOOKE_INTERRUPT_AP_UNAVAIL] = 6,
	[BOOKE_INTERRUPT_DTLB_MISS] = 7,
	[BOOKE_INTERRUPT_ITLB_MISS] = 8,
	[BOOKE_INTERRUPT_MACHINE_CHECK] = 9,
	[BOOKE_INTERRUPT_DEBUG] = 10,
	[BOOKE_INTERRUPT_CRITICAL] = 11,
	[BOOKE_INTERRUPT_WATCHDOG] = 12,
	[BOOKE_INTERRUPT_EXTERNAL] = 13,
	[BOOKE_INTERRUPT_FIT] = 14,
	[BOOKE_INTERRUPT_DECREMENTER] = 15,
};

const unsigned char priority_exception[] = {
	BOOKE_INTERRUPT_DATA_STORAGE,
	BOOKE_INTERRUPT_INST_STORAGE,
	BOOKE_INTERRUPT_ALIGNMENT,
	BOOKE_INTERRUPT_PROGRAM,
	BOOKE_INTERRUPT_FP_UNAVAIL,
	BOOKE_INTERRUPT_SYSCALL,
	BOOKE_INTERRUPT_AP_UNAVAIL,
	BOOKE_INTERRUPT_DTLB_MISS,
	BOOKE_INTERRUPT_ITLB_MISS,
	BOOKE_INTERRUPT_MACHINE_CHECK,
	BOOKE_INTERRUPT_DEBUG,
	BOOKE_INTERRUPT_CRITICAL,
	BOOKE_INTERRUPT_WATCHDOG,
	BOOKE_INTERRUPT_EXTERNAL,
	BOOKE_INTERRUPT_FIT,
	BOOKE_INTERRUPT_DECREMENTER,
};


void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
{
	struct tlbe *tlbe;
	int i;

	printk("vcpu %d TLB dump:\n", vcpu->vcpu_id);
	printk("| %2s | %3s | %8s | %8s | %8s |\n",
			"nr", "tid", "word0", "word1", "word2");

	for (i = 0; i < PPC44x_TLB_SIZE; i++) {
		tlbe = &vcpu->arch.guest_tlb[i];
		if (tlbe->word0 & PPC44x_TLB_VALID)
			printk(" G%2d |  %02X | %08X | %08X | %08X |\n",
			       i, tlbe->tid, tlbe->word0, tlbe->word1,
			       tlbe->word2);
	}

	for (i = 0; i < PPC44x_TLB_SIZE; i++) {
		tlbe = &vcpu->arch.shadow_tlb[i];
		if (tlbe->word0 & PPC44x_TLB_VALID)
			printk(" S%2d | %02X | %08X | %08X | %08X |\n",
			       i, tlbe->tid, tlbe->word0, tlbe->word1,
			       tlbe->word2);
	}
}

/* TODO: use vcpu_printf() */
void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
{
	int i;

	printk("pc:   %08x msr:  %08x\n", vcpu->arch.pc, vcpu->arch.msr);
	printk("lr:   %08x ctr:  %08x\n", vcpu->arch.lr, vcpu->arch.ctr);
	printk("srr0: %08x srr1: %08x\n", vcpu->arch.srr0, vcpu->arch.srr1);

	printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);

	for (i = 0; i < 32; i += 4) {
		printk("gpr%02d: %08x %08x %08x %08x\n", i,
		       vcpu->arch.gpr[i],
		       vcpu->arch.gpr[i+1],
		       vcpu->arch.gpr[i+2],
		       vcpu->arch.gpr[i+3]);
	}
}

/* Check if we are ready to deliver the interrupt */
static int kvmppc_can_deliver_interrupt(struct kvm_vcpu *vcpu, int interrupt)
{
	int r;

	switch (interrupt) {
	case BOOKE_INTERRUPT_CRITICAL:
		r = vcpu->arch.msr & MSR_CE;
		break;
	case BOOKE_INTERRUPT_MACHINE_CHECK:
		r = vcpu->arch.msr & MSR_ME;
		break;
	case BOOKE_INTERRUPT_EXTERNAL:
		r = vcpu->arch.msr & MSR_EE;
		break;
	case BOOKE_INTERRUPT_DECREMENTER:
		r = vcpu->arch.msr & MSR_EE;
		break;
	case BOOKE_INTERRUPT_FIT:
		r = vcpu->arch.msr & MSR_EE;
		break;
	case BOOKE_INTERRUPT_WATCHDOG:
		r = vcpu->arch.msr & MSR_CE;
		break;
	case BOOKE_INTERRUPT_DEBUG:
		r = vcpu->arch.msr & MSR_DE;
		break;
	default:
		r = 1;
	}

	return r;
}

static void kvmppc_deliver_interrupt(struct kvm_vcpu *vcpu, int interrupt)
{
	switch (interrupt) {
	case BOOKE_INTERRUPT_DECREMENTER:
		vcpu->arch.tsr |= TSR_DIS;
		break;
	}

	vcpu->arch.srr0 = vcpu->arch.pc;
	vcpu->arch.srr1 = vcpu->arch.msr;
	vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[interrupt];
	kvmppc_set_msr(vcpu, vcpu->arch.msr & interrupt_msr_mask[interrupt]);
}

/* Check pending exceptions and deliver one, if possible. */
void kvmppc_check_and_deliver_interrupts(struct kvm_vcpu *vcpu)
{
	unsigned long *pending = &vcpu->arch.pending_exceptions;
	unsigned int exception;
	unsigned int priority;

	priority = find_first_bit(pending, BITS_PER_BYTE * sizeof(*pending));
	while (priority <= BOOKE_MAX_INTERRUPT) {
		exception = priority_exception[priority];
		if (kvmppc_can_deliver_interrupt(vcpu, exception)) {
			kvmppc_clear_exception(vcpu, exception);
			kvmppc_deliver_interrupt(vcpu, exception);
			break;
		}

		priority = find_next_bit(pending,
		                         BITS_PER_BYTE * sizeof(*pending),
		                         priority + 1);
	}
}

static int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

	er = kvmppc_emulate_instruction(run, vcpu);
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
		/* XXX Deliver Program interrupt to guest. */
		printk(KERN_EMERG "%s: emulation failed (%08x)\n", __func__,
		       vcpu->arch.last_inst);
		r = RESUME_HOST;
		break;
	default:
		BUG();
	}

	return r;
}

/**
 * kvmppc_handle_exit
 *
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
                       unsigned int exit_nr)
{
	enum emulation_result er;
	int r = RESUME_HOST;

	local_irq_enable();

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

	switch (exit_nr) {
	case BOOKE_INTERRUPT_MACHINE_CHECK:
		printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR));
		kvmppc_dump_vcpu(vcpu);
		r = RESUME_HOST;
		break;

	case BOOKE_INTERRUPT_EXTERNAL:
	case BOOKE_INTERRUPT_DECREMENTER:
		/* Since we switched IVPR back to the host's value, the host
		 * handled this interrupt the moment we enabled interrupts.
		 * Now we just offer it a chance to reschedule the guest. */

		/* XXX At this point the TLB still holds our shadow TLB, so if
		 * we do reschedule the host will fault over it. Perhaps we
		 * should politely restore the host's entries to minimize
		 * misses before ceding control. */
		if (need_resched())
			cond_resched();
		if (exit_nr == BOOKE_INTERRUPT_DECREMENTER)
			vcpu->stat.dec_exits++;
		else
			vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_PROGRAM:
		if (vcpu->arch.msr & MSR_PR) {
			/* Program traps generated by user-level software must be handled
			 * by the guest kernel. */
			vcpu->arch.esr = vcpu->arch.fault_esr;
			kvmppc_queue_exception(vcpu, BOOKE_INTERRUPT_PROGRAM);
			r = RESUME_GUEST;
			break;
		}

		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			/* Future optimization: only reload non-volatiles if
			 * they were actually modified by emulation. */
			vcpu->stat.emulated_inst_exits++;
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_DO_DCR:
			run->exit_reason = KVM_EXIT_DCR;
			r = RESUME_HOST;
			break;
		case EMULATE_FAIL:
			/* XXX Deliver Program interrupt to guest. */
			printk(KERN_CRIT "%s: emulation at %x failed (%08x)\n",
			       __func__, vcpu->arch.pc, vcpu->arch.last_inst);
			/* For debugging, encode the failing instruction and
			 * report it to userspace. */
			run->hw.hardware_exit_reason = ~0ULL << 32;
			run->hw.hardware_exit_reason |= vcpu->arch.last_inst;
			r = RESUME_HOST;
			break;
		default:
			BUG();
		}
		break;

342 343 344 345 346
	case BOOKE_INTERRUPT_FP_UNAVAIL:
		kvmppc_queue_exception(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	case BOOKE_INTERRUPT_DATA_STORAGE:
		vcpu->arch.dear = vcpu->arch.fault_dear;
		vcpu->arch.esr = vcpu->arch.fault_esr;
		kvmppc_queue_exception(vcpu, exit_nr);
		vcpu->stat.dsi_exits++;
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_INST_STORAGE:
		vcpu->arch.esr = vcpu->arch.fault_esr;
		kvmppc_queue_exception(vcpu, exit_nr);
		vcpu->stat.isi_exits++;
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_SYSCALL:
		kvmppc_queue_exception(vcpu, exit_nr);
		vcpu->stat.syscall_exits++;
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_DTLB_MISS: {
		struct tlbe *gtlbe;
		unsigned long eaddr = vcpu->arch.fault_dear;
		gfn_t gfn;

		/* Check the guest TLB. */
		gtlbe = kvmppc_44x_dtlb_search(vcpu, eaddr);
		if (!gtlbe) {
			/* The guest didn't have a mapping for it. */
			kvmppc_queue_exception(vcpu, exit_nr);
			vcpu->arch.dear = vcpu->arch.fault_dear;
			vcpu->arch.esr = vcpu->arch.fault_esr;
			vcpu->stat.dtlb_real_miss_exits++;
			r = RESUME_GUEST;
			break;
		}

		vcpu->arch.paddr_accessed = tlb_xlate(gtlbe, eaddr);
		gfn = vcpu->arch.paddr_accessed >> PAGE_SHIFT;

		if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
			/* The guest TLB had a mapping, but the shadow TLB
			 * didn't, and it is RAM. This could be because:
			 * a) the entry is mapping the host kernel, or
			 * b) the guest used a large mapping which we're faking
			 * Either way, we need to satisfy the fault without
			 * invoking the guest. */
			kvmppc_mmu_map(vcpu, eaddr, gfn, gtlbe->tid,
			               gtlbe->word2);
			vcpu->stat.dtlb_virt_miss_exits++;
			r = RESUME_GUEST;
		} else {
			/* Guest has mapped and accessed a page which is not
			 * actually RAM. */
			r = kvmppc_emulate_mmio(run, vcpu);
		}

		break;
	}

	case BOOKE_INTERRUPT_ITLB_MISS: {
		struct tlbe *gtlbe;
		unsigned long eaddr = vcpu->arch.pc;
		gfn_t gfn;

		r = RESUME_GUEST;

		/* Check the guest TLB. */
		gtlbe = kvmppc_44x_itlb_search(vcpu, eaddr);
		if (!gtlbe) {
			/* The guest didn't have a mapping for it. */
			kvmppc_queue_exception(vcpu, exit_nr);
			vcpu->stat.itlb_real_miss_exits++;
			break;
		}

		vcpu->stat.itlb_virt_miss_exits++;

		gfn = tlb_xlate(gtlbe, eaddr) >> PAGE_SHIFT;

		if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
			/* The guest TLB had a mapping, but the shadow TLB
			 * didn't. This could be because:
			 * a) the entry is mapping the host kernel, or
			 * b) the guest used a large mapping which we're faking
			 * Either way, we need to satisfy the fault without
			 * invoking the guest. */
			kvmppc_mmu_map(vcpu, eaddr, gfn, gtlbe->tid,
			               gtlbe->word2);
		} else {
			/* Guest mapped and leaped at non-RAM! */
			kvmppc_queue_exception(vcpu,
			                       BOOKE_INTERRUPT_MACHINE_CHECK);
		}

		break;
	}

	default:
		printk(KERN_EMERG "exit_nr %d\n", exit_nr);
		BUG();
	}

	local_irq_disable();

	kvmppc_check_and_deliver_interrupts(vcpu);

	/* Do some exit accounting. */
	vcpu->stat.sum_exits++;
	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			r = (-EINTR << 2) | RESUME_HOST | (r & RESUME_FLAG_NV);

			vcpu->stat.signal_exits++;
		} else {
			vcpu->stat.light_exits++;
		}
	} else {
		switch (run->exit_reason) {
		case KVM_EXIT_MMIO:
			vcpu->stat.mmio_exits++;
			break;
		case KVM_EXIT_DCR:
			vcpu->stat.dcr_exits++;
			break;
		case KVM_EXIT_INTR:
			vcpu->stat.signal_exits++;
			break;
		}
	}

	return r;
}

/* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	struct tlbe *tlbe = &vcpu->arch.guest_tlb[0];

	tlbe->tid = 0;
	tlbe->word0 = PPC44x_TLB_16M | PPC44x_TLB_VALID;
	tlbe->word1 = 0;
	tlbe->word2 = PPC44x_TLB_SX | PPC44x_TLB_SW | PPC44x_TLB_SR;

	tlbe++;
	tlbe->tid = 0;
	tlbe->word0 = 0xef600000 | PPC44x_TLB_4K | PPC44x_TLB_VALID;
	tlbe->word1 = 0xef600000;
	tlbe->word2 = PPC44x_TLB_SX | PPC44x_TLB_SW | PPC44x_TLB_SR
	              | PPC44x_TLB_I | PPC44x_TLB_G;

	vcpu->arch.pc = 0;
	vcpu->arch.msr = 0;
	vcpu->arch.gpr[1] = (16<<20) - 8; /* -8 for the callee-save LR slot */

	/* Eye-catching number so we know if the guest takes an interrupt
	 * before it's programmed its own IVPR. */
	vcpu->arch.ivpr = 0x55550000;

	/* Since the guest can directly access the timebase, it must know the
	 * real timebase frequency. Accordingly, it must see the state of
	 * CCR1[TCS]. */
	vcpu->arch.ccr1 = mfspr(SPRN_CCR1);

	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

	regs->pc = vcpu->arch.pc;
	regs->cr = vcpu->arch.cr;
	regs->ctr = vcpu->arch.ctr;
	regs->lr = vcpu->arch.lr;
	regs->xer = vcpu->arch.xer;
	regs->msr = vcpu->arch.msr;
	regs->srr0 = vcpu->arch.srr0;
	regs->srr1 = vcpu->arch.srr1;
	regs->pid = vcpu->arch.pid;
	regs->sprg0 = vcpu->arch.sprg0;
	regs->sprg1 = vcpu->arch.sprg1;
	regs->sprg2 = vcpu->arch.sprg2;
	regs->sprg3 = vcpu->arch.sprg3;
	regs->sprg5 = vcpu->arch.sprg4;
	regs->sprg6 = vcpu->arch.sprg5;
	regs->sprg7 = vcpu->arch.sprg6;

	for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
		regs->gpr[i] = vcpu->arch.gpr[i];

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

	vcpu->arch.pc = regs->pc;
	vcpu->arch.cr = regs->cr;
	vcpu->arch.ctr = regs->ctr;
	vcpu->arch.lr = regs->lr;
	vcpu->arch.xer = regs->xer;
	vcpu->arch.msr = regs->msr;
	vcpu->arch.srr0 = regs->srr0;
	vcpu->arch.srr1 = regs->srr1;
	vcpu->arch.sprg0 = regs->sprg0;
	vcpu->arch.sprg1 = regs->sprg1;
	vcpu->arch.sprg2 = regs->sprg2;
	vcpu->arch.sprg3 = regs->sprg3;
	vcpu->arch.sprg5 = regs->sprg4;
	vcpu->arch.sprg6 = regs->sprg5;
	vcpu->arch.sprg7 = regs->sprg6;

	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gpr); i++)
		vcpu->arch.gpr[i] = regs->gpr[i];

	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	return -ENOTSUPP;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	return -ENOTSUPP;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -ENOTSUPP;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -ENOTSUPP;
}

/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
                                  struct kvm_translation *tr)
{
	struct tlbe *gtlbe;
	int index;
	gva_t eaddr;
	u8 pid;
	u8 as;

	eaddr = tr->linear_address;
	pid = (tr->linear_address >> 32) & 0xff;
	as = (tr->linear_address >> 40) & 0x1;

	index = kvmppc_44x_tlb_index(vcpu, eaddr, pid, as);
	if (index == -1) {
		tr->valid = 0;
		return 0;
	}

	gtlbe = &vcpu->arch.guest_tlb[index];

	tr->physical_address = tlb_xlate(gtlbe, eaddr);
	/* XXX what does "writeable" and "usermode" even mean? */
	tr->valid = 1;

	return 0;
}