20.md 9.0 KB
Newer Older
W
init  
wizardforcel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
# seaborn.barplot

```py
seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=<function mean>, ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)
```

Show point estimates and confidence intervals as rectangular bars.

A bar plot represents an estimate of central tendency for a numeric variable with the height of each rectangle and provides some indication of the uncertainty around that estimate using error bars. Bar plots include 0 in the quantitative axis range, and they are a good choice when 0 is a meaningful value for the quantitative variable, and you want to make comparisons against it.

For datasets where 0 is not a meaningful value, a point plot will allow you to focus on differences between levels of one or more categorical variables.

It is also important to keep in mind that a bar plot shows only the mean (or other estimator) value, but in many cases it may be more informative to show the distribution of values at each level of the categorical variables. In that case, other approaches such as a box or violin plot may be more appropriate.

Input data can be passed in a variety of formats, including:

*   Vectors of data represented as lists, numpy arrays, or pandas Series objects passed directly to the `x`, `y`, and/or `hue` parameters.
*   A “long-form” DataFrame, in which case the `x`, `y`, and `hue` variables will determine how the data are plotted.
*   A “wide-form” DataFrame, such that each numeric column will be plotted.
*   An array or list of vectors.

In most cases, it is possible to use numpy or Python objects, but pandas objects are preferable because the associated names will be used to annotate the axes. Additionally, you can use Categorical types for the grouping variables to control the order of plot elements.

This function always treats one of the variables as categorical and draws data at ordinal positions (0, 1, … n) on the relevant axis, even when the data has a numeric or date type.

See the [tutorial](../tutorial/categorical.html#categorical-tutorial) for more information.

| Parameters: | **x, y, hue** : names of variables in `data` or vector data, optional

> Inputs for plotting long-form data. See examples for interpretation.

**data** : DataFrame, array, or list of arrays, optional

> Dataset for plotting. If `x` and `y` are absent, this is interpreted as wide-form. Otherwise it is expected to be long-form.

**order, hue_order** : lists of strings, optional

> Order to plot the categorical levels in, otherwise the levels are inferred from the data objects.

**estimator** : callable that maps vector -&gt; scalar, optional

> Statistical function to estimate within each categorical bin.

**ci** : float or “sd” or None, optional

> Size of confidence intervals to draw around estimated values. If “sd”, skip bootstrapping and draw the standard deviation of the observations. If `None`, no bootstrapping will be performed, and error bars will not be drawn.

**n_boot** : int, optional

> Number of bootstrap iterations to use when computing confidence intervals.

**units** : name of variable in `data` or vector data, optional

> Identifier of sampling units, which will be used to perform a multilevel bootstrap and account for repeated measures design.

**orient** : “v” &#124; “h”, optional

> Orientation of the plot (vertical or horizontal). This is usually inferred from the dtype of the input variables, but can be used to specify when the “categorical” variable is a numeric or when plotting wide-form data.

**color** : matplotlib color, optional

> Color for all of the elements, or seed for a gradient palette.

**palette** : palette name, list, or dict, optional

> Colors to use for the different levels of the `hue` variable. Should be something that can be interpreted by [`color_palette()`](seaborn.color_palette.html#seaborn.color_palette "seaborn.color_palette"), or a dictionary mapping hue levels to matplotlib colors.

**saturation** : float, optional

> Proportion of the original saturation to draw colors at. Large patches often look better with slightly desaturated colors, but set this to `1` if you want the plot colors to perfectly match the input color spec.

**errcolor** : matplotlib color

> Color for the lines that represent the confidence interval.

**errwidth** : float, optional

> Thickness of error bar lines (and caps).

**capsize** : float, optional

> Width of the “caps” on error bars.

**dodge** : bool, optional

> When hue nesting is used, whether elements should be shifted along the categorical axis.

**ax** : matplotlib Axes, optional

> Axes object to draw the plot onto, otherwise uses the current Axes.

**kwargs** : key, value mappings

> Other keyword arguments are passed through to `plt.bar` at draw time.

 |
| --- | --- |
| Returns: | **ax** : matplotlib Axes

> Returns the Axes object with the plot drawn onto it.

 |
| --- | --- |

See also

Show the counts of observations in each categorical bin.Show point estimates and confidence intervals using scatterplot glyphs.Combine a categorical plot with a class:<cite>FacetGrid</cite>.

Examples

Draw a set of vertical bar plots grouped by a categorical variable:

```py
>>> import seaborn as sns
>>> sns.set(style="whitegrid")
>>> tips = sns.load_dataset("tips")
>>> ax = sns.barplot(x="day", y="total_bill", data=tips)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-1.png](img/9d1addc98b6a35ef0376219c56e7b7fd.jpg)

Draw a set of vertical bars with nested grouping by a two variables:

```py
>>> ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-2.png](img/863249efe2403afa4fae2f2b6884d3bd.jpg)

Draw a set of horizontal bars:

```py
>>> ax = sns.barplot(x="tip", y="day", data=tips)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-3.png](img/c3ea6265eaff0a4bfaec2966088cb66f.jpg)

Control bar order by passing an explicit order:

```py
>>> ax = sns.barplot(x="time", y="tip", data=tips,
...                  order=["Dinner", "Lunch"])

```

![http://seaborn.pydata.org/_images/seaborn-barplot-4.png](img/9233554272a5e436f6ab85c97a65010c.jpg)

Use median as the estimate of central tendency:

```py
>>> from numpy import median
>>> ax = sns.barplot(x="day", y="tip", data=tips, estimator=median)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-5.png](img/2622373fb99932aa42e45c3b151135be.jpg)

Show the standard error of the mean with the error bars:

```py
>>> ax = sns.barplot(x="day", y="tip", data=tips, ci=68)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-6.png](img/d1310bd7e87a8549d1f0b3a1479fc06d.jpg)

Show standard deviation of observations instead of a confidence interval:

```py
>>> ax = sns.barplot(x="day", y="tip", data=tips, ci="sd")

```

![http://seaborn.pydata.org/_images/seaborn-barplot-7.png](img/eeb77dac6d8f76d9f715476ce03773c5.jpg)

Add “caps” to the error bars:

```py
>>> ax = sns.barplot(x="day", y="tip", data=tips, capsize=.2)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-8.png](img/5a69e1058d9b8b4b5be6dc15d1bad130.jpg)

Use a different color palette for the bars:

```py
>>> ax = sns.barplot("size", y="total_bill", data=tips,
...                  palette="Blues_d")

```

![http://seaborn.pydata.org/_images/seaborn-barplot-9.png](img/ef011fca38d3c55dde21ee8363e93e61.jpg)

Use `hue` without changing bar position or width:

```py
>>> tips["weekend"] = tips["day"].isin(["Sat", "Sun"])
>>> ax = sns.barplot(x="day", y="total_bill", hue="weekend",
...                  data=tips, dodge=False)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-10.png](img/d38d4ad12b16322a5ed00690bcbcd8b6.jpg)

Plot all bars in a single color:

```py
>>> ax = sns.barplot("size", y="total_bill", data=tips,
...                  color="salmon", saturation=.5)

```

![http://seaborn.pydata.org/_images/seaborn-barplot-11.png](img/4922c693b75b7656b2f16f8fd2dd6509.jpg)

Use `plt.bar` keyword arguments to further change the aesthetic:

```py
>>> ax = sns.barplot("day", "total_bill", data=tips,
...                  linewidth=2.5, facecolor=(1, 1, 1, 0),
...                  errcolor=".2", edgecolor=".2")

```

![http://seaborn.pydata.org/_images/seaborn-barplot-12.png](img/20114eb58ca40a3ccf0b20f14f426c83.jpg)

Use [`catplot()`](seaborn.catplot.html#seaborn.catplot "seaborn.catplot") to combine a [`barplot()`](#seaborn.barplot "seaborn.barplot") and a [`FacetGrid`](seaborn.FacetGrid.html#seaborn.FacetGrid "seaborn.FacetGrid"). This allows grouping within additional categorical variables. Using [`catplot()`](seaborn.catplot.html#seaborn.catplot "seaborn.catplot") is safer than using [`FacetGrid`](seaborn.FacetGrid.html#seaborn.FacetGrid "seaborn.FacetGrid") directly, as it ensures synchronization of variable order across facets:

```py
>>> g = sns.catplot(x="sex", y="total_bill",
...                 hue="smoker", col="time",
...                 data=tips, kind="bar",
...                 height=4, aspect=.7);

```

![http://seaborn.pydata.org/_images/seaborn-barplot-13.png](img/a2d8b9c6867b1006b56e5508d5472c86.jpg)