nn.md 299.8 KB
Newer Older
W
wizardforcel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657


# torch.nn

## Parameters

```py
class torch.nn.Parameter
```

A kind of Tensor that is to be considered a module parameter.

Parameters are [`Tensor`](tensors.html#torch.Tensor "torch.Tensor") subclasses, that have a very special property when used with [`Module`](#torch.nn.Module "torch.nn.Module") s - when they’re assigned as Module attributes they are automatically added to the list of its parameters, and will appear e.g. in [`parameters()`](#torch.nn.Module.parameters "torch.nn.Module.parameters") iterator. Assigning a Tensor doesn’t have such effect. This is because one might want to cache some temporary state, like last hidden state of the RNN, in the model. If there was no such class as [`Parameter`](#torch.nn.Parameter "torch.nn.Parameter"), these temporaries would get registered too.

| Parameters: | 

*   **data** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – parameter tensor.
*   **requires_grad** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – if the parameter requires gradient. See [Excluding subgraphs from backward](notes/autograd.html#excluding-subgraphs) for more details. Default: <cite>True</cite>

 |
| --- | --- |

## Containers

### Module

```py
class torch.nn.Module
```

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

```py
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
       x = F.relu(self.conv1(x))
       return F.relu(self.conv2(x))

```

Submodules assigned in this way will be registered, and will have their parameters converted too when you call [`to()`](#torch.nn.Module.to "torch.nn.Module.to"), etc.

```py
add_module(name, module)
```

Adds a child module to the current module.

The module can be accessed as an attribute using the given name.

| Parameters: | 

*   **name** (_string_) – name of the child module. The child module can be accessed from this module using the given name
*   **parameter** ([_Module_](#torch.nn.Module "torch.nn.Module")) – child module to be added to the module.

 |
| --- | --- |

```py
apply(fn)
```

Applies `fn` recursively to every submodule (as returned by `.children()`) as well as self. Typical use includes initializing the parameters of a model (see also torch-nn-init).

| Parameters: | **fn** ([`Module`](#torch.nn.Module "torch.nn.Module") -> None) – function to be applied to each submodule |
| --- | --- |
| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

Example:

```py
>>> def init_weights(m):
 print(m)
 if type(m) == nn.Linear:
 m.weight.data.fill_(1.0)
 print(m.weight)

>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
 [ 1.,  1.]])
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
 [ 1.,  1.]])
Sequential(
 (0): Linear(in_features=2, out_features=2, bias=True)
 (1): Linear(in_features=2, out_features=2, bias=True)
)
Sequential(
 (0): Linear(in_features=2, out_features=2, bias=True)
 (1): Linear(in_features=2, out_features=2, bias=True)
)

```

```py
buffers(recurse=True)
```

Returns an iterator over module buffers.

| Parameters: | **recurse** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. |
| --- | --- |
| Yields: | _torch.Tensor_ – module buffer |
| --- | --- |

Example:

```py
>>> for buf in model.buffers():
>>>     print(type(buf.data), buf.size())
<class 'torch.FloatTensor'> (20L,)
<class 'torch.FloatTensor'> (20L, 1L, 5L, 5L)

```

```py
children()
```

Returns an iterator over immediate children modules.

| Yields: | _Module_ – a child module |
| --- | --- |

```py
cpu()
```

Moves all model parameters and buffers to the CPU.

| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

```py
cuda(device=None)
```

Moves all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

| Parameters: | **device** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – if specified, all parameters will be copied to that device |
| --- | --- |
| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

```py
double()
```

Casts all floating point parameters and buffers to `double` datatype.

| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

```py
dump_patches = False
```

This allows better BC support for [`load_state_dict()`](#torch.nn.Module.load_state_dict "torch.nn.Module.load_state_dict"). In [`state_dict()`](#torch.nn.Module.state_dict "torch.nn.Module.state_dict"), the version number will be saved as in the attribute &lt;cite&gt;_metadata&lt;/cite&gt; of the returned state dict, and thus pickled. &lt;cite&gt;_metadata&lt;/cite&gt; is a dictionary with keys that follow the naming convention of state dict. See `_load_from_state_dict` on how to use this information in loading.

If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s &lt;cite&gt;_load_from_state_dict&lt;/cite&gt; method can compare the version number and do appropriate changes if the state dict is from before the change.

```py
eval()
```

Sets the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. [`Dropout`](#torch.nn.Dropout "torch.nn.Dropout"), `BatchNorm`, etc.

```py
extra_repr()
```

Set the extra representation of the module

To print customized extra information, you should reimplement this method in your own modules. Both single-line and multi-line strings are acceptable.

```py
float()
```

Casts all floating point parameters and buffers to float datatype.

| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

```py
forward(*input)
```

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`](#torch.nn.Module "torch.nn.Module") instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

```py
half()
```

Casts all floating point parameters and buffers to `half` datatype.

| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

```py
load_state_dict(state_dict, strict=True)
```

Copies parameters and buffers from [`state_dict`](#torch.nn.Module.state_dict "torch.nn.Module.state_dict") into this module and its descendants. If `strict` is `True`, then the keys of [`state_dict`](#torch.nn.Module.state_dict "torch.nn.Module.state_dict") must exactly match the keys returned by this module’s [`state_dict()`](#torch.nn.Module.state_dict "torch.nn.Module.state_dict") function.

| Parameters: | 

*   **state_dict** ([_dict_](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.7)")) – a dict containing parameters and persistent buffers.
*   **strict** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – whether to strictly enforce that the keys in [`state_dict`](#torch.nn.Module.state_dict "torch.nn.Module.state_dict") match the keys returned by this module’s [`state_dict()`](#torch.nn.Module.state_dict "torch.nn.Module.state_dict") function. Default: `True`

 |
| --- | --- |

```py
modules()
```

Returns an iterator over all modules in the network.

| Yields: | _Module_ – a module in the network |
| --- | --- |

Note

Duplicate modules are returned only once. In the following example, `l` will be returned only once.

Example:

```py
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
 print(idx, '->', m)

0 -> Sequential (
 (0): Linear (2 -> 2)
 (1): Linear (2 -> 2)
)
1 -> Linear (2 -> 2)

```

```py
named_buffers(prefix='', recurse=True)
```

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

| Parameters: | 

*   **prefix** ([_str_](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.7)")) – prefix to prepend to all buffer names.
*   **recurse** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

 |
| --- | --- |
| Yields: | _(string, torch.Tensor)_ – Tuple containing the name and buffer |
| --- | --- |

Example:

```py
>>> for name, buf in self.named_buffers():
>>>    if name in ['running_var']:
>>>        print(buf.size())

```

```py
named_children()
```

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

| Yields: | _(string, Module)_ – Tuple containing a name and child module |
| --- | --- |

Example:

```py
>>> for name, module in model.named_children():
>>>     if name in ['conv4', 'conv5']:
>>>         print(module)

```

```py
named_modules(memo=None, prefix='')
```

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

| Yields: | _(string, Module)_ – Tuple of name and module |
| --- | --- |

Note

Duplicate modules are returned only once. In the following example, `l` will be returned only once.

Example:

```py
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
 print(idx, '->', m)

0 -> ('', Sequential (
 (0): Linear (2 -> 2)
 (1): Linear (2 -> 2)
))
1 -> ('0', Linear (2 -> 2))

```

```py
named_parameters(prefix='', recurse=True)
```

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

| Parameters: | 

*   **prefix** ([_str_](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.7)")) – prefix to prepend to all parameter names.
*   **recurse** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

 |
| --- | --- |
| Yields: | _(string, Parameter)_ – Tuple containing the name and parameter |
| --- | --- |

Example:

```py
>>> for name, param in self.named_parameters():
>>>    if name in ['bias']:
>>>        print(param.size())

```

```py
parameters(recurse=True)
```

Returns an iterator over module parameters.

This is typically passed to an optimizer.

| Parameters: | **recurse** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. |
| --- | --- |
| Yields: | _Parameter_ – module parameter |
| --- | --- |

Example:

```py
>>> for param in model.parameters():
>>>     print(type(param.data), param.size())
<class 'torch.FloatTensor'> (20L,)
<class 'torch.FloatTensor'> (20L, 1L, 5L, 5L)

```

```py
register_backward_hook(hook)
```

Registers a backward hook on the module.

The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:

```py
hook(module, grad_input, grad_output) -> Tensor or None

```

The `grad_input` and `grad_output` may be tuples if the module has multiple inputs or outputs. The hook should not modify its arguments, but it can optionally return a new gradient with respect to input that will be used in place of `grad_input` in subsequent computations.

| Returns: | a handle that can be used to remove the added hook by calling `handle.remove()` |
| --- | --- |
| Return type: | `torch.utils.hooks.RemovableHandle` |
| --- | --- |

Warning

The current implementation will not have the presented behavior for complex [`Module`](#torch.nn.Module "torch.nn.Module") that perform many operations. In some failure cases, `grad_input` and `grad_output` will only contain the gradients for a subset of the inputs and outputs. For such [`Module`](#torch.nn.Module "torch.nn.Module"), you should use [`torch.Tensor.register_hook()`](autograd.html#torch.Tensor.register_hook "torch.Tensor.register_hook") directly on a specific input or output to get the required gradients.

```py
register_buffer(name, tensor)
```

Adds a persistent buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s `running_mean` is not a parameter, but is part of the persistent state.

Buffers can be accessed as attributes using given names.

| Parameters: | 

*   **name** (_string_) – name of the buffer. The buffer can be accessed from this module using the given name
*   **tensor** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – buffer to be registered.

 |
| --- | --- |

Example:

```py
>>> self.register_buffer('running_mean', torch.zeros(num_features))

```

```py
register_forward_hook(hook)
```

Registers a forward hook on the module.

The hook will be called every time after [`forward()`](#torch.nn.Module.forward "torch.nn.Module.forward") has computed an output. It should have the following signature:

```py
hook(module, input, output) -> None

```

The hook should not modify the input or output.

| Returns: | a handle that can be used to remove the added hook by calling `handle.remove()` |
| --- | --- |
| Return type: | `torch.utils.hooks.RemovableHandle` |
| --- | --- |

```py
register_forward_pre_hook(hook)
```

Registers a forward pre-hook on the module.

The hook will be called every time before [`forward()`](#torch.nn.Module.forward "torch.nn.Module.forward") is invoked. It should have the following signature:

```py
hook(module, input) -> None

```

The hook should not modify the input.

| Returns: | a handle that can be used to remove the added hook by calling `handle.remove()` |
| --- | --- |
| Return type: | `torch.utils.hooks.RemovableHandle` |
| --- | --- |

```py
register_parameter(name, param)
```

Adds a parameter to the module.

The parameter can be accessed as an attribute using given name.

| Parameters: | 

*   **name** (_string_) – name of the parameter. The parameter can be accessed from this module using the given name
*   **parameter** ([_Parameter_](#torch.nn.Parameter "torch.nn.Parameter")) – parameter to be added to the module.

 |
| --- | --- |

```py
state_dict(destination=None, prefix='', keep_vars=False)
```

Returns a dictionary containing a whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names.

| Returns: | a dictionary containing a whole state of the module |
| --- | --- |
| Return type: | [dict](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.7)") |
| --- | --- |

Example:

```py
>>> module.state_dict().keys()
['bias', 'weight']

```

```py
to(*args, **kwargs)
```

Moves and/or casts the parameters and buffers.

This can be called as

```py
to(device=None, dtype=None, non_blocking=False)
```

```py
to(dtype, non_blocking=False)
```

```py
to(tensor, non_blocking=False)
```

Its signature is similar to [`torch.Tensor.to()`](tensors.html#torch.Tensor.to "torch.Tensor.to"), but only accepts floating point desired `dtype` s. In addition, this method will only cast the floating point parameters and buffers to `dtype` (if given). The integral parameters and buffers will be moved `device`, if that is given, but with dtypes unchanged. When `non_blocking` is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note

This method modifies the module in-place.

| Parameters: | 

*   **device** (`torch.device`) – the desired device of the parameters and buffers in this module
*   **dtype** (`torch.dtype`) – the desired floating point type of the floating point parameters and buffers in this module
*   **tensor** ([_torch.Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

 |
| --- | --- |
| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

Example:

```py
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
 [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
 [-0.5113, -0.2325]], dtype=torch.float64)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
 [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
 [-0.5112, -0.2324]], dtype=torch.float16)

```

```py
train(mode=True)
```

Sets the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. [`Dropout`](#torch.nn.Dropout "torch.nn.Dropout"), `BatchNorm`, etc.

| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

```py
type(dst_type)
```

Casts all parameters and buffers to `dst_type`.

| Parameters: | **dst_type** ([_type_](https://docs.python.org/3/library/functions.html#type "(in Python v3.7)") _or_ _string_) – the desired type |
| --- | --- |
| Returns: | self |
| --- | --- |
| Return type: | [Module](#torch.nn.Module "torch.nn.Module") |
| --- | --- |

```py
zero_grad()
```

Sets gradients of all model parameters to zero.

### Sequential

```py
class torch.nn.Sequential(*args)
```

A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ordered dict of modules can also be passed in.

To make it easier to understand, here is a small example:

```py
# Example of using Sequential
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

```

### ModuleList

```py
class torch.nn.ModuleList(modules=None)
```

Holds submodules in a list.

ModuleList can be indexed like a regular Python list, but modules it contains are properly registered, and will be visible by all Module methods.

| Parameters: | **modules** (_iterable__,_ _optional_) – an iterable of modules to add |
| --- | --- |

Example:

```py
class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)
        return x

```

```py
append(module)
```

Appends a given module to the end of the list.

| Parameters: | **module** ([_nn.Module_](#torch.nn.Module "torch.nn.Module")) – module to append |
| --- | --- |

```py
extend(modules)
```

Appends modules from a Python iterable to the end of the list.

| Parameters: | **modules** (_iterable_) – iterable of modules to append |
| --- | --- |

```py
insert(index, module)
```

Insert a given module before a given index in the list.

| Parameters: | 

*   **index** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – index to insert.
*   **module** ([_nn.Module_](#torch.nn.Module "torch.nn.Module")) – module to insert

 |
| --- | --- |

### ModuleDict

```py
class torch.nn.ModuleDict(modules=None)
```

Holds submodules in a dictionary.

ModuleDict can be indexed like a regular Python dictionary, but modules it contains are properly registered, and will be visible by all Module methods.

| Parameters: | **modules** (_iterable__,_ _optional_) – a mapping (dictionary) of (string: module) or an iterable of key/value pairs of type (string, module) |
| --- | --- |

Example:

```py
class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.choices = nn.ModuleDict({
                'conv': nn.Conv2d(10, 10, 3),
                'pool': nn.MaxPool2d(3)
        })
        self.activations = nn.ModuleDict([
                ['lrelu', nn.LeakyReLU()],
                ['prelu', nn.PReLU()]
        ])

    def forward(self, x, choice, act):
        x = self.choices[choice](x)
        x = self.activations[act](x)
        return x

```

```py
clear()
```

Remove all items from the ModuleDict.

```py
items()
```

Return an iterable of the ModuleDict key/value pairs.

```py
keys()
```

Return an iterable of the ModuleDict keys.

```py
pop(key)
```

Remove key from the ModuleDict and return its module.

| Parameters: | **key** (_string_) – key to pop from the ModuleDict |
| --- | --- |

```py
update(modules)
```

Update the ModuleDict with the key/value pairs from a mapping or an iterable, overwriting existing keys.

| Parameters: | **modules** (_iterable_) – a mapping (dictionary) of (string: `Module``) or an iterable of key/value pairs of type (string, `Module``) |
| --- | --- |

```py
values()¶
```

Return an iterable of the ModuleDict values.

### ParameterList

```py
class torch.nn.ParameterList(parameters=None)¶
```

Holds parameters in a list.

ParameterList can be indexed like a regular Python list, but parameters it contains are properly registered, and will be visible by all Module methods.

| Parameters: | **parameters** (_iterable__,_ _optional_) – an iterable of `Parameter`` to add |
| --- | --- |

Example:

```py
class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)])

    def forward(self, x):
        # ParameterList can act as an iterable, or be indexed using ints
        for i, p in enumerate(self.params):
            x = self.params[i // 2].mm(x) + p.mm(x)
        return x

```

```py
append(parameter)
```

Appends a given parameter at the end of the list.

| Parameters: | **parameter** ([_nn.Parameter_](#torch.nn.Parameter "torch.nn.Parameter")) – parameter to append |
| --- | --- |

```py
extend(parameters)
```

Appends parameters from a Python iterable to the end of the list.

| Parameters: | **parameters** (_iterable_) – iterable of parameters to append |
| --- | --- |

### ParameterDict

```py
class torch.nn.ParameterDict(parameters=None)
```

Holds parameters in a dictionary.

ParameterDict can be indexed like a regular Python dictionary, but parameters it contains are properly registered, and will be visible by all Module methods.

| Parameters: | **parameters** (_iterable__,_ _optional_) – a mapping (dictionary) of (string : [`Parameter`](#torch.nn.Parameter "torch.nn.Parameter")) or an iterable of key,value pairs of type (string, [`Parameter`](#torch.nn.Parameter "torch.nn.Parameter")) |
| --- | --- |

Example:

```py
class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.params = nn.ParameterDict({
                'left': nn.Parameter(torch.randn(5, 10)),
                'right': nn.Parameter(torch.randn(5, 10))
        })

    def forward(self, x, choice):
        x = self.params[choice].mm(x)
        return x

```

```py
clear()
```

Remove all items from the ParameterDict.

```py
items()
```

Return an iterable of the ParameterDict key/value pairs.

```py
keys()
```

Return an iterable of the ParameterDict keys.

```py
pop(key)
```

Remove key from the ParameterDict and return its parameter.

| Parameters: | **key** (_string_) – key to pop from the ParameterDict |
| --- | --- |

```py
update(parameters)
```

Update the ParameterDict with the key/value pairs from a mapping or an iterable, overwriting existing keys.

| Parameters: | **parameters** (_iterable_) – a mapping (dictionary) of (string : [`Parameter`](#torch.nn.Parameter "torch.nn.Parameter")) or an iterable of key/value pairs of type (string, [`Parameter`](#torch.nn.Parameter "torch.nn.Parameter")) |
| --- | --- |

```py
values()
```

Return an iterable of the ParameterDict values.

## Convolution layers

### Conv1d

```py
class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
```

Applies a 1D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/1dad4f3ff614c986028f7100e0205f6d.jpg) and output ![](img/a03de8b18f61a493174a56530fb03f1d.jpg) can be precisely described as:

![](img/806f7530da55bf294a636b8c7ed38bcb.jpg)

where ![](img/d5d3d32b4a35f91edb54c3c3f87d582e.jpg) is the valid [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation) operator, ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is a batch size, ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) denotes a number of channels, ![](img/db4a9fef02111450bf98261889de550c.jpg) is a length of signal sequence.

*   `stride` controls the stride for the cross-correlation, a single number or a one-element tuple.

*   `padding` controls the amount of implicit zero-paddings on both sides for `padding` number of points.

*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

*   `groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. For example,

    &gt; *   At groups=1, all inputs are convolved to all outputs.
    &gt; *   At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
    &gt; *   At groups= `in_channels`, each input channel is convolved with its own set of filters, of size ![](img/19131f9f53448ae579b613bc7bc90158.jpg)

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation), and not a full [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation). It is up to the user to add proper padding.

Note

When &lt;cite&gt;groups == in_channels&lt;/cite&gt; and &lt;cite&gt;out_channels == K * in_channels&lt;/cite&gt;, where &lt;cite&gt;K&lt;/cite&gt; is a positive integer, this operation is also termed in literature as depthwise convolution.

In other words, for an input of size ![](img/7db3e5e5d600c81e77756d5eee050505.jpg), a depthwise convolution with a depthwise multiplier &lt;cite&gt;K&lt;/cite&gt;, can be constructed by arguments ![](img/eab8f2745761d762e48a59446243af90.jpg).

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = True`. Please see the notes on [Reproducibility](notes/randomness.html) for background.

| Parameters: | 

*   **in_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels in the input image
*   **out_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels produced by the convolution
*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the convolving kernel
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Stride of the convolution. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Zero-padding added to both sides of the input. Default: 0
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Spacing between kernel elements. Default: 1
*   **groups** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Number of blocked connections from input channels to output channels. Default: 1
*   **bias** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If `True`, adds a learnable bias to the output. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/7db3e5e5d600c81e77756d5eee050505.jpg)

*   Output: ![](img/3423094375906aa21d1b2e095e95c230.jpg) where

    ![](img/91d48a39a90c6b4ed37ac863c1a8ff7b.jpg)

| Variables: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape (out_channels, in_channels, kernel_size). The values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/69aab1ce658aabc9a2d986ae8281e2ad.jpg)
*   **bias** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable bias of the module of shape (out_channels). If `bias` is `True`, then the values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/69aab1ce658aabc9a2d986ae8281e2ad.jpg)

 |
| --- | --- |

Examples:

```py
>>> m = nn.Conv1d(16, 33, 3, stride=2)
>>> input = torch.randn(20, 16, 50)
>>> output = m(input)

```

### Conv2d

```py
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
```

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/a6c3a4e9779c159b39576bee3400a00b.jpg) and output ![](img/4b354af142fb0f01680d390ef552829f.jpg) can be precisely described as:

![](img/a4928651cb959fa7871eaebdb489b083.jpg)

where ![](img/d5d3d32b4a35f91edb54c3c3f87d582e.jpg) is the valid 2D [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation) operator, ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is a batch size, ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) denotes a number of channels, ![](img/9b7d9beafd65e2cf6493bdca741827a5.jpg) is a height of input planes in pixels, and ![](img/90490a34512e9bd1843ed4da713d0813.jpg) is width in pixels.

*   `stride` controls the stride for the cross-correlation, a single number or a tuple.

*   `padding` controls the amount of implicit zero-paddings on both sides for `padding` number of points for each dimension.

*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

*   `groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. For example,

    &gt; *   At groups=1, all inputs are convolved to all outputs.
    &gt; *   At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
    &gt; *   At groups= `in_channels`, each input channel is convolved with its own set of filters, of size: ![](img/19131f9f53448ae579b613bc7bc90158.jpg).

The parameters `kernel_size`, `stride`, `padding`, `dilation` can either be:

> *   a single `int` – in which case the same value is used for the height and width dimension
> *   a `tuple` of two ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the height dimension, and the second &lt;cite&gt;int&lt;/cite&gt; for the width dimension

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation), and not a full [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation). It is up to the user to add proper padding.

Note

When &lt;cite&gt;groups == in_channels&lt;/cite&gt; and &lt;cite&gt;out_channels == K * in_channels&lt;/cite&gt;, where &lt;cite&gt;K&lt;/cite&gt; is a positive integer, this operation is also termed in literature as depthwise convolution.

In other words, for an input of size ![](img/0385ad868fed790d36381b9e8788c18b.jpg), a depthwise convolution with a depthwise multiplier &lt;cite&gt;K&lt;/cite&gt;, can be constructed by arguments ![](img/8aee041e54a302b342d50912ce67f44b.jpg).

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = True`. Please see the notes on [Reproducibility](notes/randomness.html) for background.

| Parameters: | 

*   **in_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels in the input image
*   **out_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels produced by the convolution
*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the convolving kernel
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Stride of the convolution. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Zero-padding added to both sides of the input. Default: 0
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Spacing between kernel elements. Default: 1
*   **groups** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Number of blocked connections from input channels to output channels. Default: 1
*   **bias** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If `True`, adds a learnable bias to the output. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/0385ad868fed790d36381b9e8788c18b.jpg)

*   Output: ![](img/d3edfe8a9bbdd73ba5c4b566353777f0.jpg) where

    ![](img/a89a5326ab89279b92f4720f63b4eaae.jpg)

    ![](img/03f69d6e3dffc3254359e41f8b310667.jpg)

| Variables: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape (out_channels, in_channels, kernel_size[0], kernel_size[1]). The values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/c12e2153347b696ebb784e5675cc566e.jpg)
*   **bias** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable bias of the module of shape (out_channels). If `bias` is `True`, then the values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/c12e2153347b696ebb784e5675cc566e.jpg)

 |
| --- | --- |

Examples:

```py
>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> # non-square kernels and unequal stride and with padding and dilation
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
>>> input = torch.randn(20, 16, 50, 100)
>>> output = m(input)

```

### Conv3d

```py
class torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
```

Applies a 3D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/ca863d6b44a0246998de77c7c423ec32.jpg) and output ![](img/f05e8faaf90b4c16b23ca0165e8e09f4.jpg) can be precisely described as:

![](img/39831867c152a21de6e580bf01c0cb7f.jpg)

where ![](img/d5d3d32b4a35f91edb54c3c3f87d582e.jpg) is the valid 3D [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation) operator

*   `stride` controls the stride for the cross-correlation.

*   `padding` controls the amount of implicit zero-paddings on both sides for `padding` number of points for each dimension.

*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

*   `groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. For example,

    &gt; *   At groups=1, all inputs are convolved to all outputs.
    &gt; *   At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
    &gt; *   At groups= `in_channels`, each input channel is convolved with its own set of filters, of size ![](img/648a514da1dace3deacf3f078287e157.jpg).

The parameters `kernel_size`, `stride`, `padding`, `dilation` can either be:

> *   a single `int` – in which case the same value is used for the depth, height and width dimension
> *   a `tuple` of three ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the depth dimension, the second &lt;cite&gt;int&lt;/cite&gt; for the height dimension and the third &lt;cite&gt;int&lt;/cite&gt; for the width dimension

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation), and not a full [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation). It is up to the user to add proper padding.

Note

When &lt;cite&gt;groups == in_channels&lt;/cite&gt; and &lt;cite&gt;out_channels == K * in_channels&lt;/cite&gt;, where &lt;cite&gt;K&lt;/cite&gt; is a positive integer, this operation is also termed in literature as depthwise convolution.

> In other words, for an input of size ![](img/a8d71105bc4954eb54660bc5d37c23de.jpg), a depthwise convolution with a depthwise multiplier &lt;cite&gt;K&lt;/cite&gt;, can be constructed by arguments ![](img/8aee041e54a302b342d50912ce67f44b.jpg).

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = True`. Please see the notes on [Reproducibility](notes/randomness.html) for background.

| Parameters: | 

*   **in_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels in the input image
*   **out_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels produced by the convolution
*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the convolving kernel
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Stride of the convolution. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Zero-padding added to all three sides of the input. Default: 0
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Spacing between kernel elements. Default: 1
*   **groups** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Number of blocked connections from input channels to output channels. Default: 1
*   **bias** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If `True`, adds a learnable bias to the output. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/a8d71105bc4954eb54660bc5d37c23de.jpg)

*   Output: ![](img/f05e8faaf90b4c16b23ca0165e8e09f4.jpg) where

    ![](img/bbc2662490bb72269672fe81af1fe003.jpg)

    ![](img/b7ca056f55603d0632bb03bdf9435d47.jpg)

    ![](img/d040a26cd9a91c4d230afd4c15d0e1e6.jpg)

| Variables: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape (out_channels, in_channels, kernel_size[0], kernel_size[1], kernel_size[2]) The values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/378f5c5b47c36239b817ad23a612a9f7.jpg)
*   **bias** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable bias of the module of shape (out_channels). If `bias` is `True`, then the values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/378f5c5b47c36239b817ad23a612a9f7.jpg)

 |
| --- | --- |

Examples:

```py
>>> # With square kernels and equal stride
>>> m = nn.Conv3d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))
>>> input = torch.randn(20, 16, 10, 50, 100)
>>> output = m(input)

```

### ConvTranspose1d

```py
class torch.nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)
```

Applies a 1D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv1d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).

*   `stride` controls the stride for the cross-correlation.

*   `padding` controls the amount of implicit zero-paddings on both sides for `kernel_size - 1 - padding` number of points. See note below for details.

*   `output_padding` controls the additional size added to one side of the output shape. See note below for details.

*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

*   `groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. For example,

    &gt; *   At groups=1, all inputs are convolved to all outputs.
    &gt; *   At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
    &gt; *   At groups= `in_channels`, each input channel is convolved with its own set of filters (of size ![](img/648a514da1dace3deacf3f078287e157.jpg)).

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation), and not a full [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation). It is up to the user to add proper padding.

Note

The `padding` argument effectively adds `kernel_size - 1 - padding` amount of zero padding to both sizes of the input. This is set so that when a [`Conv1d`](#torch.nn.Conv1d "torch.nn.Conv1d") and a [`ConvTranspose1d`](#torch.nn.ConvTranspose1d "torch.nn.ConvTranspose1d") are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when `stride &gt; 1`, [`Conv1d`](#torch.nn.Conv1d "torch.nn.Conv1d") maps multiple input shapes to the same output shape. `output_padding` is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that `output_padding` is only used to find output shape, but does not actually add zero-padding to output.

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = True`. Please see the notes on [Reproducibility](notes/randomness.html) for background.

| Parameters: | 

*   **in_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels in the input image
*   **out_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels produced by the convolution
*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the convolving kernel
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Stride of the convolution. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – `kernel_size - 1 - padding` zero-padding will be added to both sides of the input. Default: 0
*   **output_padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Additional size added to one side of the output shape. Default: 0
*   **groups** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Number of blocked connections from input channels to output channels. Default: 1
*   **bias** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If `True`, adds a learnable bias to the output. Default: `True`
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Spacing between kernel elements. Default: 1

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/7db3e5e5d600c81e77756d5eee050505.jpg)

*   Output: ![](img/3423094375906aa21d1b2e095e95c230.jpg) where

    ![](img/c37a7e44707d3c08522f44ab4e4d6841.jpg)

| Variables: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape (in_channels, out_channels, kernel_size[0], kernel_size[1]). The values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/69aab1ce658aabc9a2d986ae8281e2ad.jpg)
*   **bias** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable bias of the module of shape (out_channels). If `bias` is `True`, then the values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/69aab1ce658aabc9a2d986ae8281e2ad.jpg)

 |
| --- | --- |

### ConvTranspose2d

```py
class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)
```

Applies a 2D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).

*   `stride` controls the stride for the cross-correlation.

*   `padding` controls the amount of implicit zero-paddings on both sides for `kernel_size - 1 - padding` number of points. See note below for details.

*   `output_padding` controls the additional size added to one side of the output shape. See note below for details.

*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

*   `groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. For example,

    &gt; *   At groups=1, all inputs are convolved to all outputs.
    &gt; *   At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
    &gt; *   At groups= `in_channels`, each input channel is convolved with its own set of filters (of size ![](img/648a514da1dace3deacf3f078287e157.jpg)).

The parameters `kernel_size`, `stride`, `padding`, `output_padding` can either be:

> *   a single `int` – in which case the same value is used for the height and width dimensions
> *   a `tuple` of two ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the height dimension, and the second &lt;cite&gt;int&lt;/cite&gt; for the width dimension

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation), and not a full [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation). It is up to the user to add proper padding.

Note

The `padding` argument effectively adds `kernel_size - 1 - padding` amount of zero padding to both sizes of the input. This is set so that when a [`Conv2d`](#torch.nn.Conv2d "torch.nn.Conv2d") and a [`ConvTranspose2d`](#torch.nn.ConvTranspose2d "torch.nn.ConvTranspose2d") are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when `stride &gt; 1`, [`Conv2d`](#torch.nn.Conv2d "torch.nn.Conv2d") maps multiple input shapes to the same output shape. `output_padding` is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that `output_padding` is only used to find output shape, but does not actually add zero-padding to output.

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = True`. Please see the notes on [Reproducibility](notes/randomness.html) for background.

| Parameters: | 

*   **in_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels in the input image
*   **out_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels produced by the convolution
*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the convolving kernel
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Stride of the convolution. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – `kernel_size - 1 - padding` zero-padding will be added to both sides of each dimension in the input. Default: 0
*   **output_padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Additional size added to one side of each dimension in the output shape. Default: 0
*   **groups** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Number of blocked connections from input channels to output channels. Default: 1
*   **bias** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If `True`, adds a learnable bias to the output. Default: `True`
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Spacing between kernel elements. Default: 1

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/0385ad868fed790d36381b9e8788c18b.jpg)
*   Output: ![](img/d3edfe8a9bbdd73ba5c4b566353777f0.jpg) where

![](img/a2616e3fb8e8e919b799c2e62921c374.jpg)

![](img/dee6540c49e827b0ececaf0154154b54.jpg)

| Variables: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape (in_channels, out_channels, kernel_size[0], kernel_size[1]) The values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/c12e2153347b696ebb784e5675cc566e.jpg)
*   **bias** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable bias of the module of shape (out_channels) If `bias` is `True`, then the values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/c12e2153347b696ebb784e5675cc566e.jpg)

 |
| --- | --- |

Examples:

```py
>>> # With square kernels and equal stride
>>> m = nn.ConvTranspose2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> input = torch.randn(20, 16, 50, 100)
>>> output = m(input)
>>> # exact output size can be also specified as an argument
>>> input = torch.randn(1, 16, 12, 12)
>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
>>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
>>> h = downsample(input)
>>> h.size()
torch.Size([1, 16, 6, 6])
>>> output = upsample(h, output_size=input.size())
>>> output.size()
torch.Size([1, 16, 12, 12])

```

### ConvTranspose3d

```py
class torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)
```

Applies a 3D transposed convolution operator over an input image composed of several input planes. The transposed convolution operator multiplies each input value element-wise by a learnable kernel, and sums over the outputs from all input feature planes.

This module can be seen as the gradient of Conv3d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).

*   `stride` controls the stride for the cross-correlation.

*   `padding` controls the amount of implicit zero-paddings on both sides for `kernel_size - 1 - padding` number of points. See note below for details.

*   `output_padding` controls the additional size added to one side of the output shape. See note below for details.

*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

*   `groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`. For example,

    &gt; *   At groups=1, all inputs are convolved to all outputs.
    &gt; *   At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
    &gt; *   At groups= `in_channels`, each input channel is convolved with its own set of filters (of size ![](img/648a514da1dace3deacf3f078287e157.jpg)).

The parameters `kernel_size`, `stride`, `padding`, `output_padding` can either be:

> *   a single `int` – in which case the same value is used for the depth, height and width dimensions
> *   a `tuple` of three ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the depth dimension, the second &lt;cite&gt;int&lt;/cite&gt; for the height dimension and the third &lt;cite&gt;int&lt;/cite&gt; for the width dimension

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation), and not a full [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation). It is up to the user to add proper padding.

Note

The `padding` argument effectively adds `kernel_size - 1 - padding` amount of zero padding to both sizes of the input. This is set so that when a [`Conv3d`](#torch.nn.Conv3d "torch.nn.Conv3d") and a [`ConvTranspose3d`](#torch.nn.ConvTranspose3d "torch.nn.ConvTranspose3d") are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when `stride &gt; 1`, [`Conv3d`](#torch.nn.Conv3d "torch.nn.Conv3d") maps multiple input shapes to the same output shape. `output_padding` is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note that `output_padding` is only used to find output shape, but does not actually add zero-padding to output.

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = True`. Please see the notes on [Reproducibility](notes/randomness.html) for background.

| Parameters: | 

*   **in_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels in the input image
*   **out_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of channels produced by the convolution
*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the convolving kernel
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Stride of the convolution. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – `kernel_size - 1 - padding` zero-padding will be added to both sides of each dimension in the input. Default: 0
*   **output_padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Additional size added to one side of each dimension in the output shape. Default: 0
*   **groups** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Number of blocked connections from input channels to output channels. Default: 1
*   **bias** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If `True`, adds a learnable bias to the output. Default: `True`
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – Spacing between kernel elements. Default: 1

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/a8d71105bc4954eb54660bc5d37c23de.jpg)
*   Output: ![](img/f05e8faaf90b4c16b23ca0165e8e09f4.jpg) where

![](img/35234de680c85870881b7f5d9e8de589.jpg)

![](img/044bc4ee93fc4a1725b5b5dc5840b408.jpg)

![](img/133b249f21b73617ee100c4c072eee15.jpg)

| Variables: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape (in_channels, out_channels, kernel_size[0], kernel_size[1], kernel_size[2]) The values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/378f5c5b47c36239b817ad23a612a9f7.jpg)
*   **bias** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable bias of the module of shape (out_channels) If `bias` is `True`, then the values of these weights are sampled from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/378f5c5b47c36239b817ad23a612a9f7.jpg)

 |
| --- | --- |

Examples:

```py
>>> # With square kernels and equal stride
>>> m = nn.ConvTranspose3d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2))
>>> input = torch.randn(20, 16, 10, 50, 100)
>>> output = m(input)

```

### Unfold

```py
class torch.nn.Unfold(kernel_size, dilation=1, padding=0, stride=1)
```

Extracts sliding local blocks from a batched input tensor.

Consider an batched `input` tensor of shape ![](img/2468b226c29a7e754a9c20f0214fa85f.jpg), where ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is the batch dimension, ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) is the channel dimension, and ![](img/28ec51e742166ea3400be6e7343bbfa5.jpg) represent arbitrary spatial dimensions. This operation flattens each sliding `kernel_size`-sized block within the spatial dimensions of `input` into a column (i.e., last dimension) of a 3-D `output` tensor of shape ![](img/4e1cad10fa9480fa82adbe59a5ae81fa.jpg), where ![](img/a8846766f2e1b47021f1520993773ccb.jpg) is the total number of values with in each block (a block has ![](img/8c7a54ca7193bc3a6c5ace8c3b07d24c.jpg) spatial locations each containing a ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg)-channeled vector), and ![](img/db4a9fef02111450bf98261889de550c.jpg) is the total number of such blocks:

![](img/1d2c6a9103e2b33f725602aebf90364e.jpg)

where ![](img/42a2dca8a9cb6104321cf29ae30fd56a.jpg) is formed by the spatial dimensions of `input` (![](img/28ec51e742166ea3400be6e7343bbfa5.jpg) above), and ![](img/9566974d45a96737f7e0ecf302d877b8.jpg) is over all spatial dimensions.

Therefore, indexing `output` at the last dimension (column dimension) gives all values within a certain block.

The `padding`, `stride` and `dilation` arguments specify how the sliding blocks are retrieved.

*   `stride` controls the stride for the sliding blocks.
*   `padding` controls the amount of implicit zero-paddings on both sides for `padding` number of points for each dimension before reshaping.
*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

| Parameters: | 

*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the sliding blocks
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – the stride of the sliding blocks in the input spatial dimensions. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – implicit zero padding to be added on both sides of input. Default: 0
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – a parameter that controls the stride of elements within the neighborhood. Default: 1

 |
| --- | --- |

*   If `kernel_size`, `dilation`, `padding` or `stride` is an int or a tuple of length 1, their values will be replicated across all spatial dimensions.
*   For the case of two input spatial dimensions this operation is sometimes called `im2col`.

Note

[`Fold`](#torch.nn.Fold "torch.nn.Fold") calculates each combined value in the resulting large tensor by summing all values from all containing blocks. [`Unfold`](#torch.nn.Unfold "torch.nn.Unfold") extracts the values in the local blocks by copying from the large tensor. So, if the blocks overlap, they are not inverses of each other.

Warning

Currently, only 4-D input tensors (batched image-like tensors) are supported.

```py
Shape:
```

*   Input: ![](img/2468b226c29a7e754a9c20f0214fa85f.jpg)
*   Output: ![](img/4e1cad10fa9480fa82adbe59a5ae81fa.jpg) as described above

Examples:

```py
>>> unfold = nn.Unfold(kernel_size=(2, 3))
>>> input = torch.randn(2, 5, 3, 4)
>>> output = unfold(input)
>>> # each patch contains 30 values (2x3=6 vectors, each of 5 channels)
>>> # 4 blocks (2x3 kernels) in total in the 3x4 input
>>> output.size()
torch.Size([2, 30, 4])

>>> # Convolution is equivalent with Unfold + Matrix Multiplication + Fold (or view to output shape)
>>> inp = torch.randn(1, 3, 10, 12)
>>> w = torch.randn(2, 3, 4, 5)
>>> inp_unf = torch.nn.functional.unfold(inp, (4, 5))
>>> out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2)
>>> out = torch.nn.functional.fold(out_unf, (7, 8), (1, 1))
>>> # or equivalently (and avoiding a copy),
>>> # out = out_unf.view(1, 2, 7, 8)
>>> (torch.nn.functional.conv2d(inp, w) - out).abs().max()
tensor(1.9073e-06)

```

### Fold

```py
class torch.nn.Fold(output_size, kernel_size, dilation=1, padding=0, stride=1)
```

Combines an array of sliding local blocks into a large containing tensor.

Consider a batched `input` tensor containing sliding local blocks, e.g., patches of images, of shape ![](img/9e56ff5e3827b936da5cfa3a5258b12e.jpg), where ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is batch dimension, ![](img/a8846766f2e1b47021f1520993773ccb.jpg) is the number of values with in a block (a block has ![](img/8c7a54ca7193bc3a6c5ace8c3b07d24c.jpg) spatial locations each containing a ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg)-channeled vector), and ![](img/db4a9fef02111450bf98261889de550c.jpg) is the total number of blocks. (This is exacly the same specification as the output shape of [`Unfold`](#torch.nn.Unfold "torch.nn.Unfold").) This operation combines these local blocks into the large `output` tensor of shape ![](img/c2176aae9e099eeee07cc00c4dc7b7e7.jpg) by summing the overlapping values. Similar to [`Unfold`](#torch.nn.Unfold "torch.nn.Unfold"), the arguments must satisfy

![](img/465bba7070e80a7e5964f46f7f5ed8bb.jpg)

where ![](img/9566974d45a96737f7e0ecf302d877b8.jpg) is over all spatial dimensions.

*   `output_size` describes the spatial shape of the large containing tensor of the sliding local blocks. It is useful to resolve the ambiguity when multiple input shapes map to same number of sliding blocks, e.g., with `stride &gt; 0`.

The `padding`, `stride` and `dilation` arguments specify how the sliding blocks are retrieved.

*   `stride` controls the stride for the sliding blocks.
*   `padding` controls the amount of implicit zero-paddings on both sides for `padding` number of points for each dimension before reshaping.
*   `dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

| Parameters: | 

*   **output_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the shape of the spatial dimensions of the output (i.e., `input.sizes()[2:]`)
*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the sliding blocks
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the stride of the sliding blocks in the input spatial dimensions. Default: 1
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – implicit zero padding to be added on both sides of input. Default: 0
*   **dilation** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – a parameter that controls the stride of elements within the neighborhood. Default: 1

 |
| --- | --- |

*   If `output_size`, `kernel_size`, `dilation`, `padding` or `stride` is an int or a tuple of length 1 then their values will be replicated across all spatial dimensions.
*   For the case of two output spatial dimensions this operation is sometimes called `col2im`.

Note

[`Fold`](#torch.nn.Fold "torch.nn.Fold") calculates each combined value in the resulting large tensor by summing all values from all containing blocks. [`Unfold`](#torch.nn.Unfold "torch.nn.Unfold") extracts the values in the local blocks by copying from the large tensor. So, if the blocks overlap, they are not inverses of each other.

Warning

Currently, only 4-D output tensors (batched image-like tensors) are supported.

```py
Shape:
```

*   Input: ![](img/4e1cad10fa9480fa82adbe59a5ae81fa.jpg)
*   Output: ![](img/c2176aae9e099eeee07cc00c4dc7b7e7.jpg) as described above

Examples:

```py
>>> fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 2))
>>> input = torch.randn(1, 3 * 2 * 2, 1)
>>> output = fold(input)
>>> output.size()

```

## Pooling layers

### MaxPool1d

```py
class torch.nn.MaxPool1d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
```

Applies a 1D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/5816e96aa78b7425cf792435bba8bc29.jpg) and output ![](img/d131773750846713475c600aa8cd917a.jpg) can be precisely described as:

![](img/9e414c5b7df992e54f3227bb130be349.jpg)

If `padding` is non-zero, then the input is implicitly zero-padded on both sides for `padding` number of points. `dilation` controls the spacing between the kernel points. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

| Parameters: | 

*   **kernel_size** – the size of the window to take a max over
*   **stride** – the stride of the window. Default value is `kernel_size`
*   **padding** – implicit zero padding to be added on both sides
*   **dilation** – a parameter that controls the stride of elements in the window
*   **return_indices** – if `True`, will return the max indices along with the outputs. Useful for [`torch.nn.MaxUnpool1d`](#torch.nn.MaxUnpool1d "torch.nn.MaxUnpool1d") later
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/3ceb415a2a1558bab9998c277f780ec3.jpg)

*   Output: ![](img/d131773750846713475c600aa8cd917a.jpg), where

    ![](img/ff16cce6b4741640e8adc0a271cd4592.jpg)

Examples:

```py
>>> # pool of size=3, stride=2
>>> m = nn.MaxPool1d(3, stride=2)
>>> input = torch.randn(20, 16, 50)
>>> output = m(input)

```

### MaxPool2d

```py
class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
```

Applies a 2D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/23f8772594b27bd387be708fe9c085e1.jpg), output ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) and `kernel_size` ![](img/6384e001ad4c0989683deb86f6ffbd2f.jpg) can be precisely described as:

![](img/caa8cbcbb8bbbbc6b0e47f9daa80ab12.jpg)

If `padding` is non-zero, then the input is implicitly zero-padded on both sides for `padding` number of points. `dilation` controls the spacing between the kernel points. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

The parameters `kernel_size`, `stride`, `padding`, `dilation` can either be:

> *   a single `int` – in which case the same value is used for the height and width dimension
> *   a `tuple` of two ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the height dimension, and the second &lt;cite&gt;int&lt;/cite&gt; for the width dimension

| Parameters: | 

*   **kernel_size** – the size of the window to take a max over
*   **stride** – the stride of the window. Default value is `kernel_size`
*   **padding** – implicit zero padding to be added on both sides
*   **dilation** – a parameter that controls the stride of elements in the window
*   **return_indices** – if `True`, will return the max indices along with the outputs. Useful for [`torch.nn.MaxUnpool2d`](#torch.nn.MaxUnpool2d "torch.nn.MaxUnpool2d") later
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)

*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg), where

    ![](img/991d42318f90dcb68b26938c542b8457.jpg)

    ![](img/1e35edf42ee6921adb435b5ca638d406.jpg)

Examples:

```py
>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool2d((3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)

```

### MaxPool3d

```py
class torch.nn.MaxPool3d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
```

Applies a 3D max pooling over an input signal composed of several input planes. This is not a test

In the simplest case, the output value of the layer with input size ![](img/f5a45f7b445db562b21cfcb525637aab.jpg), output ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg) and `kernel_size` ![](img/f5dcdebf9a81b9d15227749ae7535eb7.jpg) can be precisely described as:

![](img/f0f7a770dcfb802e7fc0f8995cfad3d7.jpg)

If `padding` is non-zero, then the input is implicitly zero-padded on both sides for `padding` number of points. `dilation` controls the spacing between the kernel points. It is harder to describe, but this [link](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md) has a nice visualization of what `dilation` does.

The parameters `kernel_size`, `stride`, `padding`, `dilation` can either be:

> *   a single `int` – in which case the same value is used for the depth, height and width dimension
> *   a `tuple` of three ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the depth dimension, the second &lt;cite&gt;int&lt;/cite&gt; for the height dimension and the third &lt;cite&gt;int&lt;/cite&gt; for the width dimension

| Parameters: | 

*   **kernel_size** – the size of the window to take a max over
*   **stride** – the stride of the window. Default value is `kernel_size`
*   **padding** – implicit zero padding to be added on all three sides
*   **dilation** – a parameter that controls the stride of elements in the window
*   **return_indices** – if `True`, will return the max indices along with the outputs. Useful for [`torch.nn.MaxUnpool3d`](#torch.nn.MaxUnpool3d "torch.nn.MaxUnpool3d") later
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/c187d190013d0785320e3412fe8cd669.jpg)

*   Output: ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg), where

    ![](img/0e49f319aa911192458f7b02321eff3a.jpg)

    ![](img/b8fbd329439d7eba62abdf0df19f464d.jpg)

    ![](img/eb1d0c30d1cf681f38e8391bd7d03dff.jpg)

Examples:

```py
>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool3d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50,44, 31)
>>> output = m(input)

```

### MaxUnpool1d

```py
class torch.nn.MaxUnpool1d(kernel_size, stride=None, padding=0)
```

Computes a partial inverse of [`MaxPool1d`](#torch.nn.MaxPool1d "torch.nn.MaxPool1d").

[`MaxPool1d`](#torch.nn.MaxPool1d "torch.nn.MaxPool1d") is not fully invertible, since the non-maximal values are lost.

[`MaxUnpool1d`](#torch.nn.MaxUnpool1d "torch.nn.MaxUnpool1d") takes in as input the output of [`MaxPool1d`](#torch.nn.MaxPool1d "torch.nn.MaxPool1d") including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.

Note

[`MaxPool1d`](#torch.nn.MaxPool1d "torch.nn.MaxPool1d") can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument `output_size` in the forward call. See the Inputs and Example below.

| Parameters: | 

*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the max pooling window.
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Stride of the max pooling window. It is set to `kernel_size` by default.
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Padding that was added to the input

 |
| --- | --- |

```py
Inputs:
```

*   &lt;cite&gt;input&lt;/cite&gt;: the input Tensor to invert
*   &lt;cite&gt;indices&lt;/cite&gt;: the indices given out by [`MaxPool1d`](#torch.nn.MaxPool1d "torch.nn.MaxPool1d")
*   &lt;cite&gt;output_size&lt;/cite&gt; (optional): the targeted output size

```py
Shape:
```

*   Input: ![](img/ccc1792005f1eb97a439118aeba930e9.jpg)

*   Output: ![](img/1b0403b4ee318895368afc8fa37b9407.jpg), where

    ![](img/9618fc866026e724d16c5481dd67dc4c.jpg)

    or as given by `output_size` in the call operator

Example:

```py
>>> pool = nn.MaxPool1d(2, stride=2, return_indices=True)
>>> unpool = nn.MaxUnpool1d(2, stride=2)
>>> input = torch.tensor([[[1., 2, 3, 4, 5, 6, 7, 8]]])
>>> output, indices = pool(input)
>>> unpool(output, indices)
tensor([[[ 0.,  2.,  0.,  4.,  0.,  6.,  0., 8.]]])

>>> # Example showcasing the use of output_size
>>> input = torch.tensor([[[1., 2, 3, 4, 5, 6, 7, 8, 9]]])
>>> output, indices = pool(input)
>>> unpool(output, indices, output_size=input.size())
tensor([[[ 0.,  2.,  0.,  4.,  0.,  6.,  0., 8.,  0.]]])

>>> unpool(output, indices)
tensor([[[ 0.,  2.,  0.,  4.,  0.,  6.,  0., 8.]]])

```

### MaxUnpool2d

```py
class torch.nn.MaxUnpool2d(kernel_size, stride=None, padding=0)
```

Computes a partial inverse of [`MaxPool2d`](#torch.nn.MaxPool2d "torch.nn.MaxPool2d").

[`MaxPool2d`](#torch.nn.MaxPool2d "torch.nn.MaxPool2d") is not fully invertible, since the non-maximal values are lost.

[`MaxUnpool2d`](#torch.nn.MaxUnpool2d "torch.nn.MaxUnpool2d") takes in as input the output of [`MaxPool2d`](#torch.nn.MaxPool2d "torch.nn.MaxPool2d") including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.

Note

[`MaxPool2d`](#torch.nn.MaxPool2d "torch.nn.MaxPool2d") can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument `output_size` in the forward call. See the Inputs and Example below.

| Parameters: | 

*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the max pooling window.
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Stride of the max pooling window. It is set to `kernel_size` by default.
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Padding that was added to the input

 |
| --- | --- |

```py
Inputs:
```

*   &lt;cite&gt;input&lt;/cite&gt;: the input Tensor to invert
*   &lt;cite&gt;indices&lt;/cite&gt;: the indices given out by [`MaxPool2d`](#torch.nn.MaxPool2d "torch.nn.MaxPool2d")
*   &lt;cite&gt;output_size&lt;/cite&gt; (optional): the targeted output size

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)

*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg), where

    ![](img/f6dd707e18ccbf75f607d05338443e87.jpg)

    ![](img/ac5d54ef9922f9e0dbe2dc916bf9d80b.jpg)

    or as given by `output_size` in the call operator

Example:

```py
>>> pool = nn.MaxPool2d(2, stride=2, return_indices=True)
>>> unpool = nn.MaxUnpool2d(2, stride=2)
>>> input = torch.tensor([[[[ 1.,  2,  3,  4],
 [ 5,  6,  7,  8],
 [ 9, 10, 11, 12],
 [13, 14, 15, 16]]]])
>>> output, indices = pool(input)
>>> unpool(output, indices)
tensor([[[[  0.,   0.,   0.,   0.],
 [  0.,   6.,   0.,   8.],
 [  0.,   0.,   0.,   0.],
 [  0.,  14.,   0.,  16.]]]])

>>> # specify a different output size than input size
>>> unpool(output, indices, output_size=torch.Size([1, 1, 5, 5]))
tensor([[[[  0.,   0.,   0.,   0.,   0.],
 [  6.,   0.,   8.,   0.,   0.],
 [  0.,   0.,   0.,  14.,   0.],
 [ 16.,   0.,   0.,   0.,   0.],
 [  0.,   0.,   0.,   0.,   0.]]]])

```

### MaxUnpool3d

```py
class torch.nn.MaxUnpool3d(kernel_size, stride=None, padding=0)
```

Computes a partial inverse of [`MaxPool3d`](#torch.nn.MaxPool3d "torch.nn.MaxPool3d").

[`MaxPool3d`](#torch.nn.MaxPool3d "torch.nn.MaxPool3d") is not fully invertible, since the non-maximal values are lost. [`MaxUnpool3d`](#torch.nn.MaxUnpool3d "torch.nn.MaxUnpool3d") takes in as input the output of [`MaxPool3d`](#torch.nn.MaxPool3d "torch.nn.MaxPool3d") including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.

Note

[`MaxPool3d`](#torch.nn.MaxPool3d "torch.nn.MaxPool3d") can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument `output_size` in the forward call. See the Inputs section below.

| Parameters: | 

*   **kernel_size** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Size of the max pooling window.
*   **stride** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Stride of the max pooling window. It is set to `kernel_size` by default.
*   **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – Padding that was added to the input

 |
| --- | --- |

```py
Inputs:
```

*   &lt;cite&gt;input&lt;/cite&gt;: the input Tensor to invert
*   &lt;cite&gt;indices&lt;/cite&gt;: the indices given out by [`MaxPool3d`](#torch.nn.MaxPool3d "torch.nn.MaxPool3d")
*   &lt;cite&gt;output_size&lt;/cite&gt; (optional): the targeted output size

```py
Shape:
```

*   Input: ![](img/c187d190013d0785320e3412fe8cd669.jpg)

*   Output: ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg), where

    ![](img/190cbccb4ab554a9b19bfc3df956f982.jpg)

    ![](img/785a4e892f32eee65446b4e269fc452b.jpg)

    ![](img/e666e9d78ffab5d03b4cf1adf1a6e331.jpg)

    or as given by `output_size` in the call operator

Example:

```py
>>> # pool of square window of size=3, stride=2
>>> pool = nn.MaxPool3d(3, stride=2, return_indices=True)
>>> unpool = nn.MaxUnpool3d(3, stride=2)
>>> output, indices = pool(torch.randn(20, 16, 51, 33, 15))
>>> unpooled_output = unpool(output, indices)
>>> unpooled_output.size()
torch.Size([20, 16, 51, 33, 15])

```

### AvgPool1d

```py
class torch.nn.AvgPool1d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)
```

Applies a 1D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/5816e96aa78b7425cf792435bba8bc29.jpg), output ![](img/d131773750846713475c600aa8cd917a.jpg) and `kernel_size` ![](img/a1c2f8d5b1226e67bdb44b12a6ddf18b.jpg) can be precisely described as:

![](img/5df0036df168f4a16d4437d91968f640.jpg)

If `padding` is non-zero, then the input is implicitly zero-padded on both sides for `padding` number of points.

The parameters `kernel_size`, `stride`, `padding` can each be an `int` or a one-element tuple.

| Parameters: | 

*   **kernel_size** – the size of the window
*   **stride** – the stride of the window. Default value is `kernel_size`
*   **padding** – implicit zero padding to be added on both sides
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape
*   **count_include_pad** – when True, will include the zero-padding in the averaging calculation

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/3ceb415a2a1558bab9998c277f780ec3.jpg)

*   Output: ![](img/d131773750846713475c600aa8cd917a.jpg), where

    ![](img/ad61a9298a545292682229fef2f1a910.jpg)

Examples:

```py
>>> # pool with window of size=3, stride=2
>>> m = nn.AvgPool1d(3, stride=2)
>>> m(torch.tensor([[[1.,2,3,4,5,6,7]]]))
tensor([[[ 2.,  4.,  6.]]])

```

### AvgPool2d

```py
class torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)
```

Applies a 2D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/23f8772594b27bd387be708fe9c085e1.jpg), output ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) and `kernel_size` ![](img/6384e001ad4c0989683deb86f6ffbd2f.jpg) can be precisely described as:

![](img/b7a0e1d0a42a3626724c14d89a10a44f.jpg)

If `padding` is non-zero, then the input is implicitly zero-padded on both sides for `padding` number of points.

The parameters `kernel_size`, `stride`, `padding` can either be:

> *   a single `int` – in which case the same value is used for the height and width dimension
> *   a `tuple` of two ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the height dimension, and the second &lt;cite&gt;int&lt;/cite&gt; for the width dimension

| Parameters: | 

*   **kernel_size** – the size of the window
*   **stride** – the stride of the window. Default value is `kernel_size`
*   **padding** – implicit zero padding to be added on both sides
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape
*   **count_include_pad** – when True, will include the zero-padding in the averaging calculation

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)

*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg), where

    ![](img/8b8b2b1a77c4f104a936efb1708366ef.jpg)

    ![](img/2792347200dabe493ae8baee428f9bf8.jpg)

Examples:

```py
>>> # pool of square window of size=3, stride=2
>>> m = nn.AvgPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.AvgPool2d((3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)

```

### AvgPool3d

```py
class torch.nn.AvgPool3d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)
```

Applies a 3D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ![](img/f5a45f7b445db562b21cfcb525637aab.jpg), output ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg) and `kernel_size` ![](img/f5dcdebf9a81b9d15227749ae7535eb7.jpg) can be precisely described as:

![](img/79acedd31cd18baac8d97ab96a7092e0.jpg)

If `padding` is non-zero, then the input is implicitly zero-padded on all three sides for `padding` number of points.

The parameters `kernel_size`, `stride` can either be:

> *   a single `int` – in which case the same value is used for the depth, height and width dimension
> *   a `tuple` of three ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the depth dimension, the second &lt;cite&gt;int&lt;/cite&gt; for the height dimension and the third &lt;cite&gt;int&lt;/cite&gt; for the width dimension

| Parameters: | 

*   **kernel_size** – the size of the window
*   **stride** – the stride of the window. Default value is `kernel_size`
*   **padding** – implicit zero padding to be added on all three sides
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape
*   **count_include_pad** – when True, will include the zero-padding in the averaging calculation

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/c187d190013d0785320e3412fe8cd669.jpg)

*   Output: ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg), where

    ![](img/443035401ce7a1144122a862f34493cf.jpg)

    ![](img/8488a299a75cb56e138e1dc5a24a10db.jpg)

    ![](img/c799c115b670c02d039f828fe1afa443.jpg)

Examples:

```py
>>> # pool of square window of size=3, stride=2
>>> m = nn.AvgPool3d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.AvgPool3d((3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50,44, 31)
>>> output = m(input)

```

### FractionalMaxPool2d

```py
class torch.nn.FractionalMaxPool2d(kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)
```

Applies a 2D fractional max pooling over an input signal composed of several input planes.

Fractional MaxPooling is described in detail in the paper [Fractional MaxPooling](http://arxiv.org/abs/1412.6071) by Ben Graham

The max-pooling operation is applied in ![](img/52ec12db6613ee8a0f6f41143ab2e8a2.jpg) regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes.

| Parameters: | 

*   **kernel_size** – the size of the window to take a max over. Can be a single number k (for a square kernel of k x k) or a tuple &lt;cite&gt;(kh x kw)&lt;/cite&gt;
*   **output_size** – the target output size of the image of the form &lt;cite&gt;oH x oW&lt;/cite&gt;. Can be a tuple &lt;cite&gt;(oH, oW)&lt;/cite&gt; or a single number oH for a square image &lt;cite&gt;oH x oH&lt;/cite&gt;
*   **output_ratio** – If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1)
*   **return_indices** – if `True`, will return the indices along with the outputs. Useful to pass to `nn.MaxUnpool2d()`. Default: `False`

 |
| --- | --- |

Examples

```py
>>> # pool of square window of size=3, and target output size 13x12
>>> m = nn.FractionalMaxPool2d(3, output_size=(13, 12))
>>> # pool of square window and target output size being half of input image size
>>> m = nn.FractionalMaxPool2d(3, output_ratio=(0.5, 0.5))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)

```

### LPPool1d

```py
class torch.nn.LPPool1d(norm_type, kernel_size, stride=None, ceil_mode=False)
```

Applies a 1D power-average pooling over an input signal composed of several input planes.

On each window, the function computed is:

![](img/e4451f809255881ee286970ddf3fb377.jpg)

*   At p = infinity, one gets Max Pooling
*   At p = 1, one gets Sum Pooling (which is proportional to Average Pooling)

Note

If the sum to the power of &lt;cite&gt;p&lt;/cite&gt; is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.

| Parameters: | 

*   **kernel_size** – a single int, the size of the window
*   **stride** – a single int, the stride of the window. Default value is `kernel_size`
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/3ceb415a2a1558bab9998c277f780ec3.jpg)

*   Output: ![](img/d131773750846713475c600aa8cd917a.jpg), where

    ![](img/5d246e9891509c48081bc89191e64418.jpg)

```py
Examples::
```

```py
>>> # power-2 pool of window of length 3, with stride 2.
>>> m = nn.LPPool1d(2, 3, stride=2)
>>> input = torch.randn(20, 16, 50)
>>> output = m(input)

```

### LPPool2d

```py
class torch.nn.LPPool2d(norm_type, kernel_size, stride=None, ceil_mode=False)
```

Applies a 2D power-average pooling over an input signal composed of several input planes.

On each window, the function computed is:

![](img/e4451f809255881ee286970ddf3fb377.jpg)

*   At p = ![](img/b0c1b8fa38555e0b1ca3265b84bb3974.jpg), one gets Max Pooling
*   At p = 1, one gets Sum Pooling (which is proportional to average pooling)

The parameters `kernel_size`, `stride` can either be:

> *   a single `int` – in which case the same value is used for the height and width dimension
> *   a `tuple` of two ints – in which case, the first &lt;cite&gt;int&lt;/cite&gt; is used for the height dimension, and the second &lt;cite&gt;int&lt;/cite&gt; for the width dimension

Note

If the sum to the power of &lt;cite&gt;p&lt;/cite&gt; is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.

| Parameters: | 

*   **kernel_size** – the size of the window
*   **stride** – the stride of the window. Default value is `kernel_size`
*   **ceil_mode** – when True, will use &lt;cite&gt;ceil&lt;/cite&gt; instead of &lt;cite&gt;floor&lt;/cite&gt; to compute the output shape

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)

*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg), where

    ![](img/44bfdaa5e6b603085c2da3eddb558556.jpg)

    ![](img/d59b07475dea090e5f7110600d8f8bdc.jpg)

Examples:

```py
>>> # power-2 pool of square window of size=3, stride=2
>>> m = nn.LPPool2d(2, 3, stride=2)
>>> # pool of non-square window of power 1.2
>>> m = nn.LPPool2d(1.2, (3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)

```

### AdaptiveMaxPool1d

```py
class torch.nn.AdaptiveMaxPool1d(output_size, return_indices=False)
```

Applies a 1D adaptive max pooling over an input signal composed of several input planes.

The output size is H, for any input size. The number of output features is equal to the number of input planes.

| Parameters: | 

*   **output_size** – the target output size H
*   **return_indices** – if `True`, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool1d. Default: `False`

 |
| --- | --- |

Examples

```py
>>> # target output size of 5
>>> m = nn.AdaptiveMaxPool1d(5)
>>> input = torch.randn(1, 64, 8)
>>> output = m(input)

```

### AdaptiveMaxPool2d

```py
class torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)
```

Applies a 2D adaptive max pooling over an input signal composed of several input planes.

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

| Parameters: | 

*   **output_size** – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a `int`, or `None` which means the size will be the same as that of the input.
*   **return_indices** – if `True`, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool2d. Default: `False`

 |
| --- | --- |

Examples

```py
>>> # target output size of 5x7
>>> m = nn.AdaptiveMaxPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveMaxPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)

```

### AdaptiveMaxPool3d

```py
class torch.nn.AdaptiveMaxPool3d(output_size, return_indices=False)
```

Applies a 3D adaptive max pooling over an input signal composed of several input planes.

The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.

| Parameters: | 

*   **output_size** – the target output size of the image of the form D x H x W. Can be a tuple (D, H, W) or a single D for a cube D x D x D. D, H and W can be either a `int`, or `None` which means the size will be the same as that of the input.
*   **return_indices** – if `True`, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool3d. Default: `False`

 |
| --- | --- |

Examples

```py
>>> # target output size of 5x7x9
>>> m = nn.AdaptiveMaxPool3d((5,7,9))
>>> input = torch.randn(1, 64, 8, 9, 10)
>>> output = m(input)
>>> # target output size of 7x7x7 (cube)
>>> m = nn.AdaptiveMaxPool3d(7)
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
>>> # target output size of 7x9x8
>>> m = nn.AdaptiveMaxPool3d((7, None, None))
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)

```

### AdaptiveAvgPool1d

```py
class torch.nn.AdaptiveAvgPool1d(output_size)
```

Applies a 1D adaptive average pooling over an input signal composed of several input planes.

The output size is H, for any input size. The number of output features is equal to the number of input planes.

| Parameters: | **output_size** – the target output size H |
| --- | --- |

Examples

```py
>>> # target output size of 5
>>> m = nn.AdaptiveAvgPool1d(5)
>>> input = torch.randn(1, 64, 8)
>>> output = m(input)

```

### AdaptiveAvgPool2d

```py
class torch.nn.AdaptiveAvgPool2d(output_size)
```

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

| Parameters: | **output_size** – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H H and W can be either a `int`, or `None` which means the size will be the same as that of the input. |
| --- | --- |

Examples

```py
>>> # target output size of 5x7
>>> m = nn.AdaptiveAvgPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveAvgPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)

```

### AdaptiveAvgPool3d

```py
class torch.nn.AdaptiveAvgPool3d(output_size)
```

Applies a 3D adaptive average pooling over an input signal composed of several input planes.

The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.

| Parameters: | **output_size** – the target output size of the form D x H x W. Can be a tuple (D, H, W) or a single number D for a cube D x D x D D, H and W can be either a `int`, or `None` which means the size will be the same as that of the input. |
| --- | --- |

Examples

```py
>>> # target output size of 5x7x9
>>> m = nn.AdaptiveAvgPool3d((5,7,9))
>>> input = torch.randn(1, 64, 8, 9, 10)
>>> output = m(input)
>>> # target output size of 7x7x7 (cube)
>>> m = nn.AdaptiveAvgPool3d(7)
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
>>> # target output size of 7x9x8
>>> m = nn.AdaptiveMaxPool3d((7, None, None))
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)

```

## Padding layers

### ReflectionPad1d

```py
class torch.nn.ReflectionPad1d(padding)
```

Pads the input tensor using the reflection of the input boundary.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 2-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/964aa6df63e83f4468aa090441f01972.jpg)
*   Output: ![](img/ac2661719f40fc422e2b1590a1e7b4a4.jpg) where ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ReflectionPad1d(2)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
>>> input
tensor([[[0., 1., 2., 3.],
 [4., 5., 6., 7.]]])
>>> m(input)
tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],
 [6., 5., 4., 5., 6., 7., 6., 5.]]])
>>> m(input)
tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],
 [6., 5., 4., 5., 6., 7., 6., 5.]]])
>>> # using different paddings for different sides
>>> m = nn.ReflectionPad1d((3, 1))
>>> m(input)
tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],
 [7., 6., 5., 4., 5., 6., 7., 6.]]])

```

### ReflectionPad2d

```py
class torch.nn.ReflectionPad2d(padding)
```

Pads the input tensor using the reflection of the input boundary.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 4-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg), ![](img/65f6ce26141c225acd502a7bef164f66.jpg), ![](img/9a98061e27ba6ed06e846767b9c77c3a.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)

*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) where

    ![](img/75aa7c4a6c84e0ccb8aa91592cf6a077.jpg) ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ReflectionPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.]]]])
>>> m(input)
tensor([[[[8., 7., 6., 7., 8., 7., 6.],
 [5., 4., 3., 4., 5., 4., 3.],
 [2., 1., 0., 1., 2., 1., 0.],
 [5., 4., 3., 4., 5., 4., 3.],
 [8., 7., 6., 7., 8., 7., 6.],
 [5., 4., 3., 4., 5., 4., 3.],
 [2., 1., 0., 1., 2., 1., 0.]]]])
>>> # using different paddings for different sides
>>> m = nn.ReflectionPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[7., 6., 7., 8., 7.],
 [4., 3., 4., 5., 4.],
 [1., 0., 1., 2., 1.],
 [4., 3., 4., 5., 4.],
 [7., 6., 7., 8., 7.]]]])

```

### ReplicationPad1d

```py
class torch.nn.ReplicationPad1d(padding)
```

Pads the input tensor using replication of the input boundary.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 2-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/964aa6df63e83f4468aa090441f01972.jpg)
*   Output: ![](img/ac2661719f40fc422e2b1590a1e7b4a4.jpg) where ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ReplicationPad1d(2)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
>>> input
tensor([[[0., 1., 2., 3.],
 [4., 5., 6., 7.]]])
>>> m(input)
tensor([[[0., 0., 0., 1., 2., 3., 3., 3.],
 [4., 4., 4., 5., 6., 7., 7., 7.]]])
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad1d((3, 1))
>>> m(input)
tensor([[[0., 0., 0., 0., 1., 2., 3., 3.],
 [4., 4., 4., 4., 5., 6., 7., 7.]]])

```

### ReplicationPad2d

```py
class torch.nn.ReplicationPad2d(padding)
```

Pads the input tensor using replication of the input boundary.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 4-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg), ![](img/65f6ce26141c225acd502a7bef164f66.jpg), ![](img/9a98061e27ba6ed06e846767b9c77c3a.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)
*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) where ![](img/75aa7c4a6c84e0ccb8aa91592cf6a077.jpg) ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ReplicationPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.]]]])
>>> m(input)
tensor([[[[0., 0., 0., 1., 2., 2., 2.],
 [0., 0., 0., 1., 2., 2., 2.],
 [0., 0., 0., 1., 2., 2., 2.],
 [3., 3., 3., 4., 5., 5., 5.],
 [6., 6., 6., 7., 8., 8., 8.],
 [6., 6., 6., 7., 8., 8., 8.],
 [6., 6., 6., 7., 8., 8., 8.]]]])
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[0., 0., 1., 2., 2.],
 [0., 0., 1., 2., 2.],
 [0., 0., 1., 2., 2.],
 [3., 3., 4., 5., 5.],
 [6., 6., 7., 8., 8.]]]])

```

### ReplicationPad3d

```py
class torch.nn.ReplicationPad3d(padding)
```

Pads the input tensor using replication of the input boundary.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 6-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg), ![](img/65f6ce26141c225acd502a7bef164f66.jpg), ![](img/9a98061e27ba6ed06e846767b9c77c3a.jpg), ![](img/bffb266183e8fa640240e16a45076c34.jpg), ![](img/9138ac0ee6f6e96dfe795ead91ec0003.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/c187d190013d0785320e3412fe8cd669.jpg)
*   Output: ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg) where ![](img/006114d9c80210ede5da92f2f3a44bb7.jpg) ![](img/75aa7c4a6c84e0ccb8aa91592cf6a077.jpg) ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ReplicationPad3d(3)
>>> input = torch.randn(16, 3, 8, 320, 480)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1))
>>> output = m(input)

```

### ZeroPad2d

```py
class torch.nn.ZeroPad2d(padding)
```

Pads the input tensor boundaries with zero.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 4-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg), ![](img/65f6ce26141c225acd502a7bef164f66.jpg), ![](img/9a98061e27ba6ed06e846767b9c77c3a.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)
*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) where ![](img/75aa7c4a6c84e0ccb8aa91592cf6a077.jpg) ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ZeroPad2d(2)
>>> input = torch.randn(1, 1, 3, 3)
>>> input
tensor([[[[-0.1678, -0.4418,  1.9466],
 [ 0.9604, -0.4219, -0.5241],
 [-0.9162, -0.5436, -0.6446]]]])
>>> m(input)
tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
 [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
 [ 0.0000,  0.0000, -0.1678, -0.4418,  1.9466,  0.0000,  0.0000],
 [ 0.0000,  0.0000,  0.9604, -0.4219, -0.5241,  0.0000,  0.0000],
 [ 0.0000,  0.0000, -0.9162, -0.5436, -0.6446,  0.0000,  0.0000],
 [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
 [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]]])
>>> # using different paddings for different sides
>>> m = nn.ZeroPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
 [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
 [ 0.0000, -0.1678, -0.4418,  1.9466,  0.0000],
 [ 0.0000,  0.9604, -0.4219, -0.5241,  0.0000],
 [ 0.0000, -0.9162, -0.5436, -0.6446,  0.0000]]]])

```

### ConstantPad1d

```py
class torch.nn.ConstantPad1d(padding, value)
```

Pads the input tensor boundaries with a constant value.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in both boundaries. If a 2-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/964aa6df63e83f4468aa090441f01972.jpg)
*   Output: ![](img/ac2661719f40fc422e2b1590a1e7b4a4.jpg) where ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ConstantPad1d(2, 3.5)
>>> input = torch.randn(1, 2, 4)
>>> input
tensor([[[-1.0491, -0.7152, -0.0749,  0.8530],
 [-1.3287,  1.8966,  0.1466, -0.2771]]])
>>> m(input)
tensor([[[ 3.5000,  3.5000, -1.0491, -0.7152, -0.0749,  0.8530,  3.5000,
 3.5000],
 [ 3.5000,  3.5000, -1.3287,  1.8966,  0.1466, -0.2771,  3.5000,
 3.5000]]])
>>> m = nn.ConstantPad1d(2, 3.5)
>>> input = torch.randn(1, 2, 3)
>>> input
tensor([[[ 1.6616,  1.4523, -1.1255],
 [-3.6372,  0.1182, -1.8652]]])
>>> m(input)
tensor([[[ 3.5000,  3.5000,  1.6616,  1.4523, -1.1255,  3.5000,  3.5000],
 [ 3.5000,  3.5000, -3.6372,  0.1182, -1.8652,  3.5000,  3.5000]]])
>>> # using different paddings for different sides
>>> m = nn.ConstantPad1d((3, 1), 3.5)
>>> m(input)
tensor([[[ 3.5000,  3.5000,  3.5000,  1.6616,  1.4523, -1.1255,  3.5000],
 [ 3.5000,  3.5000,  3.5000, -3.6372,  0.1182, -1.8652,  3.5000]]])

```

### ConstantPad2d

```py
class torch.nn.ConstantPad2d(padding, value)
```

Pads the input tensor boundaries with a constant value.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 4-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg), ![](img/65f6ce26141c225acd502a7bef164f66.jpg), ![](img/9a98061e27ba6ed06e846767b9c77c3a.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)
*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) where ![](img/75aa7c4a6c84e0ccb8aa91592cf6a077.jpg) ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ConstantPad2d(2, 3.5)
>>> input = torch.randn(1, 2, 2)
>>> input
tensor([[[ 1.6585,  0.4320],
 [-0.8701, -0.4649]]])
>>> m(input)
tensor([[[ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  1.6585,  0.4320,  3.5000,  3.5000],
 [ 3.5000,  3.5000, -0.8701, -0.4649,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000]]])
>>> m(input)
tensor([[[ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  1.6585,  0.4320,  3.5000,  3.5000],
 [ 3.5000,  3.5000, -0.8701, -0.4649,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000]]])
>>> # using different paddings for different sides
>>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5)
>>> m(input)
tensor([[[ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000],
 [ 3.5000,  3.5000,  3.5000,  1.6585,  0.4320],
 [ 3.5000,  3.5000,  3.5000, -0.8701, -0.4649],
 [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000]]])

```

### ConstantPad3d

```py
class torch.nn.ConstantPad3d(padding, value)
```

Pads the input tensor boundaries with a constant value.

For &lt;cite&gt;N&lt;/cite&gt;-dimensional padding, use [`torch.nn.functional.pad()`](#torch.nn.functional.pad "torch.nn.functional.pad").

| Parameters: | **padding** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ [_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")) – the size of the padding. If is &lt;cite&gt;int&lt;/cite&gt;, uses the same padding in all boundaries. If a 6-&lt;cite&gt;tuple&lt;/cite&gt;, uses (![](img/08b2cac9ee37dde4cec3d372ebbfa0bd.jpg), ![](img/9f56071a00e2baa50d7fa9bde997852d.jpg), ![](img/65f6ce26141c225acd502a7bef164f66.jpg), ![](img/9a98061e27ba6ed06e846767b9c77c3a.jpg), ![](img/bffb266183e8fa640240e16a45076c34.jpg), ![](img/9138ac0ee6f6e96dfe795ead91ec0003.jpg)) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/c187d190013d0785320e3412fe8cd669.jpg)
*   Output: ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg) where ![](img/006114d9c80210ede5da92f2f3a44bb7.jpg) ![](img/75aa7c4a6c84e0ccb8aa91592cf6a077.jpg) ![](img/e2294a717e6d12035072d23c45273863.jpg)

Examples:

```py
>>> m = nn.ConstantPad3d(3, 3.5)
>>> input = torch.randn(16, 3, 10, 20, 30)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
>>> output = m(input)

```

## Non-linear activations (weighted sum, nonlinearity)

### ELU

```py
class torch.nn.ELU(alpha=1.0, inplace=False)
```

Applies the element-wise function:

![](img/1285687f031aec0751f4e0481f97b6b0.jpg)

| Parameters: | 

*   **alpha** – the ![](img/82005cc2e0087e2a52c7e43df4a19a00.jpg) value for the ELU formulation. Default: 1.0
*   **inplace** – can optionally do the operation in-place. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//ELU.png](img/5d789140032850b13d5c00493bf62412.jpg)

Examples:

```py
>>> m = nn.ELU()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Hardshrink

```py
class torch.nn.Hardshrink(lambd=0.5)
```

Applies the hard shrinkage function element-wise:

![](img/f934a1a7fa1553c38403f2e010708ed9.jpg)

| Parameters: | **lambd** – the ![](img/5e8df2ba7e47a784c714d176ed8bbb7a.jpg) value for the Hardshrink formulation. Default: 0.5 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//Hardshrink.png](img/45889773f687ed0d33a3ef9b66b0da32.jpg)

Examples:

```py
>>> m = nn.Hardshrink()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Hardtanh

```py
class torch.nn.Hardtanh(min_val=-1.0, max_val=1.0, inplace=False, min_value=None, max_value=None)
```

Applies the HardTanh function element-wise

HardTanh is defined as:

![](img/988cd664634d88b1e654ea5e8fe27d9a.jpg)

The range of the linear region ![](img/f30fa7744d61427a11bf0e75b1557a16.jpg) can be adjusted using `min_val` and `max_val`.

![https://pytorch.org/docs/stable/_images//Hardtanh.png](img/b22ab176e5aca7ca2b17e84fe525620e.jpg)

| Parameters: | 

*   **min_val** – minimum value of the linear region range. Default: -1
*   **max_val** – maximum value of the linear region range. Default: 1
*   **inplace** – can optionally do the operation in-place. Default: `False`

 |
| --- | --- |

Keyword arguments `min_value` and `max_value` have been deprecated in favor of `min_val` and `max_val`.

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

Examples:

```py
>>> m = nn.Hardtanh(-2, 2)
>>> input = torch.randn(2)
>>> output = m(input)

```

### LeakyReLU

```py
class torch.nn.LeakyReLU(negative_slope=0.01, inplace=False)
```

Applies the element-wise function:

![](img/92ce1c3da3211f30ef5273403da71c7a.jpg)

or

![](img/377c237cda65f4c68e3138efcc2bfef4.jpg)

| Parameters: | 

*   **negative_slope** – Controls the angle of the negative slope. Default: 1e-2
*   **inplace** – can optionally do the operation in-place. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//LeakyReLU.png](img/7df3c1e498d7d00e9e32ce7716e15fc3.jpg)

Examples:

```py
>>> m = nn.LeakyReLU(0.1)
>>> input = torch.randn(2)
>>> output = m(input)

```

### LogSigmoid

```py
class torch.nn.LogSigmoid
```

Applies the element-wise function:

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//LogSigmoid.png](img/f03b653b702dcd536fbb404c6461b399.jpg)

Examples:

```py
>>> m = nn.LogSigmoid()
>>> input = torch.randn(2)
>>> output = m(input)

```

### PReLU

```py
class torch.nn.PReLU(num_parameters=1, init=0.25)
```

Applies the element-wise function:

![](img/96fb709d31ba330ca192080e660d4cf1.jpg)

or

![](img/f460dc15bedfa96b8a320033b3f4fd6f.jpg)

Here ![](img/070b1af5eca3a5c5d72884b536090f17.jpg) is a learnable parameter. When called without arguments, &lt;cite&gt;nn.PReLU()&lt;/cite&gt; uses a single parameter ![](img/070b1af5eca3a5c5d72884b536090f17.jpg) across all input channels. If called with &lt;cite&gt;nn.PReLU(nChannels)&lt;/cite&gt;, a separate ![](img/070b1af5eca3a5c5d72884b536090f17.jpg) is used for each input channel.

Note

weight decay should not be used when learning ![](img/070b1af5eca3a5c5d72884b536090f17.jpg) for good performance.

Note

Channel dim is the 2nd dim of input. When input has dims &lt; 2, then there is no channel dim and the number of channels = 1.

| Parameters: | 

*   **num_parameters** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – number of ![](img/070b1af5eca3a5c5d72884b536090f17.jpg) to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1
*   **init** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")) – the initial value of ![](img/070b1af5eca3a5c5d72884b536090f17.jpg). Default: 0.25

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

| Variables: | **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of shape (attr:&lt;cite&gt;num_parameters&lt;/cite&gt;). The attr:&lt;cite&gt;dtype&lt;/cite&gt; is default to |
| --- | --- |

![https://pytorch.org/docs/stable/_images//PReLU.png](img/59baba7257ac05b747455a25a3457baf.jpg)

Examples:

```py
>>> m = nn.PReLU()
>>> input = torch.randn(2)
>>> output = m(input)

```

### ReLU

```py
class torch.nn.ReLU(inplace=False)
```

Applies the rectified linear unit function element-wise ![](img/f859c48107afb47986b3297459048c80.jpg)

![https://pytorch.org/docs/stable/_images//ReLU.png](img/6bfe295d2f51e4e33648ffb4273723a6.jpg)

| Parameters: | **inplace** – can optionally do the operation in-place. Default: `False` |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

Examples:

```py
>>> m = nn.ReLU()
>>> input = torch.randn(2)
>>> output = m(input)

```

### ReLU6

```py
class torch.nn.ReLU6(inplace=False)
```

Applies the element-wise function:

![](img/38c45c0cb00fa6f9a372816012b26b01.jpg)

| Parameters: | **inplace** – can optionally do the operation in-place. Default: `False` |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//ReLU6.png](img/3a82f9216f0db7d59f6c0f1c169156b0.jpg)

Examples:

```py
>>> m = nn.ReLU6()
>>> input = torch.randn(2)
>>> output = m(input)

```

### RReLU

```py
class torch.nn.RReLU(lower=0.125, upper=0.3333333333333333, inplace=False)
```

Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper:

[Empirical Evaluation of Rectified Activations in Convolutional Network](https://arxiv.org/abs/1505.00853).

The function is defined as:

![](img/69aa6828f2f0bcd0ee1e173223ff4640.jpg)

where ![](img/070b1af5eca3a5c5d72884b536090f17.jpg) is randomly sampled from uniform distribution ![](img/7323b93ed925c9e5b0ce10c8a6c99daf.jpg).

> See: [https://arxiv.org/pdf/1505.00853.pdf](https://arxiv.org/pdf/1505.00853.pdf)

| Parameters: | 

*   **lower** – lower bound of the uniform distribution. Default: ![](img/444fc0427eb64f0bd2c9c16edf680d4f.jpg)
*   **upper** – upper bound of the uniform distribution. Default: ![](img/a90c89c913a1fe1e9462d60d8668936b.jpg)
*   **inplace** – can optionally do the operation in-place. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

Examples:

```py
>>> m = nn.RReLU(0.1, 0.3)
>>> input = torch.randn(2)
>>> output = m(input)

```

### SELU

```py
class torch.nn.SELU(inplace=False)
```

Applied element-wise, as:

![](img/c6753a504d14886a424af779f5906dc5.jpg)

with ![](img/e97a0b3de4bafa3464e17a8d8f66fd9d.jpg) and ![](img/aa01199f9b814d719de1e728e4a44ac3.jpg).

![https://pytorch.org/docs/stable/_images//SELU.png](img/10123138310ae40f4a78f55cefe37008.jpg)

More details can be found in the paper [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) .

| Parameters: | **inplace** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – can optionally do the operation in-place. Default: `False` |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

Examples:

```py
>>> m = nn.SELU()
>>> input = torch.randn(2)
>>> output = m(input)

```

### CELU

```py
class torch.nn.CELU(alpha=1.0, inplace=False)
```

Applies the element-wise function:

![](img/86d69b42683362b7781f1a5809c0d0d1.jpg)

More details can be found in the paper [Continuously Differentiable Exponential Linear Units](https://arxiv.org/abs/1704.07483) .

| Parameters: | 

*   **alpha** – the ![](img/82005cc2e0087e2a52c7e43df4a19a00.jpg) value for the CELU formulation. Default: 1.0
*   **inplace** – can optionally do the operation in-place. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//CELU.png](img/8d5fd8f893fb491c170f9a38af6edef9.jpg)

Examples:

```py
>>> m = nn.CELU()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Sigmoid

```py
class torch.nn.Sigmoid
```

Applies the element-wise function:

![](img/8bf3a718397550598124548beb8c6b23.jpg)

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//Sigmoid.png](img/961caeb46e669eb70392afd515f9bde7.jpg)

Examples:

```py
>>> m = nn.Sigmoid()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Softplus

```py
class torch.nn.Softplus(beta=1, threshold=20)
```

Applies the element-wise function:

![](img/a0855ca512a1ba09192648efd45082ad.jpg)

SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.

For numerical stability the implementation reverts to the linear function for inputs above a certain value.

| Parameters: | 

*   **beta** – the ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) value for the Softplus formulation. Default: 1
*   **threshold** – values above this revert to a linear function. Default: 20

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//Softplus.png](img/af06304134e1f56d7abc15570fa5adb9.jpg)

Examples:

```py
>>> m = nn.Softplus()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Softshrink

```py
class torch.nn.Softshrink(lambd=0.5)
```

Applies the soft shrinkage function elementwise:

![](img/5baf58b3007cf434725f41bf2dfae2ce.jpg)

| Parameters: | **lambd** – the ![](img/5e8df2ba7e47a784c714d176ed8bbb7a.jpg) value for the Softshrink formulation. Default: 0.5 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//Softshrink.png](img/cec198ab680657d41c1d2ac2176e5664.jpg)

Examples:

```py
>>> m = nn.Softshrink()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Softsign

```py
class torch.nn.Softsign
```

Applies the element-wise function:

![](img/39ba3e3786920ceb12bc26b08b00de1c.jpg)

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//Softsign.png](img/b92a09469ce9fc0abfbe8c9af4228391.jpg)

Examples:

```py
>>> m = nn.Softsign()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Tanh

```py
class torch.nn.Tanh
```

Applies the element-wise function:

![](img/e3f58d9a8cbc89b247dd8de1c28bf7ce.jpg)

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//Tanh.png](img/5605304fc1fec06669e17cc872d47580.jpg)

Examples:

```py
>>> m = nn.Tanh()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Tanhshrink

```py
class torch.nn.Tanhshrink
```

Applies the element-wise function:

![](img/136fda10bacf7ae9068ca487ba861805.jpg)

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

![https://pytorch.org/docs/stable/_images//Tanhshrink.png](img/8aea39259742ccdb14701a8f3c351b56.jpg)

Examples:

```py
>>> m = nn.Tanhshrink()
>>> input = torch.randn(2)
>>> output = m(input)

```

### Threshold

```py
class torch.nn.Threshold(threshold, value, inplace=False)
```

Thresholds each element of the input Tensor

Threshold is defined as:

![](img/3b32031caba73686c02a117e8e307c6f.jpg)

| Parameters: | 

*   **threshold** – The value to threshold at
*   **value** – The value to replace with
*   **inplace** – can optionally do the operation in-place. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

Examples:

```py
>>> m = nn.Threshold(0.1, 20)
>>> input = torch.randn(2)
>>> output = m(input)

```

## Non-linear activations (other)

### Softmin

```py
class torch.nn.Softmin(dim=None)
```

Applies the Softmin function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range &lt;cite&gt;(0, 1)&lt;/cite&gt; and sum to 1

![](img/440f43280457a9287bbddf28553f8f70.jpg)

```py
Shape:
```

*   Input: any shape
*   Output: same as input

| Parameters: | **dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – A dimension along which Softmin will be computed (so every slice along dim will sum to 1). |
| --- | --- |
| Returns: | a Tensor of the same dimension and shape as the input, with values in the range [0, 1] |
| --- | --- |

Examples:

```py
>>> m = nn.Softmin()
>>> input = torch.randn(2, 3)
>>> output = m(input)

```

### Softmax

```py
class torch.nn.Softmax(dim=None)
```

Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range (0,1) and sum to 1

Softmax is defined as:

![](img/cbfd37534eccdda606d4f8494c31d2c0.jpg)

```py
Shape:
```

*   Input: any shape
*   Output: same as input

| Returns: | a Tensor of the same dimension and shape as the input with values in the range [0, 1] |
| --- | --- |
| Parameters: | **dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – A dimension along which Softmax will be computed (so every slice along dim will sum to 1). |
| --- | --- |

Note

This module doesn’t work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use &lt;cite&gt;LogSoftmax&lt;/cite&gt; instead (it’s faster and has better numerical properties).

Examples:

```py
>>> m = nn.Softmax()
>>> input = torch.randn(2, 3)
>>> output = m(input)

```

### Softmax2d

```py
class torch.nn.Softmax2d
```

Applies SoftMax over features to each spatial location.

When given an image of `Channels x Height x Width`, it will apply &lt;cite&gt;Softmax&lt;/cite&gt; to each location ![](img/b16a2a186bda385e5f0016f5fe5a5c36.jpg)

```py
Shape:
```

*   Input: ![](img/23f8772594b27bd387be708fe9c085e1.jpg)
*   Output: ![](img/23f8772594b27bd387be708fe9c085e1.jpg) (same shape as input)

| Returns: | a Tensor of the same dimension and shape as the input with values in the range [0, 1] |
| --- | --- |

Examples:

```py
>>> m = nn.Softmax2d()
>>> # you softmax over the 2nd dimension
>>> input = torch.randn(2, 3, 12, 13)
>>> output = m(input)

```

### LogSoftmax

```py
class torch.nn.LogSoftmax(dim=None)
```

Applies the ![](img/db163ba416e1349a426e6a137e082ae2.jpg) function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as:

![](img/397c4cfa2f291306d481811192d2d5d9.jpg)

```py
Shape:
```

*   Input: any shape
*   Output: same as input

| Parameters: | **dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – A dimension along which Softmax will be computed (so every slice along dim will sum to 1). |
| --- | --- |
| Returns: | a Tensor of the same dimension and shape as the input with values in the range [-inf, 0) |
| --- | --- |

Examples:

```py
>>> m = nn.LogSoftmax()
>>> input = torch.randn(2, 3)
>>> output = m(input)

```

### AdaptiveLogSoftmaxWithLoss

```py
class torch.nn.AdaptiveLogSoftmaxWithLoss(in_features, n_classes, cutoffs, div_value=4.0, head_bias=False)¶
```

Efficient softmax approximation as described in [Efficient softmax approximation for GPUs](https://arxiv.org/abs/1609.04309) by Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou.

Adaptive softmax is an approximate strategy for training models with large output spaces. It is most effective when the label distribution is highly imbalanced, for example in natural language modelling, where the word frequency distribution approximately follows the [Zipf’s law](https://en.wikipedia.org/wiki/Zipf%27s_law).

Adaptive softmax partitions the labels into several clusters, according to their frequency. These clusters may contain different number of targets each. Additionally, clusters containing less frequent labels assign lower dimensional embeddings to those labels, which speeds up the computation. For each minibatch, only clusters for which at least one target is present are evaluated.

The idea is that the clusters which are accessed frequently (like the first one, containing most frequent labels), should also be cheap to compute – that is, contain a small number of assigned labels.

We highly recommend taking a look at the original paper for more details.

*   `cutoffs` should be an ordered Sequence of integers sorted in the increasing order. It controls number of clusters and the partitioning of targets into clusters. For example setting `cutoffs = [10, 100, 1000]` means that first &lt;cite&gt;10&lt;/cite&gt; targets will be assigned to the ‘head’ of the adaptive softmax, targets &lt;cite&gt;11, 12, …, 100&lt;/cite&gt; will be assigned to the first cluster, and targets &lt;cite&gt;101, 102, …, 1000&lt;/cite&gt; will be assigned to the second cluster, while targets &lt;cite&gt;1001, 1002, …, n_classes - 1&lt;/cite&gt; will be assigned to the last, third cluster
*   `div_value` is used to compute the size of each additional cluster, which is given as ![](img/32071c42affaaf731df4e3398b16de10.jpg), where ![](img/5df73ea97de3a7712b50ce2fecfea1a7.jpg) is the cluster index (with clusters for less frequent words having larger indices, and indices starting from ![](img/a3ea24a1f2a3549d3e5b0cacf3ecb7c7.jpg)).
*   `head_bias` if set to True, adds a bias term to the ‘head’ of the adaptive softmax. See paper for details. Set to False in the official implementation.

Warning

Labels passed as inputs to this module should be sorted accoridng to their frequency. This means that the most frequent label should be represented by the index &lt;cite&gt;0&lt;/cite&gt;, and the least frequent label should be represented by the index &lt;cite&gt;n_classes - 1&lt;/cite&gt;.

Note

This module returns a `NamedTuple` with `output` and `loss` fields. See further documentation for details.

Note

To compute log-probabilities for all classes, the `log_prob` method can be used.

| Parameters: | 

*   **in_features** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of features in the input tensor
*   **n_classes** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – Number of classes in the dataset.
*   **cutoffs** (_Sequence_) – Cutoffs used to assign targets to their buckets.
*   **div_value** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – value used as an exponent to compute sizes of the clusters. Default: 4.0

 |
| --- | --- |
| Returns: | 

*   **output** is a Tensor of size `N` containing computed target log probabilities for each example
*   **loss** is a Scalar representing the computed negative log likelihood loss

 |
| --- | --- |
| Return type: | `NamedTuple` with `output` and `loss` fields |
| --- | --- |

```py
Shape:
```

*   input: ![](img/768be7688f5f58f4766106ddb821b007.jpg)
*   target: ![](img/2a3e2b832e04fe8d66596083b23da518.jpg) where each value satisfies ![](img/fe1e80e9faca308456bc49d4e79013e0.jpg)
*   output: ![](img/2a3e2b832e04fe8d66596083b23da518.jpg)
*   loss: `Scalar`

```py
log_prob(input)
```

Computes log probabilities for all ![](img/b285cfddea560d447d391e9d7ba660ba.jpg)

| Parameters: | **input** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – a minibatch of examples |
| --- | --- |
| Returns: | log-probabilities of for each class ![](img/32624581da7de65d68eb11d4201f9bef.jpg) in range ![](img/4e4201057f969a42a8d2de89e5f7c728.jpg), where ![](img/b285cfddea560d447d391e9d7ba660ba.jpg) is a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/768be7688f5f58f4766106ddb821b007.jpg)
*   Output: ![](img/f3bcbc1689556ad810d1c658d44bd970.jpg)

```py
predict(input)
```

This is equivalent to &lt;cite&gt;self.log_pob(input).argmax(dim=1)&lt;/cite&gt;, but is more efficient in some cases.

| Parameters: | **input** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – a minibatch of examples |
| --- | --- |
| Returns: | a class with the highest probability for each example |
| --- | --- |
| Return type: | output ([Tensor](tensors.html#torch.Tensor "torch.Tensor")) |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/768be7688f5f58f4766106ddb821b007.jpg)
*   Output: ![](img/2a3e2b832e04fe8d66596083b23da518.jpg)

## Normalization layers

### BatchNorm1d

```py
class torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputs with optional additional channel dimension) as described in the paper [Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift](https://arxiv.org/abs/1502.03167) .

![](img/beea63da4eceb7d4c8971e826bafbb1a.jpg)

The mean and standard-deviation are calculated per-dimension over the mini-batches and ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable parameter vectors of size &lt;cite&gt;C&lt;/cite&gt; (where &lt;cite&gt;C&lt;/cite&gt; is the input size). By default, the elements of ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) are sampled from ![](img/7ad9c99a642c915c6d560cbca6352454.jpg) and the elements of ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are set to 0.

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default `momentum` of 0.1.

If `track_running_stats` is set to `False`, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.

Note

This `momentum` argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is ![](img/05beed2a6202dfed2f2c4d1ddf9f445f.jpg), where ![](img/9d834e987d38585c39d150fe8f46bc74.jpg) is the estimated statistic and ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the new observed value.

Because the Batch Normalization is done over the &lt;cite&gt;C&lt;/cite&gt; dimension, computing statistics on &lt;cite&gt;(N, L)&lt;/cite&gt; slices, it’s common terminology to call this Temporal Batch Normalization.

| Parameters: | 

*   **num_features** – ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) from an expected input of size ![](img/5816e96aa78b7425cf792435bba8bc29.jpg) or ![](img/db4a9fef02111450bf98261889de550c.jpg) from input of size ![](img/b6d0ccc6531c5d648e750c417c5cc72d.jpg)
*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **momentum** – the value used for the running_mean and running_var computation. Can be set to `None` for cumulative moving average (i.e. simple average). Default: 0.1
*   **affine** – a boolean value that when set to `True`, this module has learnable affine parameters. Default: `True`
*   **track_running_stats** – a boolean value that when set to `True`, this module tracks the running mean and variance, and when set to `False`, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/9b9aebaa467ad07dca05b5086bd21ca2.jpg) or ![](img/5816e96aa78b7425cf792435bba8bc29.jpg)
*   Output: ![](img/9b9aebaa467ad07dca05b5086bd21ca2.jpg) or ![](img/5816e96aa78b7425cf792435bba8bc29.jpg) (same shape as input)

Examples:

```py
>>> # With Learnable Parameters
>>> m = nn.BatchNorm1d(100)
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm1d(100, affine=False)
>>> input = torch.randn(20, 100)
>>> output = m(input)

```

### BatchNorm2d

```py
class torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper [Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift](https://arxiv.org/abs/1502.03167) .

![](img/63ee6938c8dea3b7cc66a2a245b15cfc.jpg)

The mean and standard-deviation are calculated per-dimension over the mini-batches and ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable parameter vectors of size &lt;cite&gt;C&lt;/cite&gt; (where &lt;cite&gt;C&lt;/cite&gt; is the input size). By default, the elements of ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) are sampled from ![](img/7ad9c99a642c915c6d560cbca6352454.jpg) and the elements of ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are set to 0.

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default `momentum` of 0.1.

If `track_running_stats` is set to `False`, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.

Note

This `momentum` argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is ![](img/05beed2a6202dfed2f2c4d1ddf9f445f.jpg), where ![](img/9d834e987d38585c39d150fe8f46bc74.jpg) is the estimated statistic and ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the new observed value.

Because the Batch Normalization is done over the &lt;cite&gt;C&lt;/cite&gt; dimension, computing statistics on &lt;cite&gt;(N, H, W)&lt;/cite&gt; slices, it’s common terminology to call this Spatial Batch Normalization.

| Parameters: | 

*   **num_features** – ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) from an expected input of size ![](img/23f8772594b27bd387be708fe9c085e1.jpg)
*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **momentum** – the value used for the running_mean and running_var computation. Can be set to `None` for cumulative moving average (i.e. simple average). Default: 0.1
*   **affine** – a boolean value that when set to `True`, this module has learnable affine parameters. Default: `True`
*   **track_running_stats** – a boolean value that when set to `True`, this module tracks the running mean and variance, and when set to `False`, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/23f8772594b27bd387be708fe9c085e1.jpg)
*   Output: ![](img/23f8772594b27bd387be708fe9c085e1.jpg) (same shape as input)

Examples:

```py
>>> # With Learnable Parameters
>>> m = nn.BatchNorm2d(100)
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm2d(100, affine=False)
>>> input = torch.randn(20, 100, 35, 45)
>>> output = m(input)

```

### BatchNorm3d

```py
class torch.nn.BatchNorm3d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper [Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift](https://arxiv.org/abs/1502.03167) .

![](img/63ee6938c8dea3b7cc66a2a245b15cfc.jpg)

The mean and standard-deviation are calculated per-dimension over the mini-batches and ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable parameter vectors of size &lt;cite&gt;C&lt;/cite&gt; (where &lt;cite&gt;C&lt;/cite&gt; is the input size). By default, the elements of ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) are sampled from ![](img/7ad9c99a642c915c6d560cbca6352454.jpg) and the elements of ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are set to 0.

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default `momentum` of 0.1.

If `track_running_stats` is set to `False`, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.

Note

This `momentum` argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is ![](img/05beed2a6202dfed2f2c4d1ddf9f445f.jpg), where ![](img/9d834e987d38585c39d150fe8f46bc74.jpg) is the estimated statistic and ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the new observed value.

Because the Batch Normalization is done over the &lt;cite&gt;C&lt;/cite&gt; dimension, computing statistics on &lt;cite&gt;(N, D, H, W)&lt;/cite&gt; slices, it’s common terminology to call this Volumetric Batch Normalization or Spatio-temporal Batch Normalization.

| Parameters: | 

*   **num_features** – ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) from an expected input of size ![](img/f5a45f7b445db562b21cfcb525637aab.jpg)
*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **momentum** – the value used for the running_mean and running_var computation. Can be set to `None` for cumulative moving average (i.e. simple average). Default: 0.1
*   **affine** – a boolean value that when set to `True`, this module has learnable affine parameters. Default: `True`
*   **track_running_stats** – a boolean value that when set to `True`, this module tracks the running mean and variance, and when set to `False`, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/f5a45f7b445db562b21cfcb525637aab.jpg)
*   Output: ![](img/f5a45f7b445db562b21cfcb525637aab.jpg) (same shape as input)

Examples:

```py
>>> # With Learnable Parameters
>>> m = nn.BatchNorm3d(100)
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm3d(100, affine=False)
>>> input = torch.randn(20, 100, 35, 45, 10)
>>> output = m(input)

```

### GroupNorm

```py
class torch.nn.GroupNorm(num_groups, num_channels, eps=1e-05, affine=True)
```

Applies Group Normalization over a mini-batch of inputs as described in the paper [Group Normalization](https://arxiv.org/abs/1803.08494) .

![](img/2fee766f06767b7b87b3531029d92e1d.jpg)

The input channels are separated into `num_groups` groups, each containing `num_channels / num_groups` channels. The mean and standard-deviation are calculated separately over the each group. ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable per-channel affine transform parameter vectorss of size `num_channels` if `affine` is `True`.

This layer uses statistics computed from input data in both training and evaluation modes.

| Parameters: | 

*   **num_groups** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – number of groups to separate the channels into
*   **num_channels** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – number of channels expected in input
*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **affine** – a boolean value that when set to `True`, this module has learnable per-channel affine parameters initialized to ones (for weights) and zeros (for biases). Default: `True`.

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/f5be296779e9f325e5c8f0c2284bc073.jpg)
*   Output: ![](img/f5be296779e9f325e5c8f0c2284bc073.jpg) (same shape as input)

Examples:

```py
>>> input = torch.randn(20, 6, 10, 10)
>>> # Separate 6 channels into 3 groups
>>> m = nn.GroupNorm(3, 6)
>>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
>>> m = nn.GroupNorm(6, 6)
>>> # Put all 6 channels into a single group (equivalent with LayerNorm)
>>> m = nn.GroupNorm(1, 6)
>>> # Activating the module
>>> output = m(input)

```

### InstanceNorm1d

```py
class torch.nn.InstanceNorm1d(num_features, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
```

Applies Instance Normalization over a 2D or 3D input (a mini-batch of 1D inputs with optional additional channel dimension) as described in the paper [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022) .

![](img/63ee6938c8dea3b7cc66a2a245b15cfc.jpg)

The mean and standard-deviation are calculated per-dimension separately for each object in a mini-batch. ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable parameter vectors of size &lt;cite&gt;C&lt;/cite&gt; (where &lt;cite&gt;C&lt;/cite&gt; is the input size) if `affine` is `True`.

By default, this layer uses instance statistics computed from input data in both training and evaluation modes.

If `track_running_stats` is set to `True`, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default `momentum` of 0.1.

Note

This `momentum` argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is ![](img/05beed2a6202dfed2f2c4d1ddf9f445f.jpg), where ![](img/9d834e987d38585c39d150fe8f46bc74.jpg) is the estimated statistic and ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the new observed value.

Note

[`InstanceNorm1d`](#torch.nn.InstanceNorm1d "torch.nn.InstanceNorm1d") and [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") are very similar, but have some subtle differences. [`InstanceNorm1d`](#torch.nn.InstanceNorm1d "torch.nn.InstanceNorm1d") is applied on each channel of channeled data like multidimensional time series, but [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") is usually applied on entire sample and often in NLP tasks. Additionaly, [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") applies elementwise affine transform, while [`InstanceNorm1d`](#torch.nn.InstanceNorm1d "torch.nn.InstanceNorm1d") usually don’t apply affine transform.

| Parameters: | 

*   **num_features** – ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) from an expected input of size ![](img/5816e96aa78b7425cf792435bba8bc29.jpg) or ![](img/db4a9fef02111450bf98261889de550c.jpg) from input of size ![](img/b6d0ccc6531c5d648e750c417c5cc72d.jpg)
*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **momentum** – the value used for the running_mean and running_var computation. Default: 0.1
*   **affine** – a boolean value that when set to `True`, this module has learnable affine parameters, initialized the same way as done for batch normalization. Default: `False`.
*   **track_running_stats** – a boolean value that when set to `True`, this module tracks the running mean and variance, and when set to `False`, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/5816e96aa78b7425cf792435bba8bc29.jpg)
*   Output: ![](img/5816e96aa78b7425cf792435bba8bc29.jpg) (same shape as input)

Examples:

```py
>>> # Without Learnable Parameters
>>> m = nn.InstanceNorm1d(100)
>>> # With Learnable Parameters
>>> m = nn.InstanceNorm1d(100, affine=True)
>>> input = torch.randn(20, 100, 40)
>>> output = m(input)

```

### InstanceNorm2d

```py
class torch.nn.InstanceNorm2d(num_features, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
```

Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022) .

![](img/63ee6938c8dea3b7cc66a2a245b15cfc.jpg)

The mean and standard-deviation are calculated per-dimension separately for each object in a mini-batch. ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable parameter vectors of size &lt;cite&gt;C&lt;/cite&gt; (where &lt;cite&gt;C&lt;/cite&gt; is the input size) if `affine` is `True`.

By default, this layer uses instance statistics computed from input data in both training and evaluation modes.

If `track_running_stats` is set to `True`, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default `momentum` of 0.1.

Note

This `momentum` argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is ![](img/05beed2a6202dfed2f2c4d1ddf9f445f.jpg), where ![](img/9d834e987d38585c39d150fe8f46bc74.jpg) is the estimated statistic and ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the new observed value.

Note

[`InstanceNorm2d`](#torch.nn.InstanceNorm2d "torch.nn.InstanceNorm2d") and [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") are very similar, but have some subtle differences. [`InstanceNorm2d`](#torch.nn.InstanceNorm2d "torch.nn.InstanceNorm2d") is applied on each channel of channeled data like RGB images, but [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") is usually applied on entire sample and often in NLP tasks. Additionaly, [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") applies elementwise affine transform, while [`InstanceNorm2d`](#torch.nn.InstanceNorm2d "torch.nn.InstanceNorm2d") usually don’t apply affine transform.

| Parameters: | 

*   **num_features** – ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) from an expected input of size ![](img/23f8772594b27bd387be708fe9c085e1.jpg)
*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **momentum** – the value used for the running_mean and running_var computation. Default: 0.1
*   **affine** – a boolean value that when set to `True`, this module has learnable affine parameters, initialized the same way as done for batch normalization. Default: `False`.
*   **track_running_stats** – a boolean value that when set to `True`, this module tracks the running mean and variance, and when set to `False`, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/23f8772594b27bd387be708fe9c085e1.jpg)
*   Output: ![](img/23f8772594b27bd387be708fe9c085e1.jpg) (same shape as input)

Examples:

```py
>>> # Without Learnable Parameters
>>> m = nn.InstanceNorm2d(100)
>>> # With Learnable Parameters
>>> m = nn.InstanceNorm2d(100, affine=True)
>>> input = torch.randn(20, 100, 35, 45)
>>> output = m(input)

```

### InstanceNorm3d

```py
class torch.nn.InstanceNorm3d(num_features, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
```

Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022) .

![](img/63ee6938c8dea3b7cc66a2a245b15cfc.jpg)

The mean and standard-deviation are calculated per-dimension separately for each object in a mini-batch. ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable parameter vectors of size C (where C is the input size) if `affine` is `True`.

By default, this layer uses instance statistics computed from input data in both training and evaluation modes.

If `track_running_stats` is set to `True`, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default `momentum` of 0.1.

Note

This `momentum` argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is ![](img/05beed2a6202dfed2f2c4d1ddf9f445f.jpg), where ![](img/9d834e987d38585c39d150fe8f46bc74.jpg) is the estimated statistic and ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the new observed value.

Note

[`InstanceNorm3d`](#torch.nn.InstanceNorm3d "torch.nn.InstanceNorm3d") and [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") are very similar, but have some subtle differences. [`InstanceNorm3d`](#torch.nn.InstanceNorm3d "torch.nn.InstanceNorm3d") is applied on each channel of channeled data like 3D models with RGB color, but [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") is usually applied on entire sample and often in NLP tasks. Additionaly, [`LayerNorm`](#torch.nn.LayerNorm "torch.nn.LayerNorm") applies elementwise affine transform, while [`InstanceNorm3d`](#torch.nn.InstanceNorm3d "torch.nn.InstanceNorm3d") usually don’t apply affine transform.

| Parameters: | 

*   **num_features** – ![](img/6c8feca3b2da3d6cf371417edff4be4f.jpg) from an expected input of size ![](img/f5a45f7b445db562b21cfcb525637aab.jpg)
*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **momentum** – the value used for the running_mean and running_var computation. Default: 0.1
*   **affine** – a boolean value that when set to `True`, this module has learnable affine parameters, initialized the same way as done for batch normalization. Default: `False`.
*   **track_running_stats** – a boolean value that when set to `True`, this module tracks the running mean and variance, and when set to `False`, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/f5a45f7b445db562b21cfcb525637aab.jpg)
*   Output: ![](img/f5a45f7b445db562b21cfcb525637aab.jpg) (same shape as input)

Examples:

```py
>>> # Without Learnable Parameters
>>> m = nn.InstanceNorm3d(100)
>>> # With Learnable Parameters
>>> m = nn.InstanceNorm3d(100, affine=True)
>>> input = torch.randn(20, 100, 35, 45, 10)
>>> output = m(input)

```

### LayerNorm

```py
class torch.nn.LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True)
```

Applies Layer Normalization over a mini-batch of inputs as described in the paper [Layer Normalization](https://arxiv.org/abs/1607.06450) .

![](img/2fee766f06767b7b87b3531029d92e1d.jpg)

The mean and standard-deviation are calculated separately over the last certain number dimensions which have to be of the shape specified by `normalized_shape`. ![](img/cdab9437b701fd21fb3294cfba7c4bc2.jpg) and ![](img/50705df736e9a7919e768cf8c4e4f794.jpg) are learnable affine transform parameters of `normalized_shape` if `elementwise_affine` is `True`.

Note

Unlike Batch Normalization and Instance Normalization, which applies scalar scale and bias for each entire channel/plane with the `affine` option, Layer Normalization applies per-element scale and bias with `elementwise_affine`.

This layer uses statistics computed from input data in both training and evaluation modes.

| Parameters: | 

*   **normalized_shape** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_list_](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.7)") _or_ _torch.Size_) –

    input shape from an expected input of size

    ![](img/7058ab5ae52adb329c22fa5456ad910f.jpg)

    If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size.

*   **eps** – a value added to the denominator for numerical stability. Default: 1e-5
*   **elementwise_affine** – a boolean value that when set to `True`, this module has learnable per-element affine parameters initialized to ones (for weights) and zeros (for biases). Default: `True`.

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg)
*   Output: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) (same shape as input)

Examples:

```py
>>> input = torch.randn(20, 5, 10, 10)
>>> # With Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:])
>>> # Without Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
>>> # Normalize over last two dimensions
>>> m = nn.LayerNorm([10, 10])
>>> # Normalize over last dimension of size 10
>>> m = nn.LayerNorm(10)
>>> # Activating the module
>>> output = m(input)

```

### LocalResponseNorm

```py
class torch.nn.LocalResponseNorm(size, alpha=0.0001, beta=0.75, k=1.0)
```

Applies local response normalization over an input signal composed of several input planes, where channels occupy the second dimension. Applies normalization across channels.

![](img/5522547c6e594dc7c5ffe998f57ad26b.jpg)

| Parameters: | 

*   **size** – amount of neighbouring channels used for normalization
*   **alpha** – multiplicative factor. Default: 0.0001
*   **beta** – exponent. Default: 0.75
*   **k** – additive factor. Default: 1

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/0113f670591e6e2a1a50722e1affdce5.jpg)
*   Output: ![](img/0113f670591e6e2a1a50722e1affdce5.jpg) (same shape as input)

Examples:

```py
>>> lrn = nn.LocalResponseNorm(2)
>>> signal_2d = torch.randn(32, 5, 24, 24)
>>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7)
>>> output_2d = lrn(signal_2d)
>>> output_4d = lrn(signal_4d)

```

## Recurrent layers

### RNN

```py
class torch.nn.RNN(*args, **kwargs)
```

Applies a multi-layer Elman RNN with ![](img/73b754b4f63e76c0f0327be51d4b263c.jpg) or ![](img/86a6387f3ec09e33de3faaa24f784bca.jpg) non-linearity to an input sequence.

For each element in the input sequence, each layer computes the following function:

![](img/1d1bd72124738a26685d33ce01c89beb.jpg)

where ![](img/a048a5bfcc0242b6427d15ed11ef7e23.jpg) is the hidden state at time &lt;cite&gt;t&lt;/cite&gt;, ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the input at time &lt;cite&gt;t&lt;/cite&gt;, and ![](img/722edd552cee200694a3bfccd4f755df.jpg) is the hidden state of the previous layer at time &lt;cite&gt;t-1&lt;/cite&gt; or the initial hidden state at time &lt;cite&gt;0&lt;/cite&gt;. If `nonlinearity` is &lt;cite&gt;‘relu’&lt;/cite&gt;, then &lt;cite&gt;ReLU&lt;/cite&gt; is used instead of &lt;cite&gt;tanh&lt;/cite&gt;.

| Parameters: | 

*   **input_size** – The number of expected features in the input &lt;cite&gt;x&lt;/cite&gt;
*   **hidden_size** – The number of features in the hidden state &lt;cite&gt;h&lt;/cite&gt;
*   **num_layers** – Number of recurrent layers. E.g., setting `num_layers=2` would mean stacking two RNNs together to form a &lt;cite&gt;stacked RNN&lt;/cite&gt;, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
*   **nonlinearity** – The non-linearity to use. Can be either ‘tanh’ or ‘relu’. Default: ‘tanh’
*   **bias** – If `False`, then the layer does not use bias weights &lt;cite&gt;b_ih&lt;/cite&gt; and &lt;cite&gt;b_hh&lt;/cite&gt;. Default: `True`
*   **batch_first** – If `True`, then the input and output tensors are provided as &lt;cite&gt;(batch, seq, feature)&lt;/cite&gt;. Default: `False`
*   **dropout** – If non-zero, introduces a &lt;cite&gt;Dropout&lt;/cite&gt; layer on the outputs of each RNN layer except the last layer, with dropout probability equal to `dropout`. Default: 0
*   **bidirectional** – If `True`, becomes a bidirectional RNN. Default: `False`

 |
| --- | --- |

```py
Inputs: input, h_0
```

*   **input** of shape &lt;cite&gt;(seq_len, batch, input_size)&lt;/cite&gt;: tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See [`torch.nn.utils.rnn.pack_padded_sequence()`](#torch.nn.utils.rnn.pack_padded_sequence "torch.nn.utils.rnn.pack_padded_sequence") or [`torch.nn.utils.rnn.pack_sequence()`](#torch.nn.utils.rnn.pack_sequence "torch.nn.utils.rnn.pack_sequence") for details.
*   **h_0** of shape &lt;cite&gt;(num_layers * num_directions, batch, hidden_size)&lt;/cite&gt;: tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

```py
Outputs: output, h_n
```

*   **output** of shape &lt;cite&gt;(seq_len, batch, num_directions * hidden_size)&lt;/cite&gt;: tensor containing the output features (&lt;cite&gt;h_k&lt;/cite&gt;) from the last layer of the RNN, for each &lt;cite&gt;k&lt;/cite&gt;. If a [`torch.nn.utils.rnn.PackedSequence`](#torch.nn.utils.rnn.PackedSequence "torch.nn.utils.rnn.PackedSequence") has been given as the input, the output will also be a packed sequence.

    For the unpacked case, the directions can be separated using `output.view(seq_len, batch, num_directions, hidden_size)`, with forward and backward being direction &lt;cite&gt;0&lt;/cite&gt; and &lt;cite&gt;1&lt;/cite&gt; respectively. Similarly, the directions can be separated in the packed case.

*   **h_n** (num_layers * num_directions, batch, hidden_size): tensor containing the hidden state for &lt;cite&gt;k = seq_len&lt;/cite&gt;.

    Like _output_, the layers can be separated using `h_n.view(num_layers, num_directions, batch, hidden_size)`.

| Variables: | 

*   **weight_ih_l[k]** – the learnable input-hidden weights of the k-th layer, of shape &lt;cite&gt;(hidden_size * input_size)&lt;/cite&gt; for &lt;cite&gt;k = 0&lt;/cite&gt;. Otherwise, the shape is &lt;cite&gt;(hidden_size * hidden_size)&lt;/cite&gt;
*   **weight_hh_l[k]** – the learnable hidden-hidden weights of the k-th layer, of shape &lt;cite&gt;(hidden_size * hidden_size)&lt;/cite&gt;
*   **bias_ih_l[k]** – the learnable input-hidden bias of the k-th layer, of shape &lt;cite&gt;(hidden_size)&lt;/cite&gt;
*   **bias_hh_l[k]** – the learnable hidden-hidden bias of the k-th layer, of shape &lt;cite&gt;(hidden_size)&lt;/cite&gt;

 |
| --- | --- |

Note

All the weights and biases are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/cb80fd45c1b2dc2b84b2e80eb48d111e.jpg)

Note

If the following conditions are satisfied: 1) cudnn is enabled, 2) input data is on the GPU 3) input data has dtype `torch.float16` 4) V100 GPU is used, 5) input data is not in `PackedSequence` format persistent algorithm can be selected to improve performance.

Examples:

```py
>>> rnn = nn.RNN(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output, hn = rnn(input, h0)

```

### LSTM

```py
class torch.nn.LSTM(*args, **kwargs)
```

Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

![](img/e45b4c4446dc36020077ab726cee248f.jpg)

where ![](img/a048a5bfcc0242b6427d15ed11ef7e23.jpg) is the hidden state at time &lt;cite&gt;t&lt;/cite&gt;, ![](img/a96fd1792ebb964c44e6a4802fe73a45.jpg) is the cell state at time &lt;cite&gt;t&lt;/cite&gt;, ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the input at time &lt;cite&gt;t&lt;/cite&gt;, ![](img/722edd552cee200694a3bfccd4f755df.jpg) is the hidden state of the layer at time &lt;cite&gt;t-1&lt;/cite&gt; or the initial hidden state at time &lt;cite&gt;0&lt;/cite&gt;, and ![](img/0c33b098890c73bacbf2dbe5476b8ea0.jpg), ![](img/39e0c3cfa9742216d02b21de5ed57650.jpg), ![](img/2fe3fba6f09d597fd2b3cd6a1e0b4547.jpg), ![](img/8b4c3e8be7da971e832789294ddd61d4.jpg) are the input, forget, cell, and output gates, respectively. ![](img/2469b2bd2a1ab19ebfcee223dcb52bb1.jpg) is the sigmoid function.

In a multilayer LSTM, the input ![](img/3aef28832238eb9de1c3d226cc4f026e.jpg) of the ![](img/4c55f62a52ee5572ab96494e9e0a2876.jpg) -th layer (![](img/c2c7ccc0042019ca7a1bb7d536da8a87.jpg)) is the hidden state ![](img/aa2a9f5361143e6f3a32d54920079b52.jpg) of the previous layer multiplied by dropout ![](img/5e5fffda0db50ff1fedeef29921cdf85.jpg) where each ![](img/5b70351b42153bea8ab63d8e783cc0ac.jpg) is a Bernoulli random variable which is ![](img/28256dd5af833c877d63bfabfaa7b301.jpg) with probability `dropout`.

| Parameters: | 

*   **input_size** – The number of expected features in the input &lt;cite&gt;x&lt;/cite&gt;
*   **hidden_size** – The number of features in the hidden state &lt;cite&gt;h&lt;/cite&gt;
*   **num_layers** – Number of recurrent layers. E.g., setting `num_layers=2` would mean stacking two LSTMs together to form a &lt;cite&gt;stacked LSTM&lt;/cite&gt;, with the second LSTM taking in outputs of the first LSTM and computing the final results. Default: 1
*   **bias** – If `False`, then the layer does not use bias weights &lt;cite&gt;b_ih&lt;/cite&gt; and &lt;cite&gt;b_hh&lt;/cite&gt;. Default: `True`
*   **batch_first** – If `True`, then the input and output tensors are provided as (batch, seq, feature). Default: `False`
*   **dropout** – If non-zero, introduces a &lt;cite&gt;Dropout&lt;/cite&gt; layer on the outputs of each LSTM layer except the last layer, with dropout probability equal to `dropout`. Default: 0
*   **bidirectional** – If `True`, becomes a bidirectional LSTM. Default: `False`

 |
| --- | --- |

```py
Inputs: input, (h_0, c_0)
```

*   **input** of shape &lt;cite&gt;(seq_len, batch, input_size)&lt;/cite&gt;: tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See [`torch.nn.utils.rnn.pack_padded_sequence()`](#torch.nn.utils.rnn.pack_padded_sequence "torch.nn.utils.rnn.pack_padded_sequence") or [`torch.nn.utils.rnn.pack_sequence()`](#torch.nn.utils.rnn.pack_sequence "torch.nn.utils.rnn.pack_sequence") for details.

*   **h_0** of shape &lt;cite&gt;(num_layers * num_directions, batch, hidden_size)&lt;/cite&gt;: tensor containing the initial hidden state for each element in the batch. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

*   **c_0** of shape &lt;cite&gt;(num_layers * num_directions, batch, hidden_size)&lt;/cite&gt;: tensor containing the initial cell state for each element in the batch.

    If &lt;cite&gt;(h_0, c_0)&lt;/cite&gt; is not provided, both **h_0** and **c_0** default to zero.

```py
Outputs: output, (h_n, c_n)
```

*   **output** of shape &lt;cite&gt;(seq_len, batch, num_directions * hidden_size)&lt;/cite&gt;: tensor containing the output features &lt;cite&gt;(h_t)&lt;/cite&gt; from the last layer of the LSTM, for each t. If a [`torch.nn.utils.rnn.PackedSequence`](#torch.nn.utils.rnn.PackedSequence "torch.nn.utils.rnn.PackedSequence") has been given as the input, the output will also be a packed sequence.

    For the unpacked case, the directions can be separated using `output.view(seq_len, batch, num_directions, hidden_size)`, with forward and backward being direction &lt;cite&gt;0&lt;/cite&gt; and &lt;cite&gt;1&lt;/cite&gt; respectively. Similarly, the directions can be separated in the packed case.

*   **h_n** of shape &lt;cite&gt;(num_layers * num_directions, batch, hidden_size)&lt;/cite&gt;: tensor containing the hidden state for &lt;cite&gt;t = seq_len&lt;/cite&gt;.

    Like _output_, the layers can be separated using `h_n.view(num_layers, num_directions, batch, hidden_size)` and similarly for _c_n_.

*   **c_n** (num_layers * num_directions, batch, hidden_size): tensor containing the cell state for &lt;cite&gt;t = seq_len&lt;/cite&gt;

| Variables: | 

*   **weight_ih_l[k]** – the learnable input-hidden weights of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer &lt;cite&gt;(W_ii&#124;W_if&#124;W_ig&#124;W_io)&lt;/cite&gt;, of shape &lt;cite&gt;(4*hidden_size x input_size)&lt;/cite&gt;
*   **weight_hh_l[k]** – the learnable hidden-hidden weights of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer &lt;cite&gt;(W_hi&#124;W_hf&#124;W_hg&#124;W_ho)&lt;/cite&gt;, of shape &lt;cite&gt;(4*hidden_size x hidden_size)&lt;/cite&gt;
*   **bias_ih_l[k]** – the learnable input-hidden bias of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer &lt;cite&gt;(b_ii&#124;b_if&#124;b_ig&#124;b_io)&lt;/cite&gt;, of shape &lt;cite&gt;(4*hidden_size)&lt;/cite&gt;
*   **bias_hh_l[k]** – the learnable hidden-hidden bias of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer &lt;cite&gt;(b_hi&#124;b_hf&#124;b_hg&#124;b_ho)&lt;/cite&gt;, of shape &lt;cite&gt;(4*hidden_size)&lt;/cite&gt;

 |
| --- | --- |

Note

All the weights and biases are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/cb80fd45c1b2dc2b84b2e80eb48d111e.jpg)

Note

If the following conditions are satisfied: 1) cudnn is enabled, 2) input data is on the GPU 3) input data has dtype `torch.float16` 4) V100 GPU is used, 5) input data is not in `PackedSequence` format persistent algorithm can be selected to improve performance.

Examples:

```py
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))

```

### GRU

```py
class torch.nn.GRU(*args, **kwargs)
```

Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

![](img/76771dd2e48bad7097dc9524356200ef.jpg)

where ![](img/a048a5bfcc0242b6427d15ed11ef7e23.jpg) is the hidden state at time &lt;cite&gt;t&lt;/cite&gt;, ![](img/22c5ed7653e3fae804006a00210327fc.jpg) is the input at time &lt;cite&gt;t&lt;/cite&gt;, ![](img/722edd552cee200694a3bfccd4f755df.jpg) is the hidden state of the layer at time &lt;cite&gt;t-1&lt;/cite&gt; or the initial hidden state at time &lt;cite&gt;0&lt;/cite&gt;, and ![](img/33becaceee3dd4f30f106b6a8605226f.jpg), ![](img/98ba4bd98c899c9f15a00fe76fe782b2.jpg), ![](img/4d63033e7717e68b17fc937ffcbcde4b.jpg) are the reset, update, and new gates, respectively. ![](img/2469b2bd2a1ab19ebfcee223dcb52bb1.jpg) is the sigmoid function.

In a multilayer GRU, the input ![](img/3aef28832238eb9de1c3d226cc4f026e.jpg) of the ![](img/4c55f62a52ee5572ab96494e9e0a2876.jpg) -th layer (![](img/c2c7ccc0042019ca7a1bb7d536da8a87.jpg)) is the hidden state ![](img/aa2a9f5361143e6f3a32d54920079b52.jpg) of the previous layer multiplied by dropout ![](img/5e5fffda0db50ff1fedeef29921cdf85.jpg) where each ![](img/5b70351b42153bea8ab63d8e783cc0ac.jpg) is a Bernoulli random variable which is ![](img/28256dd5af833c877d63bfabfaa7b301.jpg) with probability `dropout`.

| Parameters: | 

*   **input_size** – The number of expected features in the input &lt;cite&gt;x&lt;/cite&gt;
*   **hidden_size** – The number of features in the hidden state &lt;cite&gt;h&lt;/cite&gt;
*   **num_layers** – Number of recurrent layers. E.g., setting `num_layers=2` would mean stacking two GRUs together to form a &lt;cite&gt;stacked GRU&lt;/cite&gt;, with the second GRU taking in outputs of the first GRU and computing the final results. Default: 1
*   **bias** – If `False`, then the layer does not use bias weights &lt;cite&gt;b_ih&lt;/cite&gt; and &lt;cite&gt;b_hh&lt;/cite&gt;. Default: `True`
*   **batch_first** – If `True`, then the input and output tensors are provided as (batch, seq, feature). Default: `False`
*   **dropout** – If non-zero, introduces a &lt;cite&gt;Dropout&lt;/cite&gt; layer on the outputs of each GRU layer except the last layer, with dropout probability equal to `dropout`. Default: 0
*   **bidirectional** – If `True`, becomes a bidirectional GRU. Default: `False`

 |
| --- | --- |

```py
Inputs: input, h_0
```

*   **input** of shape &lt;cite&gt;(seq_len, batch, input_size)&lt;/cite&gt;: tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See [`torch.nn.utils.rnn.pack_padded_sequence()`](#torch.nn.utils.rnn.pack_padded_sequence "torch.nn.utils.rnn.pack_padded_sequence") for details.
*   **h_0** of shape &lt;cite&gt;(num_layers * num_directions, batch, hidden_size)&lt;/cite&gt;: tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

```py
Outputs: output, h_n
```

*   **output** of shape &lt;cite&gt;(seq_len, batch, num_directions * hidden_size)&lt;/cite&gt;: tensor containing the output features h_t from the last layer of the GRU, for each t. If a [`torch.nn.utils.rnn.PackedSequence`](#torch.nn.utils.rnn.PackedSequence "torch.nn.utils.rnn.PackedSequence") has been given as the input, the output will also be a packed sequence. For the unpacked case, the directions can be separated using `output.view(seq_len, batch, num_directions, hidden_size)`, with forward and backward being direction &lt;cite&gt;0&lt;/cite&gt; and &lt;cite&gt;1&lt;/cite&gt; respectively.

    Similarly, the directions can be separated in the packed case.

*   **h_n** of shape &lt;cite&gt;(num_layers * num_directions, batch, hidden_size)&lt;/cite&gt;: tensor containing the hidden state for &lt;cite&gt;t = seq_len&lt;/cite&gt;

    Like _output_, the layers can be separated using `h_n.view(num_layers, num_directions, batch, hidden_size)`.

| Variables: | 

*   **weight_ih_l[k]** – the learnable input-hidden weights of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer (W_ir&#124;W_iz&#124;W_in), of shape &lt;cite&gt;(3*hidden_size x input_size)&lt;/cite&gt;
*   **weight_hh_l[k]** – the learnable hidden-hidden weights of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer (W_hr&#124;W_hz&#124;W_hn), of shape &lt;cite&gt;(3*hidden_size x hidden_size)&lt;/cite&gt;
*   **bias_ih_l[k]** – the learnable input-hidden bias of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer (b_ir&#124;b_iz&#124;b_in), of shape &lt;cite&gt;(3*hidden_size)&lt;/cite&gt;
*   **bias_hh_l[k]** – the learnable hidden-hidden bias of the ![](img/3daedae8ea4977a42453935c04c06ad0.jpg) layer (b_hr&#124;b_hz&#124;b_hn), of shape &lt;cite&gt;(3*hidden_size)&lt;/cite&gt;

 |
| --- | --- |

Note

All the weights and biases are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/cb80fd45c1b2dc2b84b2e80eb48d111e.jpg)

Note

If the following conditions are satisfied: 1) cudnn is enabled, 2) input data is on the GPU 3) input data has dtype `torch.float16` 4) V100 GPU is used, 5) input data is not in `PackedSequence` format persistent algorithm can be selected to improve performance.

Examples:

```py
>>> rnn = nn.GRU(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output, hn = rnn(input, h0)

```

### RNNCell

```py
class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh')
```

An Elman RNN cell with tanh or ReLU non-linearity.

![](img/e748fe354d996221dbfa5f8e3412451e.jpg)

If `nonlinearity` is &lt;cite&gt;‘relu’&lt;/cite&gt;, then ReLU is used in place of tanh.

| Parameters: | 

*   **input_size** – The number of expected features in the input &lt;cite&gt;x&lt;/cite&gt;
*   **hidden_size** – The number of features in the hidden state &lt;cite&gt;h&lt;/cite&gt;
*   **bias** – If `False`, then the layer does not use bias weights &lt;cite&gt;b_ih&lt;/cite&gt; and &lt;cite&gt;b_hh&lt;/cite&gt;. Default: `True`
*   **nonlinearity** – The non-linearity to use. Can be either ‘tanh’ or ‘relu’. Default: ‘tanh’

 |
| --- | --- |

```py
Inputs: input, hidden
```

*   **input** of shape &lt;cite&gt;(batch, input_size)&lt;/cite&gt;: tensor containing input features
*   **hidden** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.

```py
Outputs: h
```

*   **h’** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the next hidden state for each element in the batch

| Variables: | 

*   **weight_ih** – the learnable input-hidden weights, of shape &lt;cite&gt;(hidden_size x input_size)&lt;/cite&gt;
*   **weight_hh** – the learnable hidden-hidden weights, of shape &lt;cite&gt;(hidden_size x hidden_size)&lt;/cite&gt;
*   **bias_ih** – the learnable input-hidden bias, of shape &lt;cite&gt;(hidden_size)&lt;/cite&gt;
*   **bias_hh** – the learnable hidden-hidden bias, of shape &lt;cite&gt;(hidden_size)&lt;/cite&gt;

 |
| --- | --- |

Note

All the weights and biases are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/cb80fd45c1b2dc2b84b2e80eb48d111e.jpg)

Examples:

```py
>>> rnn = nn.RNNCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
 hx = rnn(input[i], hx)
 output.append(hx)

```

### LSTMCell

```py
class torch.nn.LSTMCell(input_size, hidden_size, bias=True)
```

A long short-term memory (LSTM) cell.

![](img/fb4d6ec81b25bb8201fbedd23b71b45f.jpg)

where ![](img/2469b2bd2a1ab19ebfcee223dcb52bb1.jpg) is the sigmoid function.

| Parameters: | 

*   **input_size** – The number of expected features in the input &lt;cite&gt;x&lt;/cite&gt;
*   **hidden_size** – The number of features in the hidden state &lt;cite&gt;h&lt;/cite&gt;
*   **bias** – If &lt;cite&gt;False&lt;/cite&gt;, then the layer does not use bias weights &lt;cite&gt;b_ih&lt;/cite&gt; and &lt;cite&gt;b_hh&lt;/cite&gt;. Default: `True`

 |
| --- | --- |

```py
Inputs: input, (h_0, c_0)
```

*   **input** of shape &lt;cite&gt;(batch, input_size)&lt;/cite&gt;: tensor containing input features

*   **h_0** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the initial hidden state for each element in the batch.

*   **c_0** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the initial cell state for each element in the batch.

    If &lt;cite&gt;(h_0, c_0)&lt;/cite&gt; is not provided, both **h_0** and **c_0** default to zero.

```py
Outputs: h_1, c_1
```

*   **h_1** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the next hidden state for each element in the batch
*   **c_1** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the next cell state for each element in the batch

| Variables: | 

*   **weight_ih** – the learnable input-hidden weights, of shape &lt;cite&gt;(4*hidden_size x input_size)&lt;/cite&gt;
*   **weight_hh** – the learnable hidden-hidden weights, of shape &lt;cite&gt;(4*hidden_size x hidden_size)&lt;/cite&gt;
*   **bias_ih** – the learnable input-hidden bias, of shape &lt;cite&gt;(4*hidden_size)&lt;/cite&gt;
*   **bias_hh** – the learnable hidden-hidden bias, of shape &lt;cite&gt;(4*hidden_size)&lt;/cite&gt;

 |
| --- | --- |

Note

All the weights and biases are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/cb80fd45c1b2dc2b84b2e80eb48d111e.jpg)

Examples:

```py
>>> rnn = nn.LSTMCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> cx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
 hx, cx = rnn(input[i], (hx, cx))
 output.append(hx)

```

### GRUCell

```py
class torch.nn.GRUCell(input_size, hidden_size, bias=True)
```

A gated recurrent unit (GRU) cell

![](img/a557e5b089bda248c2e25791d88d4b2a.jpg)

where ![](img/2469b2bd2a1ab19ebfcee223dcb52bb1.jpg) is the sigmoid function.

| Parameters: | 

*   **input_size** – The number of expected features in the input &lt;cite&gt;x&lt;/cite&gt;
*   **hidden_size** – The number of features in the hidden state &lt;cite&gt;h&lt;/cite&gt;
*   **bias** – If &lt;cite&gt;False&lt;/cite&gt;, then the layer does not use bias weights &lt;cite&gt;b_ih&lt;/cite&gt; and &lt;cite&gt;b_hh&lt;/cite&gt;. Default: &lt;cite&gt;True&lt;/cite&gt;

 |
| --- | --- |

```py
Inputs: input, hidden
```

*   **input** of shape &lt;cite&gt;(batch, input_size)&lt;/cite&gt;: tensor containing input features
*   **hidden** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.

```py
Outputs: h
```

*   **h’** of shape &lt;cite&gt;(batch, hidden_size)&lt;/cite&gt;: tensor containing the next hidden state for each element in the batch

| Variables: | 

*   **weight_ih** – the learnable input-hidden weights, of shape &lt;cite&gt;(3*hidden_size x input_size)&lt;/cite&gt;
*   **weight_hh** – the learnable hidden-hidden weights, of shape &lt;cite&gt;(3*hidden_size x hidden_size)&lt;/cite&gt;
*   **bias_ih** – the learnable input-hidden bias, of shape &lt;cite&gt;(3*hidden_size)&lt;/cite&gt;
*   **bias_hh** – the learnable hidden-hidden bias, of shape &lt;cite&gt;(3*hidden_size)&lt;/cite&gt;

 |
| --- | --- |

Note

All the weights and biases are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/cb80fd45c1b2dc2b84b2e80eb48d111e.jpg)

Examples:

```py
>>> rnn = nn.GRUCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
 hx = rnn(input[i], hx)
 output.append(hx)

```

## Linear layers

### Linear

```py
class torch.nn.Linear(in_features, out_features, bias=True)
```

Applies a linear transformation to the incoming data: ![](img/8c4834b7cb4b9c7a795bf354412e8dd3.jpg)

| Parameters: | 

*   **in_features** – size of each input sample
*   **out_features** – size of each output sample
*   **bias** – If set to False, the layer will not learn an additive bias. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/37251f14c8c7345b66309c1ce6181e4d.jpg) where ![](img/28ec51e742166ea3400be6e7343bbfa5.jpg) means any number of additional dimensions
*   Output: ![](img/052531b4914630967eb9a6ed4f143697.jpg) where all but the last dimension are the same shape as the input.

| Variables: | 

*   **weight** – the learnable weights of the module of shape ![](img/7bdd499093e2167451c56eb5c4480786.jpg). The values are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg), where ![](img/9d1dd979275f32a1bcc00f4e3885e68c.jpg)
*   **bias** – the learnable bias of the module of shape ![](img/27eac2d9aa3b57eabe07fcce145717d2.jpg). If `bias` is `True`, the values are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg) where ![](img/9d1dd979275f32a1bcc00f4e3885e68c.jpg)

 |
| --- | --- |

Examples:

```py
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])

```

### Bilinear

```py
class torch.nn.Bilinear(in1_features, in2_features, out_features, bias=True)
```

Applies a bilinear transformation to the incoming data: ![](img/a0d89d1240ed669c322d042acea66b2c.jpg)

| Parameters: | 

*   **in1_features** – size of each first input sample
*   **in2_features** – size of each second input sample
*   **out_features** – size of each output sample
*   **bias** – If set to False, the layer will not learn an additive bias. Default: `True`

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/9cf39fb88b1a94018532514fcb3e125c.jpg), ![](img/5b3219dff177846f3a5aebdb36ae5d30.jpg) where ![](img/28ec51e742166ea3400be6e7343bbfa5.jpg) means any number of additional dimensions. All but the last dimension of the inputs should be the same.
*   Output: ![](img/052531b4914630967eb9a6ed4f143697.jpg) where all but the last dimension are the same shape as the input.

| Variables: | 

*   **weight** – the learnable weights of the module of shape ![](img/3f2a47921a3568c8f0f8c45847fd2ad3.jpg). The values are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg), where ![](img/76606e23079bb41cbaeb5fa9ddc71c86.jpg)
*   **bias** – the learnable bias of the module of shape ![](img/27eac2d9aa3b57eabe07fcce145717d2.jpg) If `bias` is `True`, the values are initialized from ![](img/3d305f1c240ff844b6cb2c1c6660e0af.jpg), where ![](img/76606e23079bb41cbaeb5fa9ddc71c86.jpg)

 |
| --- | --- |

Examples:

```py
>>> m = nn.Bilinear(20, 30, 40)
>>> input1 = torch.randn(128, 20)
>>> input2 = torch.randn(128, 30)
>>> output = m(input1, input2)
>>> print(output.size())
torch.Size([128, 40])

```

## Dropout layers

### Dropout

```py
class torch.nn.Dropout(p=0.5, inplace=False)
```

During training, randomly zeroes some of the elements of the input tensor with probability `p` using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call.

This has proven to be an effective technique for regularization and preventing the co-adaptation of neurons as described in the paper [Improving neural networks by preventing co-adaptation of feature detectors](https://arxiv.org/abs/1207.0580) .

Furthermore, the outputs are scaled by a factor of ![](img/37052da8591fea742432c58ac3a4dc59.jpg) during training. This means that during evaluation the module simply computes an identity function.

| Parameters: | 

*   **p** – probability of an element to be zeroed. Default: 0.5
*   **inplace** – If set to `True`, will do this operation in-place. Default: `False`

 |
| --- | --- |

```py
Shape:
```

*   Input: &lt;cite&gt;Any&lt;/cite&gt;. Input can be of any shape
*   Output: &lt;cite&gt;Same&lt;/cite&gt;. Output is of the same shape as input

Examples:

```py
>>> m = nn.Dropout(p=0.2)
>>> input = torch.randn(20, 16)
>>> output = m(input)

```

### Dropout2d

```py
class torch.nn.Dropout2d(p=0.5, inplace=False)
```

Randomly zero out entire channels (a channel is a 2D feature map, e.g., the ![](img/d8fdd0e28cfb03738fc5227885ee035a.jpg)-th channel of the ![](img/31df9c730e19ca29b59dce64b99d98c1.jpg)-th sample in the batched input is a 2D tensor ![](img/5bc8fbe2fea3359e55846184c5eb123a.jpg)) of the input tensor). Each channel will be zeroed out independently on every forward call. with probability `p` using samples from a Bernoulli distribution.

Usually the input comes from `nn.Conv2d` modules.

As described in the paper [Efficient Object Localization Using Convolutional Networks](http://arxiv.org/abs/1411.4280) , if adjacent pixels within feature maps are strongly correlated (as is normally the case in early convolution layers) then i.i.d. dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease.

In this case, `nn.Dropout2d()` will help promote independence between feature maps and should be used instead.

| Parameters: | 

*   **p** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – probability of an element to be zero-ed.
*   **inplace** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If set to `True`, will do this operation in-place

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/23f8772594b27bd387be708fe9c085e1.jpg)
*   Output: ![](img/23f8772594b27bd387be708fe9c085e1.jpg) (same shape as input)

Examples:

```py
>>> m = nn.Dropout2d(p=0.2)
>>> input = torch.randn(20, 16, 32, 32)
>>> output = m(input)

```

### Dropout3d

```py
class torch.nn.Dropout3d(p=0.5, inplace=False)
```

Randomly zero out entire channels (a channel is a 3D feature map, e.g., the ![](img/d8fdd0e28cfb03738fc5227885ee035a.jpg)-th channel of the ![](img/31df9c730e19ca29b59dce64b99d98c1.jpg)-th sample in the batched input is a 3D tensor ![](img/5bc8fbe2fea3359e55846184c5eb123a.jpg)) of the input tensor). Each channel will be zeroed out independently on every forward call. with probability `p` using samples from a Bernoulli distribution.

Usually the input comes from `nn.Conv3d` modules.

As described in the paper [Efficient Object Localization Using Convolutional Networks](http://arxiv.org/abs/1411.4280) , if adjacent pixels within feature maps are strongly correlated (as is normally the case in early convolution layers) then i.i.d. dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease.

In this case, `nn.Dropout3d()` will help promote independence between feature maps and should be used instead.

| Parameters: | 

*   **p** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – probability of an element to be zeroed.
*   **inplace** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If set to `True`, will do this operation in-place

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/f5a45f7b445db562b21cfcb525637aab.jpg)
*   Output: ![](img/f5a45f7b445db562b21cfcb525637aab.jpg) (same shape as input)

Examples:

```py
>>> m = nn.Dropout3d(p=0.2)
>>> input = torch.randn(20, 16, 4, 32, 32)
>>> output = m(input)

```

### AlphaDropout

```py
class torch.nn.AlphaDropout(p=0.5, inplace=False)
```

Applies Alpha Dropout over the input.

Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and standard deviation of the input. Alpha Dropout goes hand-in-hand with SELU activation function, which ensures that the outputs have zero mean and unit standard deviation.

During training, it randomly masks some of the elements of the input tensor with probability _p_ using samples from a bernoulli distribution. The elements to masked are randomized on every forward call, and scaled and shifted to maintain zero mean and unit standard deviation.

During evaluation the module simply computes an identity function.

More details can be found in the paper [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) .

| Parameters: | 

*   **p** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")) – probability of an element to be dropped. Default: 0.5
*   **inplace** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If set to `True`, will do this operation in-place

 |
| --- | --- |

```py
Shape:
```

*   Input: &lt;cite&gt;Any&lt;/cite&gt;. Input can be of any shape
*   Output: &lt;cite&gt;Same&lt;/cite&gt;. Output is of the same shape as input

Examples:

```py
>>> m = nn.AlphaDropout(p=0.2)
>>> input = torch.randn(20, 16)
>>> output = m(input)

```

## Sparse layers

### Embedding

```py
class torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None)
```

A simple lookup table that stores embeddings of a fixed dictionary and size.

This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings.

| Parameters: | 

*   **num_embeddings** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – size of the dictionary of embeddings
*   **embedding_dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – the size of each embedding vector
*   **padding_idx** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – If given, pads the output with the embedding vector at `padding_idx` (initialized to zeros) whenever it encounters the index.
*   **max_norm** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – If given, each embedding vector with norm larger than `max_norm` is renormalized to have norm `max_norm`.
*   **norm_type** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – The p of the p-norm to compute for the `max_norm` option. Default `2`.
*   **scale_grad_by_freq** (_boolean__,_ _optional_) – If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default `False`.
*   **sparse** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – If `True`, gradient w.r.t. `weight` matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.

 |
| --- | --- |
| Variables: | **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from ![](img/dd84ddbf2f8040d87fb315eeeba51f6d.jpg) |
| --- | --- |

Shape:

> *   Input: LongTensor of arbitrary shape containing the indices to extract
> *   Output: &lt;cite&gt;(*, embedding_dim)&lt;/cite&gt;, where &lt;cite&gt;*&lt;/cite&gt; is the input shape

Note

Keep in mind that only a limited number of optimizers support sparse gradients: currently it’s `optim.SGD` (&lt;cite&gt;CUDA&lt;/cite&gt; and &lt;cite&gt;CPU&lt;/cite&gt;), `optim.SparseAdam` (&lt;cite&gt;CUDA&lt;/cite&gt; and &lt;cite&gt;CPU&lt;/cite&gt;) and `optim.Adagrad` (&lt;cite&gt;CPU&lt;/cite&gt;)

Note

With `padding_idx` set, the embedding vector at `padding_idx` is initialized to all zeros. However, note that this vector can be modified afterwards, e.g., using a customized initialization method, and thus changing the vector used to pad the output. The gradient for this vector from [`Embedding`](#torch.nn.Embedding "torch.nn.Embedding") is always zero.

Examples:

```py
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding = nn.Embedding(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
>>> embedding(input)
tensor([[[-0.0251, -1.6902,  0.7172],
 [-0.6431,  0.0748,  0.6969],
 [ 1.4970,  1.3448, -0.9685],
 [-0.3677, -2.7265, -0.1685]],

 [[ 1.4970,  1.3448, -0.9685],
 [ 0.4362, -0.4004,  0.9400],
 [-0.6431,  0.0748,  0.6969],
 [ 0.9124, -2.3616,  1.1151]]])

>>> # example with padding_idx
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
>>> input = torch.LongTensor([[0,2,0,5]])
>>> embedding(input)
tensor([[[ 0.0000,  0.0000,  0.0000],
 [ 0.1535, -2.0309,  0.9315],
 [ 0.0000,  0.0000,  0.0000],
 [-0.1655,  0.9897,  0.0635]]])

```

```py
classmethod from_pretrained(embeddings, freeze=True, sparse=False)
```

Creates Embedding instance from given 2-dimensional FloatTensor.

| Parameters: | 

*   **embeddings** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – FloatTensor containing weights for the Embedding. First dimension is being passed to Embedding as ‘num_embeddings’, second as ‘embedding_dim’.
*   **freeze** (_boolean__,_ _optional_) – If `True`, the tensor does not get updated in the learning process. Equivalent to `embedding.weight.requires_grad = False`. Default: `True`
*   **sparse** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – if `True`, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.

 |
| --- | --- |

Examples:

```py
>>> # FloatTensor containing pretrained weights
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
>>> embedding = nn.Embedding.from_pretrained(weight)
>>> # Get embeddings for index 1
>>> input = torch.LongTensor([1])
>>> embedding(input)
tensor([[ 4.0000,  5.1000,  6.3000]])

```

### EmbeddingBag

```py
class torch.nn.EmbeddingBag(num_embeddings, embedding_dim, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, mode='mean', sparse=False)
```

Computes sums or means of ‘bags’ of embeddings, without instantiating the intermediate embeddings.

For bags of constant length, this class

> *   with `mode="sum"` is equivalent to [`Embedding`](#torch.nn.Embedding "torch.nn.Embedding") followed by `torch.sum(dim=1)`,
> *   with `mode="mean"` is equivalent to [`Embedding`](#torch.nn.Embedding "torch.nn.Embedding") followed by `torch.mean(dim=1)`,
> *   with `mode="max"` is equivalent to [`Embedding`](#torch.nn.Embedding "torch.nn.Embedding") followed by `torch.max(dim=1)`.

However, [`EmbeddingBag`](#torch.nn.EmbeddingBag "torch.nn.EmbeddingBag") is much more time and memory efficient than using a chain of these operations.

| Parameters: | 

*   **num_embeddings** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – size of the dictionary of embeddings
*   **embedding_dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – the size of each embedding vector
*   **max_norm** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – If given, each embedding vector with norm larger than `max_norm` is renormalized to have norm `max_norm`.
*   **norm_type** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – The p of the p-norm to compute for the `max_norm` option. Default `2`.
*   **scale_grad_by_freq** (_boolean__,_ _optional_) – if given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default `False`. Note: this option is not supported when `mode="max"`.
*   **mode** (_string__,_ _optional_) – `"sum"`, `"mean"` or `"max"`. Specifies the way to reduce the bag. Default: `"mean"`
*   **sparse** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – if `True`, gradient w.r.t. `weight` matrix will be a sparse tensor. See Notes for more details regarding sparse gradients. Note: this option is not supported when `mode="max"`.

 |
| --- | --- |
| Variables: | **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – the learnable weights of the module of shape `(num_embeddings x embedding_dim)` initialized from ![](img/dd84ddbf2f8040d87fb315eeeba51f6d.jpg). |
| --- | --- |

Inputs: `input` (LongTensor) and `offsets` (LongTensor, optional)

> *   If `input` is 2D of shape `B x N`,
>     
>     
>     
>     it will be treated as `B` bags (sequences) each of fixed length `N`, and this will return `B` values aggregated in a way depending on the `mode`. `offsets` is ignored and required to be `None` in this case.
>     
>     
> *   If `input` is 1D of shape `N`,
>     
>     
>     
>     it will be treated as a concatenation of multiple bags (sequences). `offsets` is required to be a 1D tensor containing the starting index positions of each bag in `input`. Therefore, for `offsets` of shape `B`, `input` will be viewed as having `B` bags. Empty bags (i.e., having 0-length) will have returned vectors filled by zeros.

Output shape: `B x embedding_dim`

Examples:

```py
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.LongTensor([1,2,4,5,4,3,2,9])
>>> offsets = torch.LongTensor([0,4])
>>> embedding_sum(input, offsets)
tensor([[-0.8861, -5.4350, -0.0523],
 [ 1.1306, -2.5798, -1.0044]])

```

## Distance functions

### CosineSimilarity

```py
class torch.nn.CosineSimilarity(dim=1, eps=1e-08)
```

Returns cosine similarity between ![](img/abdadb44ea35aecb39004dd7f55d9543.jpg) and ![](img/88fdc6eeb68ef4aacf7cd6bd43fa176e.jpg), computed along dim.

![](img/93f92bee7ec6c9e48618f7c929ab51e3.jpg)

| Parameters: | 

*   **dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Dimension where cosine similarity is computed. Default: 1
*   **eps** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Small value to avoid division by zero. Default: 1e-8

 |
| --- | --- |

```py
Shape:
```

*   Input1: ![](img/c2101d997ef86641ad9f92513b080e8a.jpg) where D is at position &lt;cite&gt;dim&lt;/cite&gt;
*   Input2: ![](img/c2101d997ef86641ad9f92513b080e8a.jpg), same shape as the Input1
*   Output: ![](img/999c5fb65c1a9ba017a0d60c030400c5.jpg)

Examples:

```py
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
>>> output = cos(input1, input2)

```

### PairwiseDistance

```py
class torch.nn.PairwiseDistance(p=2.0, eps=1e-06, keepdim=False)
```

Computes the batchwise pairwise distance between vectors ![](img/2f0f406e2d42300da1a9891d89381576.jpg), ![](img/60787776d6fd54b3adfd3762b910bd3f.jpg) using the p-norm:

![](img/4206b08d53423c6d6f77c51751d33cae.jpg)

| Parameters: | 

*   **p** (_real_) – the norm degree. Default: 2
*   **eps** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Small value to avoid division by zero. Default: 1e-6
*   **keepdim** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Determines whether or not to keep the batch dimension. Default: False

 |
| --- | --- |

```py
Shape:
```

*   Input1: ![](img/3dc464d2e10c731f17264e33e497c1a8.jpg) where &lt;cite&gt;D = vector dimension&lt;/cite&gt;
*   Input2: ![](img/3dc464d2e10c731f17264e33e497c1a8.jpg), same shape as the Input1
*   Output: ![](img/2a3e2b832e04fe8d66596083b23da518.jpg). If `keepdim` is `False`, then ![](img/f1b7cdb5b976f1adde1e8b2850a1c127.jpg).

Examples:

```py
>>> pdist = nn.PairwiseDistance(p=2)
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> output = pdist(input1, input2)

```

## Loss functions

### L1Loss

```py
class torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that measures the mean absolute error (MAE) between each element in the input &lt;cite&gt;x&lt;/cite&gt; and target &lt;cite&gt;y&lt;/cite&gt;.

The loss can be described as:

![](img/415564bfa6c89ba182a02fe2a3d0ca49.jpg)

where ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is the batch size. If reduce is `True`, then:

![](img/dd1952e377a9b618cc6538b18165a417.jpg)

&lt;cite&gt;x&lt;/cite&gt; and &lt;cite&gt;y&lt;/cite&gt; are tensors of arbitrary shapes with a total of &lt;cite&gt;n&lt;/cite&gt; elements each.

The sum operation still operates over all the elements, and divides by &lt;cite&gt;n&lt;/cite&gt;.

The division by &lt;cite&gt;n&lt;/cite&gt; can be avoided if one sets the constructor argument &lt;cite&gt;size_average=False&lt;/cite&gt;.

| Parameters: | 

*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Target: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input
*   Output: scalar. If reduce is `False`, then ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

Examples:

```py
>>> loss = nn.L1Loss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()

```

### MSELoss

```py
class torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input &lt;cite&gt;x&lt;/cite&gt; and target &lt;cite&gt;y&lt;/cite&gt;.

The loss can be described as:

![](img/e67b64ef5017709a433d1214a681717e.jpg)

where ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is the batch size. If reduce is `True`, then:

![](img/f3a00c026a75843dd3a04c64f9cecb47.jpg)

The sum operation still operates over all the elements, and divides by &lt;cite&gt;n&lt;/cite&gt;.

The division by &lt;cite&gt;n&lt;/cite&gt; can be avoided if one sets `size_average` to `False`.

To get a batch of losses, a loss per batch element, set &lt;cite&gt;reduce&lt;/cite&gt; to `False`. These losses are not averaged and are not affected by &lt;cite&gt;size_average&lt;/cite&gt;.

| Parameters: | 

*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Target: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

Examples:

```py
>>> loss = nn.MSELoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()

```

### CrossEntropyLoss

```py
class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
```

This criterion combines `nn.LogSoftmax()` and `nn.NLLLoss()` in one single class.

It is useful when training a classification problem with &lt;cite&gt;C&lt;/cite&gt; classes. If provided, the optional argument `weight` should be a 1D &lt;cite&gt;Tensor&lt;/cite&gt; assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

The &lt;cite&gt;input&lt;/cite&gt; is expected to contain scores for each class.

&lt;cite&gt;input&lt;/cite&gt; has to be a Tensor of size either ![](img/cca0c8da541b81bec031e4e52161d2c7.jpg) or ![](img/f30f7531b252dc52c6bb945ebb508cc4.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) for the &lt;cite&gt;K&lt;/cite&gt;-dimensional case (described later).

This criterion expects a class index (0 to &lt;cite&gt;C-1&lt;/cite&gt;) as the &lt;cite&gt;target&lt;/cite&gt; for each value of a 1D tensor of size &lt;cite&gt;minibatch&lt;/cite&gt;

The loss can be described as:

![](img/29028e6a28821a298d2a456d6bb175f9.jpg)

or in the case of the &lt;cite&gt;weight&lt;/cite&gt; argument being specified:

![](img/bc344720164c2bc94ebd3f405b898216.jpg)

The losses are averaged across observations for each minibatch.

Can also be used for higher dimension inputs, such as 2D images, by providing an input of size ![](img/f30f7531b252dc52c6bb945ebb508cc4.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg), where ![](img/a5db490cd70a38a0bb9f3de58c51589f.jpg) is the number of dimensions, and a target of appropriate shape (see below).

| Parameters: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_,_ _optional_) – a manual rescaling weight given to each class. If given, has to be a Tensor of size &lt;cite&gt;C&lt;/cite&gt;
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **ignore_index** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Specifies a target value that is ignored and does not contribute to the input gradient. When &lt;cite&gt;size_average&lt;/cite&gt; is `True`, the loss is averaged over non-ignored targets.
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   ```py
    Input: \((N, C)\) where C = number of classes, or
    ```

    ![](img/ddeb501040934760370435d1c223e6b6.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) in the case of &lt;cite&gt;K&lt;/cite&gt;-dimensional loss.
*   ```py
    Target: \((N)\) where each value is \(0 \leq \text{targets}[i] \leq C-1\), or
    ```

    ![](img/5981db74a9cd434c7580e6ba530e21b6.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) in the case of K-dimensional loss.
*   ```py
    Output: scalar. If reduce is False, then the same size
    ```

    as the target: ![](img/2a3e2b832e04fe8d66596083b23da518.jpg), or ![](img/5981db74a9cd434c7580e6ba530e21b6.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) in the case of K-dimensional loss.

Examples:

```py
>>> loss = nn.CrossEntropyLoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.empty(3, dtype=torch.long).random_(5)
>>> output = loss(input, target)
>>> output.backward()

```

### CTCLoss

```py
class torch.nn.CTCLoss(blank=0, reduction='mean')
```

The Connectionist Temporal Classification loss.

| Parameters: | 

*   **blank** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – blank label. Default ![](img/28256dd5af833c877d63bfabfaa7b301.jpg).
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the output losses will be divided by the target lengths and then the mean over the batch is taken. Default: ‘mean’

 |
| --- | --- |

```py
Inputs:
```

```py
log_probs: Tensor of size \((T, N, C)\) where C = number of characters in alphabet including blank,
```

<cite>T = input length</cite>, and <cite>N = batch size</cite>. The logarithmized probabilities of the outputs (e.g. obtained with [`torch.nn.functional.log_softmax()`](#torch.nn.functional.log_softmax "torch.nn.functional.log_softmax")).

```py
targets: Tensor of size \((N, S)\) or (sum(target_lengths)).
```

Targets (cannot be blank). In the second form, the targets are assumed to be concatenated.

```py
input_lengths: Tuple or tensor of size \((N)\).
```

Lengths of the inputs (must each be ![](img/0063f9a7d145aadc1082a0c4c8712a62.jpg))

```py
target_lengths: Tuple or tensor of size  \((N)\).
```

Lengths of the targets

Example:

```py
>>> ctc_loss = nn.CTCLoss()
>>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()
>>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long)
>>> input_lengths = torch.full((16,), 50, dtype=torch.long)
>>> target_lengths = torch.randint(10,30,(16,), dtype=torch.long)
>>> loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
>>> loss.backward()

```

```py
Reference:
```

A. Graves et al.: Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks: [https://www.cs.toronto.edu/~graves/icml_2006.pdf](https://www.cs.toronto.edu/~graves/icml_2006.pdf)

Note

In order to use CuDNN, the following must be satisfied: `targets` must be in concatenated format, all `input_lengths` must be &lt;cite&gt;T&lt;/cite&gt;. ![](img/e465f6009cd227a31d00f005c2cb1c5b.jpg), `target_lengths` ![](img/3a2535723ad2261fbfc71d099a993883.jpg), the integer arguments must be of dtype `torch.int32`.

The regular implementation uses the (more common in PyTorch) &lt;cite&gt;torch.long&lt;/cite&gt; dtype.

Note

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting `torch.backends.cudnn.deterministic = True`. Please see the notes on [Reproducibility](notes/randomness.html) for background.

### NLLLoss

```py
class torch.nn.NLLLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
```

The negative log likelihood loss. It is useful to train a classification problem with &lt;cite&gt;C&lt;/cite&gt; classes.

If provided, the optional argument &lt;cite&gt;weight&lt;/cite&gt; should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

The input given through a forward call is expected to contain log-probabilities of each class. &lt;cite&gt;input&lt;/cite&gt; has to be a Tensor of size either ![](img/cca0c8da541b81bec031e4e52161d2c7.jpg) or ![](img/f30f7531b252dc52c6bb945ebb508cc4.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) for the &lt;cite&gt;K&lt;/cite&gt;-dimensional case (described later).

Obtaining log-probabilities in a neural network is easily achieved by adding a &lt;cite&gt;LogSoftmax&lt;/cite&gt; layer in the last layer of your network. You may use &lt;cite&gt;CrossEntropyLoss&lt;/cite&gt; instead, if you prefer not to add an extra layer.

The target that this loss expects is a class index &lt;cite&gt;(0 to C-1, where C = number of classes)&lt;/cite&gt;

If `reduce` is `False`, the loss can be described as:

![](img/edf1079de0e5df9633d0de83b68250f2.jpg)

where ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is the batch size. If `reduce` is `True` (default), then

![](img/6eeb4eee2867f6565cb78f3d2e8503f2.jpg)

Can also be used for higher dimension inputs, such as 2D images, by providing an input of size ![](img/f30f7531b252dc52c6bb945ebb508cc4.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg), where ![](img/a5db490cd70a38a0bb9f3de58c51589f.jpg) is the number of dimensions, and a target of appropriate shape (see below). In the case of images, it computes NLL loss per-pixel.

| Parameters: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_,_ _optional_) – a manual rescaling weight given to each class. If given, it has to be a Tensor of size &lt;cite&gt;C&lt;/cite&gt;. Otherwise, it is treated as if having all ones.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **ignore_index** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Specifies a target value that is ignored and does not contribute to the input gradient. When `size_average` is `True`, the loss is averaged over non-ignored targets.
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   ```py
    Input: \((N, C)\) where C = number of classes, or
    ```

    ![](img/ddeb501040934760370435d1c223e6b6.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) in the case of &lt;cite&gt;K&lt;/cite&gt;-dimensional loss.
*   ```py
    Target: \((N)\) where each value is \(0 \leq \text{targets}[i] \leq C-1\), or
    ```

    ![](img/5981db74a9cd434c7580e6ba530e21b6.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) in the case of K-dimensional loss.
*   ```py
    Output: scalar. If reduce is False, then the same size
    ```

    as the target: ![](img/2a3e2b832e04fe8d66596083b23da518.jpg), or ![](img/5981db74a9cd434c7580e6ba530e21b6.jpg) with ![](img/6573879e7d2cf58e8dfdbf8baa9f7a1a.jpg) in the case of K-dimensional loss.

Examples:

```py
>>> m = nn.LogSoftmax()
>>> loss = nn.NLLLoss()
>>> # input is of size N x C = 3 x 5
>>> input = torch.randn(3, 5, requires_grad=True)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.tensor([1, 0, 4])
>>> output = loss(m(input), target)
>>> output.backward()
>>>
>>>
>>> # 2D loss example (used, for example, with image inputs)
>>> N, C = 5, 4
>>> loss = nn.NLLLoss()
>>> # input is of size N x C x height x width
>>> data = torch.randn(N, 16, 10, 10)
>>> conv = nn.Conv2d(16, C, (3, 3))
>>> m = nn.LogSoftmax()
>>> # each element in target has to have 0 <= value < C
>>> target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)
>>> output = loss(m(conv(data)), target)
>>> output.backward()

```

### PoissonNLLLoss

```py
class torch.nn.PoissonNLLLoss(log_input=True, full=False, size_average=None, eps=1e-08, reduce=None, reduction='mean')
```

Negative log likelihood loss with Poisson distribution of target.

The loss can be described as:

![](img/f50aaec015c8f6f2ef26d16a60023ea1.jpg)

The last term can be omitted or approximated with Stirling formula. The approximation is used for target values more than 1\. For targets less or equal to 1 zeros are added to the loss.

| Parameters: | 

*   **log_input** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – if `True` the loss is computed as ![](img/18729f59c6d4705e1945b3d7b3e09e32.jpg), if `False` the loss is ![](img/036591dc90f1dafaa138920518e2b05b.jpg).
*   **full** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) –

    whether to compute full loss, i. e. to add the Stirling approximation term

    ![](img/b063f11c809ea98839d91fc34d0b4bf0.jpg)

*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **eps** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Small value to avoid evaluation of ![](img/f6dcd4f69520c309a6d71002bd330cb8.jpg) when `log_input == False`. Default: 1e-8
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

Examples:

```py
>>> loss = nn.PoissonNLLLoss()
>>> log_input = torch.randn(5, 2, requires_grad=True)
>>> target = torch.randn(5, 2)
>>> output = loss(log_input, target)
>>> output.backward()

```

### KLDivLoss

```py
class torch.nn.KLDivLoss(size_average=None, reduce=None, reduction='mean')
```

The [Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback-Leibler_divergence) Loss

KL divergence is a useful distance measure for continuous distributions and is often useful when performing direct regression over the space of (discretely sampled) continuous output distributions.

As with [`NLLLoss`](#torch.nn.NLLLoss "torch.nn.NLLLoss"), the &lt;cite&gt;input&lt;/cite&gt; given is expected to contain _log-probabilities_. However, unlike [`NLLLoss`](#torch.nn.NLLLoss "torch.nn.NLLLoss"), &lt;cite&gt;input&lt;/cite&gt; is not restricted to a 2D Tensor. The targets are given as _probabilities_ (i.e. without taking the logarithm).

This criterion expects a &lt;cite&gt;target&lt;/cite&gt; &lt;cite&gt;Tensor&lt;/cite&gt; of the same size as the &lt;cite&gt;input&lt;/cite&gt; &lt;cite&gt;Tensor&lt;/cite&gt;.

The unreduced (i.e. with `reduce` set to `False`) loss can be described as:

![](img/eba993f61a08816ebd5f577851d521f2.jpg)

where the index ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) spans all dimensions of `input` and ![](img/db4a9fef02111450bf98261889de550c.jpg) has the same shape as `input`. If `reduce` is `True` (the default), then:

![](img/d88944e162eff94bddc1b9a94bcaa3a6.jpg)

In default reduction mode ‘mean’, the losses are averaged for each minibatch over observations **as well as** over dimensions. ‘batchmean’ mode gives the correct KL divergence where losses are averaged over batch dimension only. ‘mean’ mode’s behavior will be changed to the same as ‘batchmean’ in the next major release.

| Parameters: | 

*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘batchmean’ &#124; ‘sum’ &#124; ‘mean’. ‘none’: no reduction will be applied. ‘batchmean’: the sum of the output will be divided by batchsize. ‘sum’: the output will be summed. ‘mean’: the output will be divided by the number of elements in the output. Default: ‘mean’

 |
| --- | --- |

:param .. note:: `size_average` and `reduce` are in the process of being deprecated,: and in the meantime, specifying either of those two args will override `reduction`. :param .. note:: &lt;cite&gt;reduction=’mean’&lt;/cite&gt; doesn’t return the true kl divergence value, please use: &lt;cite&gt;reduction=’batchmean’&lt;/cite&gt; which aligns with KL math definition.

> In the next major release, ‘mean’ will be changed to be the same as ‘batchmean’.

```py
Shape:
```

*   input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   target: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input
*   ```py
    output: scalar by default. If reduce is False, then \((N, *)\),
    ```

    the same shape as the input

### BCELoss

```py
class torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that measures the Binary Cross Entropy between the target and the output:

The loss can be described as:

![](img/f233882012c0c24fcad1869a163b5b7c.jpg)

where ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is the batch size. If reduce is `True`, then

![](img/d88944e162eff94bddc1b9a94bcaa3a6.jpg)

This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets &lt;cite&gt;y&lt;/cite&gt; should be numbers between 0 and 1.

| Parameters: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_,_ _optional_) – a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size “nbatch”.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Target: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input
*   Output: scalar. If &lt;cite&gt;reduce&lt;/cite&gt; is False, then &lt;cite&gt;(N, *)&lt;/cite&gt;, same shape as input.

Examples:

```py
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()

```

### BCEWithLogitsLoss

```py
class torch.nn.BCEWithLogitsLoss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None)
```

This loss combines a &lt;cite&gt;Sigmoid&lt;/cite&gt; layer and the &lt;cite&gt;BCELoss&lt;/cite&gt; in one single class. This version is more numerically stable than using a plain &lt;cite&gt;Sigmoid&lt;/cite&gt; followed by a &lt;cite&gt;BCELoss&lt;/cite&gt; as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.

The loss can be described as:

![](img/0c49aad6f81ec7936e313096f7a53f97.jpg)

where ![](img/9341d9048ac485106d2b2ee8de14876f.jpg) is the batch size. If reduce is `True`, then

![](img/0a16102d9320f70f18d7c8b152000489.jpg)

This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets &lt;cite&gt;t[i]&lt;/cite&gt; should be numbers between 0 and 1.

It’s possible to trade off recall and precision by adding weights to positive examples. In this case the loss can be described as:

![](img/d5ca42e0ee1490d1dea4d5f38cc120d7.jpg)

where ![](img/76dc369e067e5fa42a4b32b6afd5e570.jpg) is the positive weight of class ![](img/493731e423d5db62086d0b8705dda0c8.jpg). ![](img/65abc7465f8ac5056f8562962f0ae02e.jpg) increases the recall, ![](img/989afd86a6407cf24295ae8d52ff0080.jpg) increases the precision.

For example, if a dataset contains 100 positive and 300 negative examples of a single class, then &lt;cite&gt;pos_weight&lt;/cite&gt; for the class should be equal to ![](img/6a003751ded2d5e5198d93ee7db1ba5d.jpg). The loss would act as if the dataset contains ![](img/fb2ad75ea1ac3ba3ae507a3c8a34db12.jpg) positive examples.

| Parameters: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_,_ _optional_) – a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size “nbatch”.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’
*   **pos_weight** – a weight of positive examples. Must be a vector with length equal to the number of classes.

 |
| --- | --- |

### MarginRankingLoss

```py
class torch.nn.MarginRankingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that measures the loss given inputs &lt;cite&gt;x1&lt;/cite&gt;, &lt;cite&gt;x2&lt;/cite&gt;, two 1D mini-batch &lt;cite&gt;Tensor`s, and a label 1D mini-batch tensor `y&lt;/cite&gt; with values (&lt;cite&gt;1&lt;/cite&gt; or &lt;cite&gt;-1&lt;/cite&gt;).

If &lt;cite&gt;y == 1&lt;/cite&gt; then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for &lt;cite&gt;y == -1&lt;/cite&gt;.

The loss function for each sample in the mini-batch is:

![](img/1664f71bed4b6591f02c8bbb10f2d389.jpg)

| Parameters: | 

*   **margin** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Has a default value of &lt;cite&gt;0&lt;/cite&gt;.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/3dc464d2e10c731f17264e33e497c1a8.jpg) where &lt;cite&gt;N&lt;/cite&gt; is the batch size and &lt;cite&gt;D&lt;/cite&gt; is the size of a sample.
*   Target: ![](img/2a3e2b832e04fe8d66596083b23da518.jpg)
*   Output: scalar. If &lt;cite&gt;reduce&lt;/cite&gt; is False, then &lt;cite&gt;(N)&lt;/cite&gt;.

### HingeEmbeddingLoss

```py
class torch.nn.HingeEmbeddingLoss(margin=1.0, size_average=None, reduce=None, reduction='mean')
```

Measures the loss given an input tensor &lt;cite&gt;x&lt;/cite&gt; and a labels tensor &lt;cite&gt;y&lt;/cite&gt; containing values (&lt;cite&gt;1&lt;/cite&gt; or &lt;cite&gt;-1&lt;/cite&gt;). This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as &lt;cite&gt;x&lt;/cite&gt;, and is typically used for learning nonlinear embeddings or semi-supervised learning.

The loss function for ![](img/493731e423d5db62086d0b8705dda0c8.jpg)-th sample in the mini-batch is

![](img/1e176ed632f1cbc86eb8db4bf6034f24.jpg)

and the total loss functions is

![](img/0a16102d9320f70f18d7c8b152000489.jpg)

where ![](img/97b4908568a8d2f8549d90e683a8efa2.jpg).

| Parameters: | 

*   **margin** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Has a default value of &lt;cite&gt;1&lt;/cite&gt;.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: Tensor of arbitrary shape. The sum operation operates over all the elements.
*   Target: Same shape as input.
*   Output: scalar. If reduce is `False`, then same shape as the input

### MultiLabelMarginLoss

```py
class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input &lt;cite&gt;x&lt;/cite&gt; (a 2D mini-batch &lt;cite&gt;Tensor&lt;/cite&gt;) and output &lt;cite&gt;y&lt;/cite&gt; (which is a 2D &lt;cite&gt;Tensor&lt;/cite&gt; of target class indices). For each sample in the mini-batch:

![](img/f4d7e37a53b15d27b3a25c9dc586cd00.jpg)

where ![](img/b75aa938b45ed55c0aa471218a7224ce.jpg) to ![](img/c915dd214c2340e40ac8e79013465783.jpg), ![](img/4da95e4f78bfe10987f5549ced63a7e6.jpg) to ![](img/ec0f8a278c4b73ccb95d3a4c1d129697.jpg), ![](img/8058aac8e03495c71f75b04169d5baca.jpg), and ![](img/27b5f368a27d1e15b3656796a28a4411.jpg) for all ![](img/31df9c730e19ca29b59dce64b99d98c1.jpg) and ![](img/d8fdd0e28cfb03738fc5227885ee035a.jpg).

&lt;cite&gt;y&lt;/cite&gt; and &lt;cite&gt;x&lt;/cite&gt; must have the same size.

The criterion only considers a contiguous block of non-negative targets that starts at the front.

This allows for different samples to have variable amounts of target classes

| Parameters: | 

*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/861a7d7a604a97f5620afad259a4c26d.jpg) or ![](img/9b9aebaa467ad07dca05b5086bd21ca2.jpg) where &lt;cite&gt;N&lt;/cite&gt; is the batch size and &lt;cite&gt;C&lt;/cite&gt; is the number of classes.
*   Target: ![](img/861a7d7a604a97f5620afad259a4c26d.jpg) or ![](img/9b9aebaa467ad07dca05b5086bd21ca2.jpg), same shape as the input.
*   Output: scalar. If &lt;cite&gt;reduce&lt;/cite&gt; is False, then &lt;cite&gt;(N)&lt;/cite&gt;.

### SmoothL1Loss

```py
class torch.nn.SmoothL1Loss(size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that uses a squared term if the absolute element-wise error falls below 1 and an L1 term otherwise. It is less sensitive to outliers than the &lt;cite&gt;MSELoss&lt;/cite&gt; and in some cases prevents exploding gradients (e.g. see “Fast R-CNN” paper by Ross Girshick). Also known as the Huber loss:

![](img/cd503c18d22f0e18a5109f3f13d028b2.jpg)

where ![](img/bbfcb7c1428a33547e15f8853dbe6e4f.jpg) is given by:

![](img/621fa336f1f8b6169430fa6b42a00b6d.jpg)

&lt;cite&gt;x&lt;/cite&gt; and &lt;cite&gt;y&lt;/cite&gt; arbitrary shapes with a total of &lt;cite&gt;n&lt;/cite&gt; elements each the sum operation still operates over all the elements, and divides by &lt;cite&gt;n&lt;/cite&gt;.

The division by &lt;cite&gt;n&lt;/cite&gt; can be avoided if one sets `size_average` to `False`

| Parameters: | 

*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg) where &lt;cite&gt;*&lt;/cite&gt; means, any number of additional dimensions
*   Target: ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input
*   Output: scalar. If reduce is `False`, then ![](img/eb7a3f5bc15cc379e78f768e821eb094.jpg), same shape as the input

### SoftMarginLoss

```py
class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that optimizes a two-class classification logistic loss between input tensor &lt;cite&gt;x&lt;/cite&gt; and target tensor &lt;cite&gt;y&lt;/cite&gt; (containing 1 or -1).

![](img/811f3185227a964c048126484987ef1c.jpg)

| Parameters: | 

*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: Tensor of arbitrary shape.
*   Target: Same shape as input.
*   Output: scalar. If reduce is `False`, then same shape as the input

### MultiLabelSoftMarginLoss

```py
class torch.nn.MultiLabelSoftMarginLoss(weight=None, size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input &lt;cite&gt;x&lt;/cite&gt; and target &lt;cite&gt;y&lt;/cite&gt; of size &lt;cite&gt;(N, C)&lt;/cite&gt;. For each sample in the minibatch:

![](img/342414ff43adf5d0fa0b62fcde9538a2.jpg)

where &lt;cite&gt;i == 0&lt;/cite&gt; to &lt;cite&gt;x.nElement()-1&lt;/cite&gt;, &lt;cite&gt;y[i] in {0,1}&lt;/cite&gt;.

| Parameters: | 

*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_,_ _optional_) – a manual rescaling weight given to each class. If given, it has to be a Tensor of size &lt;cite&gt;C&lt;/cite&gt;. Otherwise, it is treated as if having all ones.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/9b9aebaa467ad07dca05b5086bd21ca2.jpg) where &lt;cite&gt;N&lt;/cite&gt; is the batch size and &lt;cite&gt;C&lt;/cite&gt; is the number of classes.
*   Target: ![](img/9b9aebaa467ad07dca05b5086bd21ca2.jpg), same shape as the input.
*   Output: scalar. If &lt;cite&gt;reduce&lt;/cite&gt; is False, then &lt;cite&gt;(N)&lt;/cite&gt;.

### CosineEmbeddingLoss

```py
class torch.nn.CosineEmbeddingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that measures the loss given input tensors ![](img/abdadb44ea35aecb39004dd7f55d9543.jpg), ![](img/88fdc6eeb68ef4aacf7cd6bd43fa176e.jpg) and a &lt;cite&gt;Tensor&lt;/cite&gt; label &lt;cite&gt;y&lt;/cite&gt; with values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning.

The loss function for each sample is:

![](img/f894a052d4408e0269216f8b803d074a.jpg)

| Parameters: | 

*   **margin** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Should be a number from &lt;cite&gt;-1&lt;/cite&gt; to &lt;cite&gt;1&lt;/cite&gt;, &lt;cite&gt;0&lt;/cite&gt; to &lt;cite&gt;0.5&lt;/cite&gt; is suggested. If &lt;cite&gt;margin&lt;/cite&gt; is missing, the default value is &lt;cite&gt;0&lt;/cite&gt;.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

### MultiMarginLoss

```py
class torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input &lt;cite&gt;x&lt;/cite&gt; (a 2D mini-batch &lt;cite&gt;Tensor&lt;/cite&gt;) and output &lt;cite&gt;y&lt;/cite&gt; (which is a 1D tensor of target class indices, ![](img/fffe5e09046ebb236f89daa5091946f6.jpg)):

For each mini-batch sample, the loss in terms of the 1D input &lt;cite&gt;x&lt;/cite&gt; and scalar output &lt;cite&gt;y&lt;/cite&gt; is:

![](img/0f825c52299de2e574d5903469e1af9c.jpg)

where &lt;cite&gt;i == 0&lt;/cite&gt; to &lt;cite&gt;x.size(0)&lt;/cite&gt; and ![](img/99e4beebf24a180393aa15ec3740cf3a.jpg).

Optionally, you can give non-equal weighting on the classes by passing a 1D &lt;cite&gt;weight&lt;/cite&gt; tensor into the constructor.

The loss function then becomes:

![](img/03b7ccf64bc071a7c2abbeab89f12d08.jpg)

| Parameters: | 

*   **p** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – Has a default value of &lt;cite&gt;1&lt;/cite&gt;. &lt;cite&gt;1&lt;/cite&gt; and &lt;cite&gt;2&lt;/cite&gt; are the only supported values
*   **margin** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Has a default value of &lt;cite&gt;1&lt;/cite&gt;.
*   **weight** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_,_ _optional_) – a manual rescaling weight given to each class. If given, it has to be a Tensor of size &lt;cite&gt;C&lt;/cite&gt;. Otherwise, it is treated as if having all ones.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

### TripletMarginLoss

```py
class torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean')
```

Creates a criterion that measures the triplet loss given an input tensors x1, x2, x3 and a margin with a value greater than 0. This is used for measuring a relative similarity between samples. A triplet is composed by &lt;cite&gt;a&lt;/cite&gt;, &lt;cite&gt;p&lt;/cite&gt; and &lt;cite&gt;n&lt;/cite&gt;: anchor, positive examples and negative example respectively. The shapes of all input tensors should be ![](img/3dc464d2e10c731f17264e33e497c1a8.jpg).

The distance swap is described in detail in the paper [Learning shallow convolutional feature descriptors with triplet losses](http://www.iis.ee.ic.ac.uk/%7Evbalnt/shallow_descr/TFeat_paper.pdf) by V. Balntas, E. Riba et al.

The loss function for each sample in the mini-batch is:

![](img/a2c4faa5dd95a547388c1b7f69bbc4db.jpg)

where

![](img/bac339e9cf6ad679fa9ce3ce33c431ab.jpg)

| Parameters: | 

*   **margin** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – Default: &lt;cite&gt;1&lt;/cite&gt;.
*   **p** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – The norm degree for pairwise distance. Default: &lt;cite&gt;2&lt;/cite&gt;.
*   **swap** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – The distance swap is described in detail in the paper &lt;cite&gt;Learning shallow convolutional feature descriptors with triplet losses&lt;/cite&gt; by V. Balntas, E. Riba et al. Default: `False`.
*   **size_average** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field `size_average` is set to `False`, the losses are instead summed for each minibatch. Ignored when reduce is `False`. Default: `True`
*   **reduce** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – Deprecated (see `reduction`). By default, the losses are averaged or summed over observations for each minibatch depending on `size_average`. When `reduce` is `False`, returns a loss per batch element instead and ignores `size_average`. Default: `True`
*   **reduction** (_string__,_ _optional_) – Specifies the reduction to apply to the output: ‘none’ &#124; ‘mean’ &#124; ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed. Note: `size_average` and `reduce` are in the process of being deprecated, and in the meantime, specifying either of those two args will override `reduction`. Default: ‘mean’

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/3dc464d2e10c731f17264e33e497c1a8.jpg) where &lt;cite&gt;D&lt;/cite&gt; is the vector dimension.
*   Output: scalar. If &lt;cite&gt;reduce&lt;/cite&gt; is False, then &lt;cite&gt;(N)&lt;/cite&gt;.

```py
>>> triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2)
>>> input1 = torch.randn(100, 128, requires_grad=True)
>>> input2 = torch.randn(100, 128, requires_grad=True)
>>> input3 = torch.randn(100, 128, requires_grad=True)
>>> output = triplet_loss(input1, input2, input3)
>>> output.backward()

```

## Vision layers

### PixelShuffle

```py
class torch.nn.PixelShuffle(upscale_factor)
```

Rearranges elements in a tensor of shape ![](img/1bc8a113de558f2e7d966e72ae39cb95.jpg) to a tensor of shape ![](img/d4e6de257f72abc5a96af64211b7f909.jpg).

This is useful for implementing efficient sub-pixel convolution with a stride of ![](img/71c5422a7f21b7096aa6d904d5a4f78d.jpg).

Look at the paper: [Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network](https://arxiv.org/abs/1609.05158) by Shi et. al (2016) for more details.

| Parameters: | **upscale_factor** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – factor to increase spatial resolution by |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/d6770cccc0ae9886c3b91d55efa20b28.jpg)
*   Output: ![](img/a162cf8e9185f67b3f5b084d1031dc7e.jpg)

Examples:

```py
>>> pixel_shuffle = nn.PixelShuffle(3)
>>> input = torch.randn(1, 9, 4, 4)
>>> output = pixel_shuffle(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])

```

### Upsample

```py
class torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)
```

Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.

The input data is assumed to be of the form &lt;cite&gt;minibatch x channels x [optional depth] x [optional height] x width&lt;/cite&gt;. Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor.

The algorithms available for upsampling are nearest neighbor and linear, bilinear and trilinear for 3D, 4D and 5D input Tensor, respectively.

One can either give a `scale_factor` or the target output `size` to calculate the output size. (You cannot give both, as it is ambiguous)

| Parameters: | 

*   **size** ([_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – a tuple of ints &lt;cite&gt;([optional D_out], [optional H_out], W_out)&lt;/cite&gt; output sizes
*   **scale_factor** (_int / tuple of python:ints__,_ _optional_) – the multiplier for the image height / width / depth
*   **mode** (_string__,_ _optional_) – the upsampling algorithm: one of &lt;cite&gt;nearest&lt;/cite&gt;, &lt;cite&gt;linear&lt;/cite&gt;, &lt;cite&gt;bilinear&lt;/cite&gt; and &lt;cite&gt;trilinear&lt;/cite&gt;. Default: &lt;cite&gt;nearest&lt;/cite&gt;
*   **align_corners** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – if True, the corner pixels of the input and output tensors are aligned, and thus preserving the values at those pixels. This only has effect when `mode` is &lt;cite&gt;linear&lt;/cite&gt;, &lt;cite&gt;bilinear&lt;/cite&gt;, or &lt;cite&gt;trilinear&lt;/cite&gt;. Default: False

 |
| --- | --- |

```py
Shape:
```

*   Input: ![](img/964aa6df63e83f4468aa090441f01972.jpg), ![](img/ff71b16eb10237262566c6907acaaf1f.jpg) or ![](img/c187d190013d0785320e3412fe8cd669.jpg)
*   Output: ![](img/ac2661719f40fc422e2b1590a1e7b4a4.jpg), ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) or ![](img/41ca4c8d4c65c979d2d643c6f62ea280.jpg), where

![](img/da11a1265058248a851d6d0331110214.jpg)

![](img/828543b18440713aad6ad023732327ec.jpg)

![](img/5a7c5c22409d4ab3c83641508bf72cb6.jpg)

Warning

With `align_corners = True`, the linearly interpolating modes (&lt;cite&gt;linear&lt;/cite&gt;, &lt;cite&gt;bilinear&lt;/cite&gt;, and &lt;cite&gt;trilinear&lt;/cite&gt;) don’t proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1\. Since then, the default behavior is `align_corners = False`. See below for concrete examples on how this affects the outputs.

Note

If you want downsampling/general resizing, you should use `interpolate()`.

Examples:

```py
>>> input = torch.arange(1, 5).view(1, 1, 2, 2).float()
>>> input
tensor([[[[ 1.,  2.],
 [ 3.,  4.]]]])

>>> m = nn.Upsample(scale_factor=2, mode='nearest')
>>> m(input)
tensor([[[[ 1.,  1.,  2.,  2.],
 [ 1.,  1.,  2.,  2.],
 [ 3.,  3.,  4.,  4.],
 [ 3.,  3.,  4.,  4.]]]])

>>> m = nn.Upsample(scale_factor=2, mode='bilinear')  # align_corners=False
>>> m(input)
tensor([[[[ 1.0000,  1.2500,  1.7500,  2.0000],
 [ 1.5000,  1.7500,  2.2500,  2.5000],
 [ 2.5000,  2.7500,  3.2500,  3.5000],
 [ 3.0000,  3.2500,  3.7500,  4.0000]]]])

>>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
>>> m(input)
tensor([[[[ 1.0000,  1.3333,  1.6667,  2.0000],
 [ 1.6667,  2.0000,  2.3333,  2.6667],
 [ 2.3333,  2.6667,  3.0000,  3.3333],
 [ 3.0000,  3.3333,  3.6667,  4.0000]]]])

>>> # Try scaling the same data in a larger tensor
>>>
>>> input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3)
>>> input_3x3[:, :, :2, :2].copy_(input)
tensor([[[[ 1.,  2.],
 [ 3.,  4.]]]])
>>> input_3x3
tensor([[[[ 1.,  2.,  0.],
 [ 3.,  4.,  0.],
 [ 0.,  0.,  0.]]]])

>>> m = nn.Upsample(scale_factor=2, mode='bilinear')  # align_corners=False
>>> # Notice that values in top left corner are the same with the small input (except at boundary)
>>> m(input_3x3)
tensor([[[[ 1.0000,  1.2500,  1.7500,  1.5000,  0.5000,  0.0000],
 [ 1.5000,  1.7500,  2.2500,  1.8750,  0.6250,  0.0000],
 [ 2.5000,  2.7500,  3.2500,  2.6250,  0.8750,  0.0000],
 [ 2.2500,  2.4375,  2.8125,  2.2500,  0.7500,  0.0000],
 [ 0.7500,  0.8125,  0.9375,  0.7500,  0.2500,  0.0000],
 [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]]])

>>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
>>> # Notice that values in top left corner are now changed
>>> m(input_3x3)
tensor([[[[ 1.0000,  1.4000,  1.8000,  1.6000,  0.8000,  0.0000],
 [ 1.8000,  2.2000,  2.6000,  2.2400,  1.1200,  0.0000],
 [ 2.6000,  3.0000,  3.4000,  2.8800,  1.4400,  0.0000],
 [ 2.4000,  2.7200,  3.0400,  2.5600,  1.2800,  0.0000],
 [ 1.2000,  1.3600,  1.5200,  1.2800,  0.6400,  0.0000],
 [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]]])

```

### UpsamplingNearest2d

```py
class torch.nn.UpsamplingNearest2d(size=None, scale_factor=None)
```

Applies a 2D nearest neighbor upsampling to an input signal composed of several input channels.

To specify the scale, it takes either the `size` or the `scale_factor` as it’s constructor argument.

When &lt;cite&gt;size&lt;/cite&gt; is given, it is the output size of the image &lt;cite&gt;(h, w)&lt;/cite&gt;.

| Parameters: | 

*   **size** ([_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – a tuple of ints &lt;cite&gt;(H_out, W_out)&lt;/cite&gt; output sizes
*   **scale_factor** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – the multiplier for the image height or width

 |
| --- | --- |

Warning

This class is deprecated in favor of `interpolate()`.

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)
*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) where

![](img/682de298a3561bebd964280ba0d59633.jpg)

![](img/2a53007c25abe7f8f65f1a2e958fa146.jpg)

Examples:

```py
>>> input = torch.arange(1, 5).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1.,  2.],
 [ 3.,  4.]]]])

>>> m = nn.UpsamplingNearest2d(scale_factor=2)
>>> m(input)
tensor([[[[ 1.,  1.,  2.,  2.],
 [ 1.,  1.,  2.,  2.],
 [ 3.,  3.,  4.,  4.],
 [ 3.,  3.,  4.,  4.]]]])

```

### UpsamplingBilinear2d

```py
class torch.nn.UpsamplingBilinear2d(size=None, scale_factor=None)
```

Applies a 2D bilinear upsampling to an input signal composed of several input channels.

To specify the scale, it takes either the `size` or the `scale_factor` as it’s constructor argument.

When &lt;cite&gt;size&lt;/cite&gt; is given, it is the output size of the image &lt;cite&gt;(h, w)&lt;/cite&gt;.

| Parameters: | 

*   **size** ([_tuple_](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.7)")_,_ _optional_) – a tuple of ints &lt;cite&gt;(H_out, W_out)&lt;/cite&gt; output sizes
*   **scale_factor** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – the multiplier for the image height or width

 |
| --- | --- |

Warning

This class is deprecated in favor of `interpolate()`. It is equivalent to `nn.functional.interpolate(..., mode='bilinear', align_corners=True)`.

```py
Shape:
```

*   Input: ![](img/ff71b16eb10237262566c6907acaaf1f.jpg)
*   Output: ![](img/a0ef05f779873fc4dcbf020b1ea14754.jpg) where

![](img/682de298a3561bebd964280ba0d59633.jpg)

![](img/2a53007c25abe7f8f65f1a2e958fa146.jpg)

Examples:

```py
>>> input = torch.arange(1, 5).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1.,  2.],
 [ 3.,  4.]]]])

>>> m = nn.UpsamplingBilinear2d(scale_factor=2)
>>> m(input)
tensor([[[[ 1.0000,  1.3333,  1.6667,  2.0000],
 [ 1.6667,  2.0000,  2.3333,  2.6667],
 [ 2.3333,  2.6667,  3.0000,  3.3333],
 [ 3.0000,  3.3333,  3.6667,  4.0000]]]])

```

## DataParallel layers (multi-GPU, distributed)

### DataParallel

```py
class torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)
```

Implements data parallelism at the module level.

This container parallelizes the application of the given `module` by splitting the input across the specified devices by chunking in the batch dimension (other objects will be copied once per device). In the forward pass, the module is replicated on each device, and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module.

The batch size should be larger than the number of GPUs used.

See also: [Use nn.DataParallel instead of multiprocessing](notes/cuda.html#cuda-nn-dataparallel-instead)

Arbitrary positional and keyword inputs are allowed to be passed into DataParallel EXCEPT Tensors. All tensors will be scattered on dim specified (default 0). Primitive types will be broadcasted, but all other types will be a shallow copy and can be corrupted if written to in the model’s forward pass.

The parallelized `module` must have its parameters and buffers on `device_ids[0]` before running this [`DataParallel`](#torch.nn.DataParallel "torch.nn.DataParallel") module.

Warning

In each forward, `module` is **replicated** on each device, so any updates to the runing module in `forward` will be lost. For example, if `module` has a counter attribute that is incremented in each `forward`, it will always stay at the initial value becasue the update is done on the replicas which are destroyed after `forward`. However, [`DataParallel`](#torch.nn.DataParallel "torch.nn.DataParallel") guarantees that the replica on `device[0]` will have its parameters and buffers sharing storage with the base parallelized `module`. So **in-place** updates to the parameters or buffers on `device[0]` will be recorded. E.g., [`BatchNorm2d`](#torch.nn.BatchNorm2d "torch.nn.BatchNorm2d") and [`spectral_norm()`](#torch.nn.utils.spectral_norm "torch.nn.utils.spectral_norm") rely on this behavior to update the buffers.

Warning

Forward and backward hooks defined on `module` and its submodules will be invoked `len(device_ids)` times, each with inputs located on a particular device. Particularly, the hooks are only guaranteed to be executed in correct order with respect to operations on corresponding devices. For example, it is not guaranteed that hooks set via [`register_forward_pre_hook()`](#torch.nn.Module.register_forward_pre_hook "torch.nn.Module.register_forward_pre_hook") be executed before &lt;cite&gt;all&lt;/cite&gt; `len(device_ids)` [`forward()`](#torch.nn.Module.forward "torch.nn.Module.forward") calls, but that each such hook be executed before the corresponding [`forward()`](#torch.nn.Module.forward "torch.nn.Module.forward") call of that device.

Warning

When `module` returns a scalar (i.e., 0-dimensional tensor) in `forward()`, this wrapper will return a vector of length equal to number of devices used in data parallelism, containing the result from each device.

Note

There is a subtlety in using the `pack sequence -&gt; recurrent network -&gt; unpack sequence` pattern in a [`Module`](#torch.nn.Module "torch.nn.Module") wrapped in [`DataParallel`](#torch.nn.DataParallel "torch.nn.DataParallel"). See [My recurrent network doesn’t work with data parallelism](notes/faq.html#pack-rnn-unpack-with-data-parallelism) section in FAQ for details.

| Parameters: | 

*   **module** ([_Module_](#torch.nn.Module "torch.nn.Module")) – module to be parallelized
*   **device_ids** (_list of python:int_ _or_ [_torch.device_](tensor_attributes.html#torch.torch.device "torch.torch.device")) – CUDA devices (default: all devices)
*   **output_device** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_torch.device_](tensor_attributes.html#torch.torch.device "torch.torch.device")) – device location of output (default: device_ids[0])

 |
| --- | --- |
| Variables: | **module** ([_Module_](#torch.nn.Module "torch.nn.Module")) – the module to be parallelized |
| --- | --- |

Example:

```py
>>> net = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
>>> output = net(input_var)

```

### DistributedDataParallel

```py
class torch.nn.parallel.DistributedDataParallel(module, device_ids=None, output_device=None, dim=0, broadcast_buffers=True, process_group=None, bucket_cap_mb=25, check_reduction=False)
```

Implements distributed data parallelism that is based on torch.distributed package at the module level.

This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. The module is replicated on each machine and each device, and each such replica handles a portion of the input. During the backwards pass, gradients from each node are averaged.

The batch size should be larger than the number of GPUs used locally. It should also be an integer multiple of the number of GPUs so that each chunk is the same size (so that each GPU processes the same number of samples).

See also: [Basics](distributed.html#distributed-basics) and [Use nn.DataParallel instead of multiprocessing](notes/cuda.html#cuda-nn-dataparallel-instead). The same constraints on input as in [`torch.nn.DataParallel`](#torch.nn.DataParallel "torch.nn.DataParallel") apply.

Creation of this class requires that `torch.distributed` to be already initialized, by calling [`torch.distributed.init_process_group()`](distributed.html#torch.distributed.init_process_group "torch.distributed.init_process_group")

`DistributedDataParallel` can be used in the following two ways:

1.  Single-Process Multi-GPU

In this case, a single process will be spawned on each host/node and each process will operate on all the GPUs of the node where it’s running. To use `DistributedDataParallel` in this way, you can simply construct the model as the following:

```py
>>> torch.distributed.init_process_group(backend="nccl")
>>> model = DistributedDataParallel(model) # device_ids will include all GPU devices be default

```

1.  Multi-Process Single-GPU

This is the highly recommended way to use `DistributedDataParallel`, with multiple processes, each of which operates on a single GPU. This is currently the fastest approach to do data parallel training using PyTorch and applies to both single-node(multi-GPU) and multi-node data parallel training. It is proven to be significantly faster than [`torch.nn.DataParallel`](#torch.nn.DataParallel "torch.nn.DataParallel") for single-node multi-GPU data parallel training.

Here is how to use it: on each host with N GPUs, you should spawn up N processes, while ensuring that each process invidually works on a single GPU from 0 to N-1\. Therefore, it is your job to ensure that your training script operates on a single given GPU by calling:

```py
>>> torch.cuda.set_device(i)

```

where i is from 0 to N-1\. In each process, you should refer the following to construct this module:

```py
>>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...')
>>> model = DistributedDataParallel(model, device_ids=[i], output_device=i)

```

In order to spawn up multiple processes per node, you can use either `torch.distributed.launch` or `torch.multiprocessing.spawn`

Note

`nccl` backend is currently the fastest and highly recommended backend to be used with Multi-Process Single-GPU distributed training and this applies to both single-node and multi-node distributed training

Warning

This module works only with the `gloo` and `nccl` backends.

Warning

Constructor, forward method, and differentiation of the output (or a function of the output of this module) is a distributed synchronization point. Take that into account in case different processes might be executing different code.

Warning

This module assumes all parameters are registered in the model by the time it is created. No parameters should be added nor removed later. Same applies to buffers.

Warning

This module assumes all parameters are registered in the model of each distributed processes are in the same order. The module itself will conduct gradient all-reduction following the reverse order of the registered parameters of the model. In other wise, it is users’ responsibility to ensure that each distributed process has the exact same model and thus the exact parameter registeration order.

Warning

This module assumes all buffers and gradients are dense.

Warning

This module doesn’t work with [`torch.autograd.grad()`](autograd.html#torch.autograd.grad "torch.autograd.grad") (i.e. it will only work if gradients are to be accumulated in `.grad` attributes of parameters).

Warning

If you plan on using this module with a `nccl` backend or a `gloo` backend (that uses Infiniband), together with a DataLoader that uses multiple workers, please change the multiprocessing start method to `forkserver` (Python 3 only) or `spawn`. Unfortunately Gloo (that uses Infiniband) and NCCL2 are not fork safe, and you will likely experience deadlocks if you don’t change this setting.

Warning

Forward and backward hooks defined on `module` and its submodules won’t be invoked anymore, unless the hooks are initialized in the `forward()` method.

Warning

You should never try to change your model’s parameters after wrapping up your model with DistributedDataParallel. In other words, when wrapping up your model with DistributedDataParallel, the constructor of DistributedDataParallel will register the additional gradient reduction functions on all the parameters of the model itself at the time of construction. If you change the model’s parameters after the DistributedDataParallel construction, this is not supported and unexpected behaviors can happen, since some parameters’ gradient reduction functions might not get called.

Note

Parameters are never broadcast between processes. The module performs an all-reduce step on gradients and assumes that they will be modified by the optimizer in all processes in the same way. Buffers (e.g. BatchNorm stats) are broadcast from the module in process of rank 0, to all other replicas in the system in every iteration.

| Parameters: | 

*   **module** ([_Module_](#torch.nn.Module "torch.nn.Module")) – module to be parallelized
*   **device_ids** (_list of python:int_ _or_ [_torch.device_](tensor_attributes.html#torch.torch.device "torch.torch.device")) – CUDA devices (default: all devices)
*   **output_device** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)") _or_ [_torch.device_](tensor_attributes.html#torch.torch.device "torch.torch.device")) – device location of output (default: device_ids[0])
*   **broadcast_buffers** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")) – flag that enables syncing (broadcasting) buffers of the module at beginning of the forward function. (default: True)
*   **process_group** – the process group to be used for distributed data all-reduction. If None, the default process group, which is created by ``torch.distributed.init_process_group``, will be used. (default: None)
*   **bucket_cap_mb** – DistributedDataParallel will bucket parameters into multiple buckets so that gradient reduction of each bucket can potentially overlap with backward computation. bucket_cap_mb controls the bucket size in MegaBytes (MB) (default: 25)
*   **check_reduction** – when setting to True, it enables DistributedDataParallel to automatically check if the previous iteration’s backward reductions were successfully issued at the beginning of every iteration’s forward function. You normally don’t need this option enabled unless you are observing weird behaviors such as different ranks are getting different gradients, which should not happen if DistributedDataParallel is corrected used. (default: False)

 |
| --- | --- |
| Variables: | **module** ([_Module_](#torch.nn.Module "torch.nn.Module")) – the module to be parallelized |
| --- | --- |

```py
Example::
```

```py
>>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...')
>>> net = torch.nn.DistributedDataParallel(model, pg)

```

### DistributedDataParallelCPU

```py
class torch.nn.parallel.DistributedDataParallelCPU(module)
```

Implements distributed data parallelism for CPU at the module level.

This module supports the `mpi` and `gloo` backends.

This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. The module is replicated on each machine, and each such replica handles a portion of the input. During the backwards pass, gradients from each node are averaged.

This module could be used in conjunction with the DistributedSampler, (see :class &lt;cite&gt;torch.utils.data.distributed.DistributedSampler&lt;/cite&gt;) which will load a subset of the original datset for each node with the same batch size. So strong scaling should be configured like this:

n = 1, batch size = 12

n = 2, batch size = 64

n = 4, batch size = 32

n = 8, batch size = 16

Creation of this class requires the distributed package to be already initialized in the process group mode (see [`torch.distributed.init_process_group()`](distributed.html#torch.distributed.init_process_group "torch.distributed.init_process_group")).

Warning

Constructor, forward method, and differentiation of the output (or a function of the output of this module) is a distributed synchronization point. Take that into account in case different node might be executing different code.

Warning

This module assumes all parameters are registered in the model by the time it is created. No parameters should be added nor removed later.

Warning

This module assumes all gradients are dense.

Warning

This module doesn’t work with [`torch.autograd.grad()`](autograd.html#torch.autograd.grad "torch.autograd.grad") (i.e. it will only work if gradients are to be accumulated in `.grad` attributes of parameters).

Warning

Forward and backward hooks defined on `module` and its submodules won’t be invoked anymore, unless the hooks are initialized in the `forward()` method.

Note

Parameters are broadcast between nodes in the __init__() function. The module performs an all-reduce step on gradients and assumes that they will be modified by the optimizer in all nodes in the same way.

| Parameters: | **module** – module to be parallelized |
| --- | --- |

Example:

```py
>>> torch.distributed.init_process_group(world_size=4, init_method='...')
>>> net = torch.nn.DistributedDataParallelCPU(model)

```

## Utilities

### clip_grad_norm_

```py
torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=2)
```

Clips gradient norm of an iterable of parameters.

The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place.

| Parameters: | 

*   **parameters** (_Iterable__[_[_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_] or_ [_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – an iterable of Tensors or a single Tensor that will have gradients normalized
*   **max_norm** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)") _or_ [_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – max norm of the gradients
*   **norm_type** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)") _or_ [_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – type of the used p-norm. Can be `'inf'` for infinity norm.

 |
| --- | --- |
| Returns: | Total norm of the parameters (viewed as a single vector). |
| --- | --- |

### clip_grad_value_

```py
torch.nn.utils.clip_grad_value_(parameters, clip_value)
```

Clips gradient of an iterable of parameters at specified value.

Gradients are modified in-place.

| Parameters: | 

*   **parameters** (_Iterable__[_[_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_] or_ [_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – an iterable of Tensors or a single Tensor that will have gradients normalized
*   **clip_value** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)") _or_ [_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")) – maximum allowed value of the gradients The gradients are clipped in the range [-clip_value, clip_value]

 |
| --- | --- |

### parameters_to_vector

```py
torch.nn.utils.parameters_to_vector(parameters)
```

Convert parameters to one vector

| Parameters: | **parameters** (_Iterable__[_[_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_]_) – an iterator of Tensors that are the parameters of a model. |
| --- | --- |
| Returns: | The parameters represented by a single vector |
| --- | --- |

### vector_to_parameters

```py
torch.nn.utils.vector_to_parameters(vec, parameters)
```

Convert one vector to the parameters

| Parameters: | 

*   **vec** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – a single vector represents the parameters of a model.
*   **parameters** (_Iterable__[_[_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_]_) – an iterator of Tensors that are the parameters of a model.

 |
| --- | --- |

### weight_norm

```py
torch.nn.utils.weight_norm(module, name='weight', dim=0)
```

Applies weight normalization to a parameter in the given module.

![](img/06160be4a838f9d6d20cabc64f32670e.jpg)

Weight normalization is a reparameterization that decouples the magnitude of a weight tensor from its direction. This replaces the parameter specified by &lt;cite&gt;name&lt;/cite&gt; (e.g. “weight”) with two parameters: one specifying the magnitude (e.g. “weight_g”) and one specifying the direction (e.g. “weight_v”). Weight normalization is implemented via a hook that recomputes the weight tensor from the magnitude and direction before every `forward()` call.

By default, with &lt;cite&gt;dim=0&lt;/cite&gt;, the norm is computed independently per output channel/plane. To compute a norm over the entire weight tensor, use &lt;cite&gt;dim=None&lt;/cite&gt;.

See [https://arxiv.org/abs/1602.07868](https://arxiv.org/abs/1602.07868)

| Parameters: | 

*   **module** ([_nn.Module_](#torch.nn.Module "torch.nn.Module")) – containing module
*   **name** ([_str_](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.7)")_,_ _optional_) – name of weight parameter
*   **dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – dimension over which to compute the norm

 |
| --- | --- |
| Returns: | The original module with the weight norm hook |
| --- | --- |

Example:

```py
>>> m = weight_norm(nn.Linear(20, 40), name='weight')
Linear (20 -> 40)
>>> m.weight_g.size()
torch.Size([40, 1])
>>> m.weight_v.size()
torch.Size([40, 20])

```

### remove_weight_norm

```py
torch.nn.utils.remove_weight_norm(module, name='weight')
```

Removes the weight normalization reparameterization from a module.

| Parameters: | 

*   **module** ([_nn.Module_](#torch.nn.Module "torch.nn.Module")) – containing module
*   **name** ([_str_](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.7)")_,_ _optional_) – name of weight parameter

 |
| --- | --- |

Example

```py
>>> m = weight_norm(nn.Linear(20, 40))
>>> remove_weight_norm(m)

```

### spectral_norm

```py
torch.nn.utils.spectral_norm(module, name='weight', n_power_iterations=1, eps=1e-12, dim=None)
```

Applies spectral normalization to a parameter in the given module.

![](img/1ca46cc2506aac38bf00645f64b1a3e3.jpg)

Spectral normalization stabilizes the training of discriminators (critics) in Generaive Adversarial Networks (GANs) by rescaling the weight tensor with spectral norm ![](img/2469b2bd2a1ab19ebfcee223dcb52bb1.jpg) of the weight matrix calculated using power iteration method. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. This is implemented via a hook that calculates spectral norm and rescales weight before every `forward()` call.

See [Spectral Normalization for Generative Adversarial Networks](https://arxiv.org/abs/1802.05957) .

| Parameters: | 

*   **module** ([_nn.Module_](#torch.nn.Module "torch.nn.Module")) – containing module
*   **name** ([_str_](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.7)")_,_ _optional_) – name of weight parameter
*   **n_power_iterations** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – number of power iterations to calculate spectal norm
*   **eps** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – epsilon for numerical stability in calculating norms
*   **dim** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – dimension corresponding to number of outputs, the default is 0, except for modules that are instances of ConvTranspose1/2/3d, when it is 1

 |
| --- | --- |
| Returns: | The original module with the spectal norm hook |
| --- | --- |

Example:

```py
>>> m = spectral_norm(nn.Linear(20, 40))
Linear (20 -> 40)
>>> m.weight_u.size()
torch.Size([20])

```

### remove_spectral_norm

```py
torch.nn.utils.remove_spectral_norm(module, name='weight')
```

Removes the spectral normalization reparameterization from a module.

| Parameters: | 

*   **module** ([_nn.Module_](#torch.nn.Module "torch.nn.Module")) – containing module
*   **name** ([_str_](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.7)")_,_ _optional_) – name of weight parameter

 |
| --- | --- |

Example

```py
>>> m = spectral_norm(nn.Linear(40, 10))
>>> remove_spectral_norm(m)

```

### PackedSequence

```py
torch.nn.utils.rnn.PackedSequence(data, batch_sizes=None)
```

Holds the data and list of `batch_sizes` of a packed sequence.

All RNN modules accept packed sequences as inputs.

Note

Instances of this class should never be created manually. They are meant to be instantiated by functions like [`pack_padded_sequence()`](#torch.nn.utils.rnn.pack_padded_sequence "torch.nn.utils.rnn.pack_padded_sequence").

Batch sizes represent the number elements at each sequence step in the batch, not the varying sequence lengths passed to [`pack_padded_sequence()`](#torch.nn.utils.rnn.pack_padded_sequence "torch.nn.utils.rnn.pack_padded_sequence"). For instance, given data `abc` and &lt;cite&gt;x&lt;/cite&gt; the [`PackedSequence`](#torch.nn.utils.rnn.PackedSequence "torch.nn.utils.rnn.PackedSequence") would contain data `axbc` with `batch_sizes=[2,1,1]`.

| Variables: | 

*   **data** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – Tensor containing packed sequence
*   **batch_sizes** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – Tensor of integers holding information about the batch size at each sequence step

 |
| --- | --- |

### pack_padded_sequence

```py
torch.nn.utils.rnn.pack_padded_sequence(input, lengths, batch_first=False)
```

Packs a Tensor containing padded sequences of variable length.

Input can be of size `T x B x *` where &lt;cite&gt;T&lt;/cite&gt; is the length of the longest sequence (equal to `lengths[0]`), &lt;cite&gt;B&lt;/cite&gt; is the batch size, and &lt;cite&gt;*&lt;/cite&gt; is any number of dimensions (including 0). If `batch_first` is True `B x T x *` inputs are expected.

The sequences should be sorted by length in a decreasing order, i.e. `input[:,0]` should be the longest sequence, and `input[:,B-1]` the shortest one.

Note

This function accepts any input that has at least two dimensions. You can apply it to pack the labels, and use the output of the RNN with them to compute the loss directly. A Tensor can be retrieved from a [`PackedSequence`](#torch.nn.utils.rnn.PackedSequence "torch.nn.utils.rnn.PackedSequence") object by accessing its `.data` attribute.

| Parameters: | 

*   **input** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – padded batch of variable length sequences.
*   **lengths** ([_Tensor_](tensors.html#torch.Tensor "torch.Tensor")) – list of sequences lengths of each batch element.
*   **batch_first** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – if `True`, the input is expected in `B x T x *` format.

 |
| --- | --- |
| Returns: | a [`PackedSequence`](#torch.nn.utils.rnn.PackedSequence "torch.nn.utils.rnn.PackedSequence") object |
| --- | --- |

### pad_packed_sequence

```py
torch.nn.utils.rnn.pad_packed_sequence(sequence, batch_first=False, padding_value=0.0, total_length=None)
```

Pads a packed batch of variable length sequences.

It is an inverse operation to [`pack_padded_sequence()`](#torch.nn.utils.rnn.pack_padded_sequence "torch.nn.utils.rnn.pack_padded_sequence").

The returned Tensor’s data will be of size `T x B x *`, where &lt;cite&gt;T&lt;/cite&gt; is the length of the longest sequence and &lt;cite&gt;B&lt;/cite&gt; is the batch size. If `batch_first` is True, the data will be transposed into `B x T x *` format.

Batch elements will be ordered decreasingly by their length.

Note

`total_length` is useful to implement the `pack sequence -&gt; recurrent network -&gt; unpack sequence` pattern in a [`Module`](#torch.nn.Module "torch.nn.Module") wrapped in [`DataParallel`](#torch.nn.DataParallel "torch.nn.DataParallel"). See [this FAQ section](notes/faq.html#pack-rnn-unpack-with-data-parallelism) for details.

| Parameters: | 

*   **sequence** (_PackedSequence_) – batch to pad
*   **batch_first** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – if `True`, the output will be in `B x T x *` format.
*   **padding_value** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – values for padded elements.
*   **total_length** ([_int_](https://docs.python.org/3/library/functions.html#int "(in Python v3.7)")_,_ _optional_) – if not `None`, the output will be padded to have length `total_length`. This method will throw [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.7)") if `total_length` is less than the max sequence length in `sequence`.

 |
| --- | --- |
| Returns: | Tuple of Tensor containing the padded sequence, and a Tensor containing the list of lengths of each sequence in the batch. |
| --- | --- |

### pad_sequence

```py
torch.nn.utils.rnn.pad_sequence(sequences, batch_first=False, padding_value=0)
```

Pad a list of variable length Tensors with zero

`pad_sequence` stacks a list of Tensors along a new dimension, and pads them to equal length. For example, if the input is list of sequences with size `L x *` and if batch_first is False, and `T x B x *` otherwise.

&lt;cite&gt;B&lt;/cite&gt; is batch size. It is equal to the number of elements in `sequences`. &lt;cite&gt;T&lt;/cite&gt; is length of the longest sequence. &lt;cite&gt;L&lt;/cite&gt; is length of the sequence. &lt;cite&gt;*&lt;/cite&gt; is any number of trailing dimensions, including none.

Example

```py
>>> from torch.nn.utils.rnn import pad_sequence
>>> a = torch.ones(25, 300)
>>> b = torch.ones(22, 300)
>>> c = torch.ones(15, 300)
>>> pad_sequence([a, b, c]).size()
torch.Size([25, 3, 300])

```

Note

This function returns a Tensor of size `T x B x *` or `B x T x *` where &lt;cite&gt;T&lt;/cite&gt; is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same.

| Parameters: | 

*   **sequences** ([_list_](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.7)")_[_[_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_]_) – list of variable length sequences.
*   **batch_first** ([_bool_](https://docs.python.org/3/library/functions.html#bool "(in Python v3.7)")_,_ _optional_) – output will be in `B x T x *` if True, or in `T x B x *` otherwise
*   **padding_value** ([_float_](https://docs.python.org/3/library/functions.html#float "(in Python v3.7)")_,_ _optional_) – value for padded elements. Default: 0.

 |
| --- | --- |
| Returns: | Tensor of size `T x B x *` if `batch_first` is `False`. Tensor of size `B x T x *` otherwise |
| --- | --- |

### pack_sequence

```py
torch.nn.utils.rnn.pack_sequence(sequences)
```

Packs a list of variable length Tensors

`sequences` should be a list of Tensors of size `L x *`, where &lt;cite&gt;L&lt;/cite&gt; is the length of a sequence and &lt;cite&gt;*&lt;/cite&gt; is any number of trailing dimensions, including zero. They should be sorted in the order of decreasing length.

Example

```py
>>> from torch.nn.utils.rnn import pack_sequence
>>> a = torch.tensor([1,2,3])
>>> b = torch.tensor([4,5])
>>> c = torch.tensor([6])
>>> pack_sequence([a, b, c])
PackedSequence(data=tensor([ 1,  4,  6,  2,  5,  3]), batch_sizes=tensor([ 3,  2,  1]))

```

| Parameters: | **sequences** ([_list_](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.7)")_[_[_Tensor_](tensors.html#torch.Tensor "torch.Tensor")_]_) – A list of sequences of decreasing length. |
| --- | --- |
| Returns: | a [`PackedSequence`](#torch.nn.utils.rnn.PackedSequence "torch.nn.utils.rnn.PackedSequence") object |
| --- | --- |