gru.md 10.3 KB
Newer Older
A
rename  
Aston Zhang 已提交
1
# 门控循环单元(GRU)
A
Aston Zhang 已提交
2

A
Aston Zhang 已提交
3
上一节介绍了循环神经网络中的梯度计算方法。我们发现,当时间步数较大或者时间步较小时,循环神经网络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但无法解决梯度衰减的问题。通常由于这个原因,循环神经网络在实际中较难捕捉时间序列中时间步距离较大的依赖关系。
A
Aston Zhang 已提交
4

A
Aston Zhang 已提交
5
门控循环神经网络(gated recurrent neural network)的提出,正是为了更好地捕捉时间序列中时间步距离较大的依赖关系。它通过可以学习的门来控制信息的流动。其中,门控循环单元(gated recurrent unit,简称GRU)是一种常用的门控循环神经网络 [1, 2]。另一种常见门控循环神经网络则将在下一节中介绍。
A
Aston Zhang 已提交
6 7 8 9


## 门控循环单元

M
muli 已提交
10
下面将介绍门控循环单元的设计。它引入了重置门和更新门的概念,从而修改了循环神经网络中隐藏状态的计算方式。
A
Aston Zhang 已提交
11

A
add gru  
Aston Zhang 已提交
12
### 重置门和更新门
A
Aston Zhang 已提交
13

A
Aston Zhang 已提交
14
如图6.4所示,门控循环单元中的重置门(reset gate)和更新门(update gate)的输入均为当前时间步输入$\boldsymbol{X}_t$与上一时间步隐藏状态$\boldsymbol{H}_{t-1}$,输出由激活函数为sigmoid函数的全连接层计算得到。
M
Mu Li 已提交
15

A
Aston Zhang 已提交
16 17

![门控循环单元中重置门和更新门的计算。](../img/gru_1.svg)
M
Mu Li 已提交
18 19 20


具体来说,假设隐藏单元个数为$h$,给定时间步$t$的小批量输入$\boldsymbol{X}_t \in \mathbb{R}^{n \times d}$(样本数为$n$,输入个数为$d$)和上一时间步隐藏状态$\boldsymbol{H}_{t-1} \in \mathbb{R}^{n \times h}$。重置门$\boldsymbol{R}_t \in \mathbb{R}^{n \times h}$和更新门$\boldsymbol{Z}_t \in \mathbb{R}^{n \times h}$的计算如下:
A
Aston Zhang 已提交
21

A
add gru  
Aston Zhang 已提交
22 23 24
$$
\begin{aligned}
\boldsymbol{R}_t = \sigma(\boldsymbol{X}_t \boldsymbol{W}_{xr} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hr} + \boldsymbol{b}_r),\\
A
Aston Zhang 已提交
25
\boldsymbol{Z}_t = \sigma(\boldsymbol{X}_t \boldsymbol{W}_{xz} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hz} + \boldsymbol{b}_z),
A
add gru  
Aston Zhang 已提交
26 27
\end{aligned}
$$
A
Aston Zhang 已提交
28

A
Aston Zhang 已提交
29
其中$\boldsymbol{W}_{xr}, \boldsymbol{W}_{xz} \in \mathbb{R}^{d \times h}$和$\boldsymbol{W}_{hr}, \boldsymbol{W}_{hz} \in \mathbb{R}^{h \times h}$是权重参数,$\boldsymbol{b}_r, \boldsymbol{b}_z \in \mathbb{R}^{1 \times h}$是偏差参数。[“多层感知机”](../chapter_deep-learning-basics/mlp.md)一节中介绍过,sigmoid函数可以将元素的值变换到0和1之间。因此,重置门$\boldsymbol{R}_t$和更新门$\boldsymbol{Z}_t$中每个元素的值域都是$[0, 1]$。
A
Aston Zhang 已提交
30

A
add gru  
Aston Zhang 已提交
31
### 候选隐藏状态
A
Aston Zhang 已提交
32

A
Aston Zhang 已提交
33
接下来,门控循环单元将计算候选隐藏状态来辅助稍后的隐藏状态计算。如图6.5所示,我们将当前时间步重置门的输出与上一时间步隐藏状态做按元素乘法(符号为$\odot$)。如果重置门中元素值接近0,那么意味着重置对应隐藏状态元素为0,即丢弃上一时间步的隐藏状态。如果元素值接近1,那么表示保留上一时间步的隐藏状态。然后,将按元素乘法的结果与当前时间步的输入连结,再通过含激活函数tanh的全连接层计算出候选隐藏状态,其所有元素的值域为$[-1, 1]$。
A
Aston Zhang 已提交
34

A
Aston Zhang 已提交
35
![门控循环单元中候选隐藏状态的计算。这里的乘号是按元素乘法。](../img/gru_2.svg)
M
Mu Li 已提交
36

A
Aston Zhang 已提交
37
具体来说,时间步$t$的候选隐藏状态$\tilde{\boldsymbol{H}}_t \in \mathbb{R}^{n \times h}$的计算为
A
Aston Zhang 已提交
38

M
muli 已提交
39
$$\tilde{\boldsymbol{H}}_t = \text{tanh}(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \left(\boldsymbol{R}_t \odot \boldsymbol{H}_{t-1}\right) \boldsymbol{W}_{hh} + \boldsymbol{b}_h),$$
A
Aston Zhang 已提交
40

A
Aston Zhang 已提交
41
其中$\boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h}$和$\boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h}$是权重参数,$\boldsymbol{b}_h \in \mathbb{R}^{1 \times h}$是偏差参数。从上面这个公式可以看出,重置门控制了上一时间步的隐藏状态如何流入当前时间步的候选隐藏状态。而上一时间步的隐藏状态可能包含了时间序列截至上一时间步的全部历史信息。因此,重置门可以用来丢弃与预测无关的历史信息。
A
Aston Zhang 已提交
42

A
add gru  
Aston Zhang 已提交
43
### 隐藏状态
A
Aston Zhang 已提交
44

A
Aston Zhang 已提交
45
最后,时间步$t$的隐藏状态$\boldsymbol{H}_t \in \mathbb{R}^{n \times h}$的计算使用当前时间步的更新门$\boldsymbol{Z}_t$来对上一时间步的隐藏状态$\boldsymbol{H}_{t-1}$和当前时间步的候选隐藏状态$\tilde{\boldsymbol{H}}_t$做组合:
A
Aston Zhang 已提交
46

A
add gru  
Aston Zhang 已提交
47
$$\boldsymbol{H}_t = \boldsymbol{Z}_t \odot \boldsymbol{H}_{t-1}  + (1 - \boldsymbol{Z}_t) \odot \tilde{\boldsymbol{H}}_t.$$
A
Aston Zhang 已提交
48

M
Mu Li 已提交
49

A
Aston Zhang 已提交
50
![门控循环单元中隐藏状态的计算。这里的乘号是按元素乘法。](../img/gru_3.svg)
M
Mu Li 已提交
51 52


A
Aston Zhang 已提交
53
值得注意的是,更新门可以控制隐藏状态应该如何被包含当前时间步信息的候选隐藏状态所更新,如图6.6所示。假设更新门在时间步$t'$到$t$($t' < t$)之间一直近似1。那么,在时间步$t'$到$t$之间的输入信息几乎没有流入时间步$t$的隐藏状态$\boldsymbol{H}_t$。实际上,这可以看作是较早时刻的隐藏状态$\boldsymbol{H}_{t'-1}$一直通过时间保存并传递至当前时间步$t$。这个设计可以应对循环神经网络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较大的依赖关系。
A
Aston Zhang 已提交
54

A
Add GRU  
Aston Zhang 已提交
55
我们对门控循环单元的设计稍作总结:
A
Aston Zhang 已提交
56

A
add gru  
Aston Zhang 已提交
57 58
* 重置门有助于捕捉时间序列里短期的依赖关系。
* 更新门有助于捕捉时间序列里长期的依赖关系。
A
Aston Zhang 已提交
59

A
Aston Zhang 已提交
60
## 读取数据集
A
Aston Zhang 已提交
61

A
Aston Zhang 已提交
62
为了实现并展示门控循环单元,我们依然使用周杰伦歌词数据集来训练模型作词。这里除门控循环单元以外的实现已在[“循环神经网络”](rnn.md)一节中介绍。以下为读取数据集部分。
A
Aston Zhang 已提交
63

M
muli 已提交
64
```{.python .input  n=1}
A
utils  
Aston Zhang 已提交
65 66
import gluonbook as gb
from mxnet import nd
M
muli 已提交
67 68
from mxnet.gluon import rnn

A
Aston Zhang 已提交
69 70
(corpus_indices, char_to_idx, idx_to_char,
 vocab_size) = gb.load_data_jay_lyrics()
A
Aston Zhang 已提交
71 72
```

A
Aston Zhang 已提交
73
## 从零开始实现
M
muli 已提交
74

A
Aston Zhang 已提交
75
我们先介绍如何从零开始实现门控循环单元。
M
muli 已提交
76

A
Add GRU  
Aston Zhang 已提交
77
### 初始化模型参数
A
Aston Zhang 已提交
78

A
add gru  
Aston Zhang 已提交
79
以下部分对模型参数进行初始化。超参数`num_hiddens`定义了隐藏单元的个数。
A
Aston Zhang 已提交
80

M
muli 已提交
81
```{.python .input  n=2}
A
Aston Zhang 已提交
82
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
M
muli 已提交
83
ctx = gb.try_gpu()
A
Aston Zhang 已提交
84 85

def get_params():
A
Aston Zhang 已提交
86 87
    def _one(shape):
        return nd.random.normal(scale=0.01, shape=shape, ctx=ctx)
A
Aston Zhang 已提交
88

A
Aston Zhang 已提交
89 90 91
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
A
Aston Zhang 已提交
92 93 94 95
                nd.zeros(num_hiddens, ctx=ctx))

    W_xz, W_hz, b_z = _three()  # 更新门参数。
    W_xr, W_hr, b_r = _three()  # 重置门参数。
M
muli 已提交
96
    W_xh, W_hh, b_h = _three()  # 候选隐藏状态参数。
A
utils  
Aston Zhang 已提交
97
    # 输出层参数。
A
Aston Zhang 已提交
98 99
    W_hq = _one((num_hiddens, num_outputs))
    b_q = nd.zeros(num_outputs, ctx=ctx)
M
muli 已提交
100
    # 创建梯度。
A
Aston Zhang 已提交
101
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
A
Aston Zhang 已提交
102 103 104 105 106
    for param in params:
        param.attach_grad()
    return params
```

M
muli 已提交
107 108
### 定义模型

A
Aston Zhang 已提交
109
以下定义隐藏状态初始化函数`init_gru_state`。同[“循环神经网络的从零开始实现”](rnn-scratch.md)一节中定义的`init_rnn_state`函数一样,它返回由一个形状为(批量大小,隐藏单元个数)的值为0的NDArray组成的元组。
M
muli 已提交
110 111 112 113 114

```{.python .input  n=3}
def init_gru_state(batch_size, num_hiddens, ctx):
    return (nd.zeros(shape=(batch_size, num_hiddens), ctx=ctx), )
```
A
Aston Zhang 已提交
115

A
add gru  
Aston Zhang 已提交
116
下面根据门控循环单元的计算表达式定义模型。
A
Aston Zhang 已提交
117

A
Aston Zhang 已提交
118
```{.python .input  n=4}
M
muli 已提交
119
def gru(inputs, state, params):
A
Aston Zhang 已提交
120
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
M
muli 已提交
121
    H, = state
A
Aston Zhang 已提交
122
    outputs = []
A
Aston Zhang 已提交
123
    for X in inputs:
A
Aston Zhang 已提交
124 125 126 127
        Z = nd.sigmoid(nd.dot(X, W_xz) + nd.dot(H, W_hz) + b_z)
        R = nd.sigmoid(nd.dot(X, W_xr) + nd.dot(H, W_hr) + b_r)
        H_tilda = nd.tanh(nd.dot(X, W_xh) + R * nd.dot(H, W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
A
Aston Zhang 已提交
128
        Y = nd.dot(H, W_hq) + b_q
A
Aston Zhang 已提交
129
        outputs.append(Y)
M
muli 已提交
130
    return outputs, (H,)
A
Aston Zhang 已提交
131 132
```

A
add gru  
Aston Zhang 已提交
133
### 训练模型并创作歌词
A
Aston Zhang 已提交
134

A
Aston Zhang 已提交
135
我们在训练模型时只使用相邻采样。设置好超参数后,我们将训练模型并根据前缀“分开”和“不分开”分别创作长度为50个字符的一段歌词。
M
muli 已提交
136

A
Aston Zhang 已提交
137
```{.python .input  n=5}
A
Aston Zhang 已提交
138 139
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']
M
muli 已提交
140 141
```

A
Aston Zhang 已提交
142
我们每过40个迭代周期便根据当前训练的模型创作一段歌词。
M
muli 已提交
143 144

```{.python .input}
A
Aston Zhang 已提交
145 146 147 148 149
gb.train_and_predict_rnn(gru, get_params, init_gru_state, num_hiddens,
                         vocab_size, ctx, corpus_indices, idx_to_char,
                         char_to_idx, False, num_epochs, num_steps, lr,
                         clipping_theta, batch_size, pred_period, pred_len,
                         prefixes)
M
muli 已提交
150 151
```

A
Aston Zhang 已提交
152
## 简洁实现
M
muli 已提交
153

A
Aston Zhang 已提交
154
在Gluon中我们直接调用`rnn`模块中的`GRU`类即可。
M
muli 已提交
155 156 157 158

```{.python .input  n=6}
gru_layer = rnn.GRU(num_hiddens)
model = gb.RNNModel(gru_layer, vocab_size)
A
Aston Zhang 已提交
159 160 161 162
gb.train_and_predict_rnn_gluon(model, num_hiddens, vocab_size, ctx,
                               corpus_indices, idx_to_char, char_to_idx,
                               num_epochs, num_steps, lr, clipping_theta,
                               batch_size, pred_period, pred_len, prefixes)
A
Aston Zhang 已提交
163 164
```

A
Aston Zhang 已提交
165
## 小结
A
Aston Zhang 已提交
166

A
Aston Zhang 已提交
167
* 门控循环神经网络可以更好地捕捉时间序列中时间步距离较大的依赖关系。
A
add gru  
Aston Zhang 已提交
168 169 170
* 门控循环单元引入了门的概念,从而修改了循环神经网络中隐藏状态的计算方式。它包括重置门、更新门、候选隐藏状态和隐藏状态。
* 重置门有助于捕捉时间序列里短期的依赖关系。
* 更新门有助于捕捉时间序列里长期的依赖关系。
A
Aston Zhang 已提交
171 172 173 174


## 练习

A
Aston Zhang 已提交
175
* 假设时间步$t' < t$。如果我们只希望用时间步$t'$的输入来预测时间步$t$的输出,每个时间步的重置门和更新门的值最好是多少?
A
Aston Zhang 已提交
176
* 调节超参数,观察并分析对运行时间、困惑度以及创作歌词的结果造成的影响。
A
Aston Zhang 已提交
177
* 在相同条件下,比较门控循环单元和不带门控的循环神经网络的运行时间。
A
add gru  
Aston Zhang 已提交
178

A
Aston Zhang 已提交
179

A
Aston Zhang 已提交
180 181
## 扫码直达[讨论区](https://discuss.gluon.ai/t/topic/4042)

A
Aston Zhang 已提交
182
![](../img/qr_gru.svg)
A
add gru  
Aston Zhang 已提交
183 184 185

## 参考文献

A
Aston Zhang 已提交
186
[1] Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
A
add gru  
Aston Zhang 已提交
187

A
Aston Zhang 已提交
188
[2] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.