4.md 50.9 KB
Newer Older
W
wizardforcel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
# 第 4 章 NumPy 基础:数组和向量计算

NumPy(Numerical Python 的简称)是 Python 数值计算最重要的基础包。大多数提供科学计算的包都是用 NumPy 的数组作为构建基础。

NumPy 的部分功能如下:

- `ndarray`,一个具有向量算术运算和复杂广播能力的快速且节省空间的多维数组。
- 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。
- 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。
- 线性代数、随机数生成以及傅里叶变换功能。
- 用于集成由 C、C++、Fortran 等语言编写的代码的 C API。

由于 NumPy 提供了一个简单易用的 C API,因此很容易将数据传递给由低级语言编写的外部库,外部库也能以 NumPy 数组的形式将数据返回给 Python。这个功能使 Python 成为一种包装 C/C++/Fortran 历史代码库的选择,并使被包装库拥有一个动态的、易用的接口。

NumPy 本身并没有提供多么高级的数据分析功能,理解 NumPy 数组以及面向数组的计算将有助于你更加高效地使用诸如 pandas 之类的工具。因为 NumPy 是一个很大的题目,我会在附录 A 中介绍更多 NumPy 高级功能,比如广播。

对于大部分数据分析应用而言,我最关注的功能主要集中在:

- 用于数据整理和清理、子集构造和过滤、转换等快速的向量化数组运算。
- 常用的数组算法,如排序、唯一化、集合运算等。
- 高效的描述统计和数据聚合/摘要运算。
- 用于异构数据集的合并/连接运算的数据对齐和关系型数据运算。
- 将条件逻辑表述为数组表达式(而不是带有`if-elif-else`分支的循环)。
- 数据的分组运算(聚合、转换、函数应用等)。。

虽然 NumPy 提供了通用的数值数据处理的计算基础,但大多数读者可能还是想将 pandas 作为统计和分析工作的基础,尤其是处理表格数据时。pandas 还提供了一些 NumPy 所没有的领域特定的功能,如时间序列处理等。

> 笔记:Python 的面向数组计算可以追溯到 1995 年,Jim Hugunin 创建了 Numeric 库。接下来的 10 年,许多科学编程社区纷纷开始使用 Python 的数组编程,但是进入 21 世纪,库的生态系统变得碎片化了。2005 年,Travis Oliphant 从 Numeric 和 Numarray 项目整了出了 NumPy 项目,进而所有社区都集合到了这个框架下。

NumPy 之于数值计算特别重要的原因之一,是因为它可以高效处理大数组的数据。这是因为:

- NumPy 是在一个连续的内存块中存储数据,独立于其他 Python 内置对象。NumPy 的 C 语言编写的算法库可以操作内存,而不必进行类型检查或其它前期工作。比起 Python 的内置序列,NumPy 数组使用的内存更少。
- NumPy 可以在整个数组上执行复杂的计算,而不需要 Python 的`for`循环。

要搞明白具体的性能差距,考察一个包含一百万整数的数组,和一个等价的 Python 列表:

```python
In [7]: import numpy as np

In [8]: my_arr = np.arange(1000000)

In [9]: my_list = list(range(1000000))
```

各个序列分别乘以 2:

```python
In [10]: %time for _ in range(10): my_arr2 = my_arr * 2
CPU times: user 20 ms, sys: 50 ms, total: 70 ms
Wall time: 72.4 ms

In [11]: %time for _ in range(10): my_list2 = [x * 2 for x in my_list]
CPU times: user 760 ms, sys: 290 ms, total: 1.05 s
Wall time: 1.05 s
```

基于 NumPy 的算法要比纯 Python 快 10 到 100 倍(甚至更快),并且使用的内存更少。

# 4.1 NumPy 的`ndarray`:一种多维数组对象

NumPy 最重要的一个特点就是其 N 维数组对象(即`ndarray`),该对象是一个快速而灵活的大数据集容器。你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样。

要明白 Python 是如何利用与标量值类似的语法进行批次计算,我先引入 NumPy,然后生成一个包含随机数据的小数组:

```python
In [12]: import numpy as np

# Generate some random data
In [13]: data = np.random.randn(2, 3)

In [14]: data
Out[14]: 
array([[-0.2047,  0.4789, -0.5194],
       [-0.5557,  1.9658,  1.3934]])
```

然后进行数学运算:

```python
In [15]: data * 10
Out[15]: 
array([[ -2.0471,   4.7894,  -5.1944],
       [ -5.5573,  19.6578,  13.9341]])

In [16]: data + data
Out[16]: 
array([[-0.4094,  0.9579, -1.0389],
       [-1.1115,  3.9316,  2.7868]])
```

第一个例子中,所有的元素都乘以 10。第二个例子中,每个元素都与自身相加。

> 笔记:在本章及全书中,我会使用标准的 NumPy 惯用法``import numpy as np``。你当然也可以在代码中使用``from numpy import *``,但不建议这么做。``numpy``的命名空间很大,包含许多函数,其中一些的名字与 Python 的内置函数重名(比如`min`和`max`)。

`ndarray`是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。每个数组都有一个`shape`(一个表示各维度大小的元组)和一个`dtype`(一个用于说明数组数据类型的对象):

```python
In [17]: data.shape
Out[17]: (2, 3)

In [18]: data.dtype
Out[18]: dtype('float64')
```

本章将会介绍 NumPy 数组的基本用法,这对于本书后面各章的理解基本够用。虽然大多数数据分析工作不需要深入理解 NumPy,但是精通面向数组的编程和思维方式是成为 Python 科学计算牛人的一大关键步骤。

> 笔记:当你在本书中看到“数组”、“NumPy 数组”、`ndarray`时,基本上都指的是同一样东西,即`ndarray`对象。

## 创建`ndarray`

创建数组最简单的办法就是使用`array`函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的 NumPy 数组。以一个列表的转换为例:

```python
In [19]: data1 = [6, 7.5, 8, 0, 1]

In [20]: arr1 = np.array(data1)

In [21]: arr1
Out[21]: array([ 6. ,  7.5,  8. ,  0. ,  1. ])
```

嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组:

```python
In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [23]: arr2 = np.array(data2)

In [24]: arr2
Out[24]: 
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])
```

因为`data2`是列表的列表,NumPy 数组`arr2`的两个维度的`shape`是从`data2`引入的。可以用属性`ndim``shape`验证:

```python
In [25]: arr2.ndim
Out[25]: 2

In [26]: arr2.shape
Out[26]: (2, 4)
```

除非特别说明(稍后将会详细介绍),`np.array`会尝试为新建的这个数组推断出一个较为合适的数据类型。数据类型保存在一个特殊的`dtype`对象中。比如说,在上面的两个例子中,我们有:

```python
In [27]: arr1.dtype
Out[27]: dtype('float64')

In [28]: arr2.dtype
Out[28]: dtype('int64')
```

`np.array`之外,还有一些函数也可以新建数组。比如,`zeros``ones`分别可以创建指定长度或形状的全 0 或全 1 数组。`empty`可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只需传入一个表示形状的元组即可:

```python
In [29]: np.zeros(10)
Out[29]: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

In [30]: np.zeros((3, 6))
Out[30]: 
array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

In [31]: np.empty((2, 3, 2))
Out[31]: 
array([[[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]],
       [[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]]])
```

> 注意:认为`np.empty`会返回全 0 数组的想法是不安全的。很多情况下(如前所示),它返回的都是一些未初始化的垃圾值。

`arange`是 Python 内置函数`range`的数组版:

```python
In [32]: np.arange(15)
Out[32]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])
```

表 4-1 列出了一些数组创建函数。由于 NumPy 关注的是数值计算,因此,如果没有特别指定,数据类型基本都是`float64`(浮点数)。

![表 4-1 数组创建函数](img/7178691-78ab11f67e7077a6.png)

## `ndarray`的数据类型

`dtype`(数据类型)是一个特殊的对象,它含有`ndarray`将一块内存解释为特定数据类型所需的信息:

```python
In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)

In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)

In [35]: arr1.dtype
Out[35]: dtype('float64')

In [36]: arr2.dtype
Out[36]: dtype('int32')
```

`dtype`是 NumPy 灵活交互其它系统的源泉之一。多数情况下,它们直接映射到相应的机器表示,这使得“读写磁盘上的二进制数据流”以及“集成低级语言代码(如 C、Fortran)”等工作变得更加简单。数值型`dtype`的命名方式相同:一个类型名(如`float``int`),后面跟一个用于表示各元素位长的数字。标准的双精度浮点值(即 Python 中的`float`对象)需要占用 8 字节(即 64 位)。因此,该类型在 NumPy 中就记作`float64`。表 4-2 列出了 NumPy 所支持的全部数据类型。

> 笔记:记不住这些 NumPy 的`dtype`也没关系,新手更是如此。通常只需要知道你所处理的数据的大致类型是浮点数、复数、整数、布尔值、字符串,还是普通的 Python 对象即可。当你需要控制数据在内存和磁盘中的存储方式时(尤其是对大数据集),那就得了解如何控制存储类型。

![](img/7178691-2f2d7406a8bc076c.png)

![](img/7178691-5cc31115615737b7.png)

你可以通过`ndarray``astype`方法明确地将一个数组从一个`dtype`转换成另一个`dtype`

```python
In [37]: arr = np.array([1, 2, 3, 4, 5])

In [38]: arr.dtype
Out[38]: dtype('int64')

In [39]: float_arr = arr.astype(np.float64)

In [40]: float_arr.dtype
Out[40]: dtype('float64')
```

在本例中,整数被转换成了浮点数。如果将浮点数转换成整数,则小数部分将会被截取删除:

```python
In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])

In [42]: arr
Out[42]: array([  3.7,  -1.2,  -2.6,   0.5,  12.9,  10.1])

In [43]: arr.astype(np.int32)
Out[43]: array([ 3, -1, -2,  0, 12, 10], dtype=int32)
```

如果某字符串数组表示的全是数字,也可以用`astype`将其转换为数值形式:

```python
In [44]: numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_)

In [45]: numeric_strings.astype(float)
Out[45]: array([  1.25,  -9.6 ,  42.  ])
```

> 注意:使用`numpy.string_`类型时,一定要小心,因为 NumPy 的字符串数据是大小固定的,发生截取时,不会发出警告。pandas 提供了更多非数值数据的便利的处理方法。

如果转换过程因为某种原因而失败了(比如某个不能被转换为`float64`的字符串),就会引发一个`ValueError`。这里,我比较懒,写的是`float`而不是`np.float64`;NumPy 很聪明,它会将 Python 类型映射到等价的`dtype`上。

数组的`dtype`还有另一个属性:

```python
In [46]: int_array = np.arange(10)

In [47]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.float64)

In [48]: int_array.astype(calibers.dtype)
Out[48]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])
```

你还可以用简洁的类型代码来表示`dtype`

```python
In [49]: empty_uint32 = np.empty(8, dtype='u4')

In [50]: empty_uint32
Out[50]: 
array([         0, 1075314688,          0, 1075707904,          0,
       1075838976,          0, 1072693248], dtype=uint32)
```

> 笔记:调用`astype`总会创建一个新的数组(一个数据的备份),即使新的`dtype`与旧的`dtype`相同。

## NumPy 数组的运算

数组很重要,因为它使你不用编写循环即可对数据执行批量运算。NumPy 用户称其为向量化(vectorization)。大小相等的数组之间的任何算术运算都会将运算应用到元素级:

```python
In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])

In [52]: arr
Out[52]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [53]: arr * arr
Out[53]: 
array([[  1.,   4.,   9.],
       [ 16.,  25.,  36.]])

In [54]: arr - arr
Out[54]: 
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])
```

数组与标量的算术运算会将标量值传播到各个元素:

```python
In [55]: 1 / arr
Out[55]: 
array([[ 1.    ,  0.5   ,  0.3333],
       [ 0.25  ,  0.2   ,  0.1667]])

In [56]: arr ** 0.5
Out[56]: 
array([[ 1.    ,  1.4142,  1.7321],
       [ 2.    ,  2.2361,  2.4495]])
```

大小相同的数组之间的比较会生成布尔值数组:

```python
In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])

In [58]: arr2
Out[58]: 
array([[  0.,   4.,   1.],
       [  7.,   2.,  12.]])

In [59]: arr2 > arr
Out[59]:
array([[False,  True, False],
       [ True, False,  True]], dtype=bool)
```

不同大小的数组之间的运算叫做广播(broadcasting),将在附录 A 中对其进行详细讨论。本书的内容不需要对广播机制有多深的理解。

## 基本的索引和切片

NumPy 数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数组很简单。从表面上看,它们跟 Python 列表的功能差不多:

```python
In [60]: arr = np.arange(10)

In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [62]: arr[5]
Out[62]: 5

In [63]: arr[5:8]
Out[63]: array([5, 6, 7])

In [64]: arr[5:8] = 12

In [65]: arr
Out[65]: array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])
```

如上所示,当你将一个标量值赋值给一个切片时(如`arr[5:8]=12`),该值会自动传播(也就说后面将会讲到的“广播”)到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上。

作为例子,先创建一个`arr`的切片:

```python
In [66]: arr_slice = arr[5:8]

In [67]: arr_slice
Out[67]: array([12, 12, 12])
```

现在,当我修改`arr_slice`中的值,变动也会体现在原始数组`arr`中:

```python
In [68]: arr_slice[1] = 12345

In [69]: arr
Out[69]: array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,   
  9])
```

切片`[:]`会给数组中的所有值赋值:

```python
In [70]: arr_slice[:] = 64

In [71]: arr
Out[71]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])
```

如果你刚开始接触 NumPy,可能会对此感到惊讶(尤其是当你曾经用过其他热衷于复制数组数据的编程语言)。由于 NumPy 的设计目的是处理大数据,所以你可以想象一下,假如 NumPy 坚持要将数据复制来复制去的话会产生何等的性能和内存问题。

> 注意:如果你想要得到的是`ndarray`切片的一份副本而非视图,就需要明确地进行复制操作,例如``arr[5:8].copy()``。

对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维数组:

```python
In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

In [73]: arr2d[2]
Out[73]: array([7, 8, 9])
```

因此,可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的索引列表来选取单个元素。也就是说,下面两种方式是等价的:

```python
In [74]: arr2d[0][2]
Out[74]: 3

In [75]: arr2d[0, 2]
Out[75]: 3
```

图 4-1 说明了二维数组的索引方式。轴 0 作为行,轴 1 作为列。

![图 4-1 NumPy 数组中的元素索引](img/7178691-0a641536f73f560e.png)

在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的`ndarray`(它含有高一级维度上的所有数据)。因此,在`2×2×3`数组`arr3d`中:

```python
In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])
```

`arr3d[0]`是一个`2×3`数组:

```python
In [78]: arr3d[0]
Out[78]: 
array([[1, 2, 3],
       [4, 5, 6]])
```

标量值和数组都可以被赋值给`arr3d[0]`

```python
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

In [82]: arr3d[0] = old_values

In [83]: arr3d
Out[83]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])
```

相似的,`arr3d[1,0]`可以访问索引以`(1,0)`开头的那些值(以一维数组的形式返回):

```python
In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])
```

虽然是用两步进行索引的,表达式是相同的:

```python
In [85]: x = arr3d[1]

In [86]: x
Out[86]: 
array([[ 7,  8,  9],
       [10, 11, 12]])

In [87]: x[0]
Out[87]: array([7, 8, 9])
```

注意,在上面所有这些选取数组子集的例子中,返回的数组都是视图。

## 切片索引

`ndarray`的切片语法跟 Python 列表这样的一维对象差不多:

```python
In [88]: arr
Out[88]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

In [89]: arr[1:6]
Out[89]: array([ 1,  2,  3,  4, 64])
```

对于之前的二维数组`arr2d`,其切片方式稍显不同:

```python
In [90]: arr2d
Out[90]: 
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [91]: arr2d[:2]
Out[91]: 
array([[1, 2, 3],
       [4, 5, 6]])
```

可以看出,它是沿着第 0 轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式`arr2d[:2]`可以被认为是“选取`arr2d`的前两行”。

你可以一次传入多个切片,就像传入多个索引那样:

```python
In [92]: arr2d[:2, 1:]
Out[92]: 
array([[2, 3],
       [5, 6]])
```

像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。

例如,我可以选取第二行的前两列:

```python
In [93]: arr2d[1, :2]
Out[93]: array([4, 5])
```

相似的,还可以选择第三列的前两行:

```python
In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])
```

图 4-2 对此进行了说明。注意,“只有冒号”表示选取整个轴,因此你可以像下面这样只对高维轴进行切片:

```python
In [95]: arr2d[:, :1]
Out[95]: 
array([[1],
       [4],
       [7]])
```

![图 4-2 二维数组切片](img/7178691-9da32d2f4629c304.png)


自然,对切片表达式的赋值操作也会被扩散到整个选区:

```python
In [96]: arr2d[:2, 1:] = 0

In [97]: arr2d
Out[97]: 
array([[1, 0, 0],
       [4, 0, 0],
       [7, 8, 9]])
```

## 布尔型索引

来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用`numpy.random`中的`randn`函数生成一些正态分布的随机数据:

```python
In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [99]: data = np.random.randn(7, 4)

In [100]: names
Out[100]: 
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
      dtype='<U4')

In [101]: data
Out[101]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])
```

假设每个名字都对应`data`数组中的一行,而我们想要选出对应于名字`"Bob"`的所有行。跟算术运算一样,数组的比较运算(如`==`)也是向量化的。因此,对`names`和字符串`"Bob"`的比较运算将会产生一个布尔型数组:

```python
In [102]: names == 'Bob'
Out[102]: array([ True, False, False,  True, False, False, False], dtype=bool)
```

这个布尔型数组可用于数组索引:

```python
In [103]: data[names == 'Bob']
Out[103]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.669 , -0.4386, -0.5397,  0.477 ]])
```

布尔型数组的长度必须跟被索引的轴长度一致。此外,还可以将布尔型数组跟切片、整数(或整数序列,稍后将对此进行详细讲解)混合使用:

```python
In [103]: data[names == 'Bob']
Out[103]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.669 , -0.4386, -0.5397,  0.477 ]])
```

> 注意:如果布尔型数组的长度不对,布尔型选择就会出错,因此一定要小心。

下面的例子,我选取了``names == 'Bob'``的行,并索引了列:

```python
In [104]: data[names == 'Bob', 2:]
Out[104]: 
array([[ 0.769 ,  1.2464],
       [-0.5397,  0.477 ]])

In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464,  0.477 ])
```

要选择除"Bob"以外的其他值,既可以使用不等于符号(!=),也可以通过~对条件进行否定:

```python
In [106]: names != 'Bob'
Out[106]: array([False,  True,  True, False,  True,  True,  True], dtype=bool)

In [107]: data[~(names == 'Bob')]
Out[107]:
array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])
```

~操作符用来反转条件很好用:

```python
In [108]: cond = names == 'Bob'

In [109]: data[~cond]
Out[109]: 
array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])
```

选取这三个名字中的两个需要组合应用多个布尔条件,使用&(和)、|(或)之类的布尔算术运算符即可:

```python
In [110]: mask = (names == 'Bob') | (names == 'Will')

In [111]: mask
Out[111]: array([ True, False,  True,  True,  True, False, False], dtype=bool)

In [112]: data[mask]
Out[112]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241]])
```

通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。

> 注意:Python 关键字`and`和`or`在布尔型数组中无效。要使用`&`与`|`。

通过布尔型数组设置值是一种经常用到的手段。为了将`data`中的所有负值都设置为 0,我们只需:

```python
In [113]: data[data < 0] = 0

In [114]: data
Out[114]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 1.3529,  0.8864,  0.    ,  0.    ],
       [ 1.669 ,  0.    ,  0.    ,  0.477 ],
       [ 3.2489,  0.    ,  0.    ,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])
```

通过一维布尔数组设置整行或列的值也很简单:

```python
In [115]: data[names != 'Joe'] = 7

In [116]: data
Out[116]: 
array([[ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])
```

后面会看到,这类二维数据的操作也可以用 pandas 方便的来做。

## 花式索引

花式索引(Fancy indexing)是一个 NumPy 术语,它指的是利用整数数组进行索引。假设我们有一个`8×4`数组:

```python
In [117]: arr = np.empty((8, 4))

In [118]: for i in range(8):
   .....:     arr[i] = i

In [119]: arr
Out[119]: 
array([[ 0.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  1.],
       [ 2.,  2.,  2.,  2.],
       [ 3.,  3.,  3.,  3.],
       [ 4.,  4.,  4.,  4.],
       [ 5.,  5.,  5.,  5.],
       [ 6.,  6.,  6.,  6.],
       [ 7.,  7.,  7.,  7.]])
```

为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或`ndarray`即可:

```python
In [120]: arr[[4, 3, 0, 6]]
Out[120]: 
array([[ 4.,  4.,  4.,  4.],
       [ 3.,  3.,  3.,  3.],
       [ 0.,  0.,  0.,  0.],
       [ 6.,  6.,  6.,  6.]])
```

这段代码确实达到我们的要求了!使用负数索引将会从末尾开始选取行:

```python
In [121]: arr[[-3, -5, -7]]
Out[121]: 
array([[ 5.,  5.,  5.,  5.],
       [ 3.,  3.,  3.,  3.],
       [ 1.,  1.,  1.,  1.]])
```

一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元组:

```python
In [122]: arr = np.arange(32).reshape((8, 4))

In [123]: arr
Out[123]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])
```

附录 A 中会详细介绍`reshape`方法。

最终选出的是元素`(1,0)``(5,3)``(7,1)``(2,2)`。无论数组是多少维的,花式索引总是一维的。

这个花式索引的行为可能会跟某些用户的预期不一样(包括我在内),选取矩阵的行列子集应该是矩形区域的形式才对。下面是得到该结果的一个办法:

```python
In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[125]: 
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])
```

记住,花式索引跟切片不一样,它总是将数据复制到新数组中。

## 数组转置和轴对换

转置是重塑的一种特殊形式,它返回的是源数据的视图(不会进行任何复制操作)。数组不仅有`transpose`方法,还有一个特殊的`T`属性:

```python
In [126]: arr = np.arange(15).reshape((3, 5))

In [127]: arr
Out[127]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

In [128]: arr.T
Out[128]: 
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])
```

在进行矩阵计算时,经常需要用到该操作,比如利用`np.dot`计算矩阵内积:

```python
In [129]: arr = np.random.randn(6, 3)

In [130]: arr
Out[130]: 
array([[-0.8608,  0.5601, -1.2659],
       [ 0.1198, -1.0635,  0.3329],
       [-2.3594, -0.1995, -1.542 ],
       [-0.9707, -1.307 ,  0.2863],
       [ 0.378 , -0.7539,  0.3313],
       [ 1.3497,  0.0699,  0.2467]])

In [131]: np.dot(arr.T, arr)
Out[131]:
array([[ 9.2291,  0.9394,  4.948 ],
       [ 0.9394,  3.7662, -1.3622],
       [ 4.948 , -1.3622,  4.3437]])
```

对于高维数组,`transpose`需要得到一个由轴编号组成的元组才能对这些轴进行转置(比较费脑子):

```python
In [132]: arr = np.arange(16).reshape((2, 2, 4))

In [133]: arr
Out[133]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [134]: arr.transpose((1, 0, 2))
Out[134]: 
array([[[ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],
       [[ 4,  5,  6,  7],
        [12, 13, 14, 15]]])
```

这里,第一个轴被换成了第二个,第二个轴被换成了第一个,最后一个轴不变。

简单的转置可以使用`.T`,它其实就是进行轴对换而已。`ndarray`还有一个`swapaxes`方法,它需要接受一对轴编号:

```python
In [135]: arr
Out[135]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [136]: arr.swapaxes(1, 2)
Out[136]: 
array([[[ 0,  4],
        [ 1,  5],
        [ 2,  6],
        [ 3,  7]],
       [[ 8, 12],
        [ 9, 13],
        [10, 14],
        [11, 15]]])
```

swapaxes 也是返回源数据的视图(不会进行任何复制操作)。

# 4.2 通用函数:快速的元素级数组函数

通用函数(即`ufunc`)是一种对`ndarray`中的数据执行元素级运算的函数。你可以将其看做简单函数(接受一个或多个标量值,并产生一个或多个标量值)的向量化包装器。

许多`ufunc`都是简单的元素级变体,如`sqrt``exp`

```python
In [137]: arr = np.arange(10)

In [138]: arr
Out[138]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [139]: np.sqrt(arr)
Out[139]: 
array([ 0.    ,  1.    ,  1.4142,  1.7321,  2.    ,  2.2361,  2.4495,
        2.6458,  2.8284,  3.    ])

In [140]: np.exp(arr)
Out[140]: 
array([    1.    ,     2.7183,     7.3891,    20.0855,    54.5982,
         148.4132,   403.4288,  1096.6332,  2980.958 ,  8103.0839])
```

这些都是一元(unary)`ufunc`。另外一些(如`add``maximum`)接受 2 个数组(因此也叫二元(binary)`ufunc`),并返回一个结果数组:

```python
In [141]: x = np.random.randn(8)

In [142]: y = np.random.randn(8)

In [143]: x
Out[143]: 
array([-0.0119,  1.0048,  1.3272, -0.9193, -1.5491,  0.0222,  0.7584,
       -0.6605])

In [144]: y
Out[144]: 
array([ 0.8626, -0.01  ,  0.05  ,  0.6702,  0.853 , -0.9559, -0.0235,
       -2.3042])

In [145]: np.maximum(x, y)
Out[145]: 
array([ 0.8626,  1.0048,  1.3272,  0.6702,  0.853 ,  0.0222,  0.7584,   
       -0.6605])
```

这里,`numpy.maximum`计算了`x``y`中元素级别最大的元素。

虽然并不常见,但有些`ufunc`的确可以返回多个数组。`modf`就是一个例子,它是 Python 内置函数`divmod`的向量化版本,它会返回浮点数数组的小数和整数部分:

```python
In [146]: arr = np.random.randn(7) * 5

In [147]: arr
Out[147]: array([-3.2623, -6.0915, -6.663 ,  5.3731,  3.6182,  3.45  ,  5.0077])

In [148]: remainder, whole_part = np.modf(arr)

In [149]: remainder
Out[149]: array([-0.2623, -0.0915, -0.663 ,  0.3731,
0.6182,  0.45  ,  0.0077])

In [150]: whole_part
Out[150]: array([-3., -6., -6.,  5.,  3.,  3.,  5.])
```

`Ufuncs`可以接受一个`out`可选参数,这样就能在数组原地进行操作:

```python
In [151]: arr
Out[151]: array([-3.2623, -6.0915, -6.663 ,  5.3731,  3.6182,  3.45  ,  5.0077])

In [152]: np.sqrt(arr)
Out[152]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  2.2378])

In [153]: np.sqrt(arr, arr)
Out[153]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  2.2378])

In [154]: arr
Out[154]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  2.2378])
```

表 4-3 和表 4-4 分别列出了一些一元和二元`ufunc`

![](img/7178691-1d494e73b61c7ced.png)

![](img/7178691-2be79faf68ab6ff8.png)

![](img/7178691-4e38d02a66481530.png)

![](img/7178691-eff1e61e5464159f.png)

![](img/7178691-236dba83b6a420cc.png)

# 4.3 利用数组进行数据处理

NumPy 数组使你可以将许多种数据处理任务表述为简洁的数组表达式(否则需要编写循环)。用数组表达式代替循环的做法,通常被称为向量化。一般来说,向量化数组运算要比等价的纯 Python 方式快上一两个数量级(甚至更多),尤其是各种数值计算。在后面内容中(见附录 A)我将介绍广播,这是一种针对向量化计算的强大手段。

作为简单的例子,假设我们想要在一组值(网格型)上计算函数``sqrt(x^2+y^2)```np.meshgrid`函数接受两个一维数组,并产生两个二维矩阵(对应于两个数组中所有的`(x,y)`对):

```python
In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points

In [156]: xs, ys = np.meshgrid(points, points)
In [157]: ys
Out[157]: 
array([[-5.  , -5.  , -5.  , ..., -5.  , -5.  , -5.  ],
       [-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
       [-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
       ..., 
       [ 4.97,  4.97,  4.97, ...,  4.97,  4.97,  4.97],
       [ 4.98,  4.98,  4.98, ...,  4.98,  4.98,  4.98],
       [ 4.99,  4.99,  4.99, ...,  4.99,  4.99,  4.99]])
```

现在,对该函数的求值运算就好办了,把这两个数组当做两个浮点数那样编写表达式即可:

```python
In [158]: z = np.sqrt(xs ** 2 + ys ** 2)

In [159]: z
Out[159]: 
array([[ 7.0711,  7.064 ,  7.0569, ...,  7.0499,  7.0569,  7.064 ],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569],
       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428, 7.0499],
       ..., 
       [ 7.0499,  7.0428,  7.0357, ...,  7.0286,  7.0357,  7.0428],
       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428,  7.0499],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569]])
```

作为第 9 章的先导,我用 matplotlib 创建了这个二维数组的可视化:

```python
In [160]: import matplotlib.pyplot as plt

In [161]: plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()
Out[161]: <matplotlib.colorbar.Colorbar at 0x7f715e3fa630>

In [162]: plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
Out[162]: <matplotlib.text.Text at 0x7f715d2de748>
```

见图 4-3。这张图是用 matplotlib 的`imshow`函数创建的。

![图 4-3 根据网格对函数求值的结果](img/7178691-3b22000d4cd38650.png)

## 将条件逻辑表述为数组运算

`numpy.where`函数是三元表达式`x if condition else y`的向量化版本。假设我们有一个布尔数组和两个值数组:

```python
In [165]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])

In [166]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])

In [167]: cond = np.array([True, False, True, True, False])
```

假设我们想要根据`cond`中的值选取`xarr``yarr`的值:当`cond`中的值为`True`时,选取`xarr`的值,否则从`yarr`中选取。列表推导式的写法应该如下所示:

```python
In [168]: result = [(x if c else y)
   .....:           for x, y, c in zip(xarr, yarr, cond)]

In [169]: result
Out[169]: [1.1000000000000001, 2.2000000000000002, 1.3, 1.3999999999999999, 2.5]
```

这有几个问题。第一,它对大数组的处理速度不是很快(因为所有工作都是由纯 Python 完成的)。第二,无法用于多维数组。若使用`np.where`,则可以将该功能写得非常简洁:

```python
In [170]: result = np.where(cond, xarr, yarr)

In [171]: result
Out[171]: array([ 1.1,  2.2,  1.3,  1.4,  2.5])
```

`np.where`的第二个和第三个参数不必是数组,它们都可以是标量值。在数据分析工作中,`where`通常用于根据另一个数组而产生一个新的数组。假设有一个由随机数据组成的矩阵,你希望将所有正值替换为 2,将所有负值替换为 -2。若利用`np.where`,则会非常简单:

```python
In [172]: arr = np.random.randn(4, 4)

In [173]: arr
Out[173]: 
array([[-0.5031, -0.6223, -0.9212, -0.7262],
       [ 0.2229,  0.0513, -1.1577,  0.8167],
       [ 0.4336,  1.0107,  1.8249, -0.9975],
       [ 0.8506, -0.1316,  0.9124,  0.1882]])

In [174]: arr > 0
Out[174]: 
array([[False, False, False, False],
       [ True,  True, False,  True],
       [ True,  True,  True, False],
       [ True, False,  True,  True]], dtype=bool)

In [175]: np.where(arr > 0, 2, -2)
Out[175]: 
array([[-2, -2, -2, -2],
       [ 2,  2, -2,  2],
       [ 2,  2,  2, -2],
       [ 2, -2,  2,  2]])
```

使用`np.where`,可以将标量和数组结合起来。例如,我可用常数 2 替换`arr`中所有正的值:

```python
In [176]: np.where(arr > 0, 2, arr) # set only positive values to 2
Out[176]: 
array([[-0.5031, -0.6223, -0.9212, -0.7262],
       [ 2.    ,  2.    , -1.1577,  2.    ],
       [ 2.    ,  2.    ,  2.    , -0.9975],
       [ 2.    , -0.1316,  2.    ,  2.    ]])
```

传递给`where`的数组大小可以不相等,甚至可以是标量值。

## 数学和统计方法

可以通过数组上的一组数学函数对整个数组或某个轴向的数据进行统计计算。`sum``mean`以及标准差`std`等聚合计算(aggregation,通常叫做约简(reduction))既可以当做数组的实例方法调用,也可以当做顶级 NumPy 函数使用。

这里,我生成了一些正态分布随机数据,然后做了聚类统计:

```python
In [177]: arr = np.random.randn(5, 4)

In [178]: arr
Out[178]: 
array([[ 2.1695, -0.1149,  2.0037,  0.0296],
       [ 0.7953,  0.1181, -0.7485,  0.585 ],
       [ 0.1527, -1.5657, -0.5625, -0.0327],
       [-0.929 , -0.4826, -0.0363,  1.0954],
       [ 0.9809, -0.5895,  1.5817, -0.5287]])

In [179]: arr.mean()
Out[179]: 0.19607051119998253

In [180]: np.mean(arr)
Out[180]: 0.19607051119998253

In [181]: arr.sum()
Out[181]: 3.9214102239996507
```

`mean``sum`这类的函数可以接受一个`axis`选项参数,用于计算该轴向上的统计值,最终结果是一个少一维的数组:

```python
In [182]: arr.mean(axis=1)
Out[182]: array([ 1.022 ,  0.1875, -0.502 , -0.0881,  0.3611])

In [183]: arr.sum(axis=0)
Out[183]: array([ 3.1693, -2.6345,  2.2381,  1.1486])
```

这里,`arr.mean(1)`是“计算行的平均值”,`arr.sum(0)`是“计算每列的和”。

其他如`cumsum``cumprod`之类的方法则不聚合,而是产生一个由中间结果组成的数组:

```python
In [184]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [185]: arr.cumsum()
Out[185]: array([ 0,  1,  3,  6, 10, 15, 21, 28])
```

在多维数组中,累加函数(如`cumsum`)返回的是同样大小的数组,但是会根据每个低维的切片沿着标记轴计算部分聚类:

```python
In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

In [187]: arr
Out[187]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [188]: arr.cumsum(axis=0)
Out[188]: 
array([[ 0,  1,  2],
       [ 3,  5,  7],
       [ 9, 12, 15]])

In [189]: arr.cumprod(axis=1)
Out[189]: 
array([[  0,   0,   0],
       [  3,  12,  60],
       [  6,  42, 336]])
```

表 4-5 列出了全部的基本数组统计方法。后续章节中有很多例子都会用到这些方法。

![](img/7178691-a6c6df3ca8e0b98e.png)

![](img/7178691-866fcde885b1d357.png)

## 用于布尔型数组的方法

在上面这些方法中,布尔值会被强制转换为 1(`True`)和 0(`False`)。因此,`sum`经常被用来对布尔型数组中的`True`值计数:

```python
In [190]: arr = np.random.randn(100)

In [191]: (arr > 0).sum() # Number of positive values
Out[191]: 42
```

另外还有两个方法`any``all`,它们对布尔型数组非常有用。`any`用于测试数组中是否存在一个或多个`True`,而`all`则检查数组中所有值是否都是`True`

```python
In [192]: bools = np.array([False, False, True, False])

In [193]: bools.any()
Out[193]: True

In [194]: bools.all()
Out[194]: False
```

这两个方法也能用于非布尔型数组,所有非 0 元素将会被当做`True`

## 排序

跟 Python 内置的列表类型一样,NumPy 数组也可以通过`sort`方法就地排序:

```python
In [195]: arr = np.random.randn(6)

In [196]: arr
Out[196]: array([ 0.6095, -0.4938,  1.24  , -0.1357,  1.43  , -0.8469])

In [197]: arr.sort()

In [198]: arr
Out[198]: array([-0.8469, -0.4938, -0.1357,  0.6095,  1.24  ,  1.43  ])
```

多维数组可以在任何一个轴向上进行排序,只需将轴编号传给`sort`即可:

```python
In [199]: arr = np.random.randn(5, 3)

In [200]: arr
Out[200]: 
array([[ 0.6033,  1.2636, -0.2555],
       [-0.4457,  0.4684, -0.9616],
       [-1.8245,  0.6254,  1.0229],
       [ 1.1074,  0.0909, -0.3501],
       [ 0.218 , -0.8948, -1.7415]])

In [201]: arr.sort(1)

In [202]: arr
Out[202]: 
array([[-0.2555,  0.6033,  1.2636],
       [-0.9616, -0.4457,  0.4684],
       [-1.8245,  0.6254,  1.0229],
       [-0.3501,  0.0909,  1.1074],
       [-1.7415, -0.8948,  0.218 ]])
```

顶级方法`np.sort`返回的是数组的已排序副本,而就地排序则会修改数组本身。计算数组分位数最简单的办法是对其进行排序,然后选取特定位置的值:

```python
In [203]: large_arr = np.random.randn(1000)

In [204]: large_arr.sort()

In [205]: large_arr[int(0.05 * len(large_arr))] # 5% quantile
Out[205]: -1.5311513550102103
```

更多关于 NumPy 排序方法以及诸如间接排序之类的高级技术,请参阅附录 A。在 pandas 中还可以找到一些其他跟排序有关的数据操作(比如根据一列或多列对表格型数据进行排序)。

## 唯一化以及其它的集合逻辑

NumPy 提供了一些针对一维`ndarray`的基本集合运算。最常用的可能要数`np.unique`了,它用于找出数组中的唯一值并返回已排序的结果:

```python
In [206]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [207]: np.unique(names)
Out[207]: 
array(['Bob', 'Joe', 'Will'],
      dtype='<U4')

In [208]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])

In [209]: np.unique(ints)
Out[209]: array([1, 2, 3, 4])
```

拿跟`np.unique`等价的纯 Python 代码来对比一下:

```python
In [210]: sorted(set(names))
Out[210]: ['Bob', 'Joe', 'Will']
```

另一个函数`np.in1d`用于测试一个数组中的值在另一个数组中的成员资格,返回一个布尔型数组:

```python
In [211]: values = np.array([6, 0, 0, 3, 2, 5, 6])

In [212]: np.in1d(values, [2, 3, 6])
Out[212]: array([ True, False, False,  True,  True, False,  True], dtype=bool)
```

NumPy 中的集合函数请参见表 4-6。
![](img/7178691-80e85ae6b9c89ada.png)

# 4.4 用于数组的文件输入输出

NumPy 能够读写磁盘上的文本数据或二进制数据。这一小节只讨论 NumPy 的内置二进制格式,因为更多的用户会使用 pandas 或其它工具加载文本或表格数据(见第 6 章)。

`np.save``np.load`是读写磁盘数组数据的两个主要函数。默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为`.npy`的文件中的:

```python
In [213]: arr = np.arange(10)

In [214]: np.save('some_array', arr)
```

如果文件路径末尾没有扩展名`.npy`,则该扩展名会被自动加上。然后就可以通过`np.load`读取磁盘上的数组:

```python
In [215]: np.load('some_array.npy')
Out[215]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

通过`np.savez`可以将多个数组保存到一个未压缩文件中,将数组以关键字参数的形式传入即可:

```python
In [216]: np.savez('array_archive.npz', a=arr, b=arr)
```

加载`.npz`文件时,你会得到一个类似字典的对象,该对象会对各个数组进行延迟加载:

```python
In [217]: arch = np.load('array_archive.npz')

In [218]: arch['b']
Out[218]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

如果要将数据压缩,可以使用`numpy.savez_compressed`

```python
In [219]: np.savez_compressed('arrays_compressed.npz', a=arr, b=arr)
```

# 4.5 线性代数

线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分。不像某些语言(如 MATLAB),通过*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积。因此,NumPy 提供了一个用于矩阵乘法的 dot 函数(既是一个数组方法也是 numpy 命名空间中的一个函数):

```python
In [223]: x = np.array([[1., 2., 3.], [4., 5., 6.]])

In [224]: y = np.array([[6., 23.], [-1, 7], [8, 9]])

In [225]: x
Out[225]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [226]: y
Out[226]: 
array([[  6.,  23.],
       [ -1.,   7.],
       [  8.,   9.]])

In [227]: x.dot(y)
Out[227]: 
array([[  28.,   64.],
       [  67.,  181.]])
```

`x.dot(y)`等价于`np.dot(x, y)`

```python
In [228]: np.dot(x, y)
Out[228]: 
array([[  28.,   64.],
       [  67.,  181.]])
```

一个二维数组跟一个大小合适的一维数组的矩阵点积运算之后将会得到一个一维数组:

```python
In [229]: np.dot(x, np.ones(3))
Out[229]: array([  6.,  15.])
```

`@`符(类似 Python 3.5)也可以用作中缀运算符,进行矩阵乘法:

```python
In [230]: x @ np.ones(3)
Out[230]: array([  6.,  15.])
```

numpy.linalg 中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西。它们跟 MATLAB 和 R 等语言所使用的是相同的行业标准线性代数库,如 BLAS、LAPACK、Intel MKL(Math Kernel Library,可能有,取决于你的 NumPy 版本)等:

```python
In [231]: from numpy.linalg import inv, qr

In [232]: X = np.random.randn(5, 5)

In [233]: mat = X.T.dot(X)

In [234]: inv(mat)
Out[234]: 
array([[  933.1189,   871.8258, -1417.6902, -1460.4005,  1782.1391],
       [  871.8258,   815.3929, -1325.9965, -1365.9242,  1666.9347],
       [-1417.6902, -1325.9965,  2158.4424,  2222.0191, -2711.6822],
       [-1460.4005, -1365.9242,  2222.0191,  2289.0575, -2793.422 ],
       [ 1782.1391,  1666.9347, -2711.6822, -2793.422 ,  3409.5128]])

In [235]: mat.dot(inv(mat))
Out[235]: 
array([[ 1.,  0., -0., -0., -0.],
       [-0.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [-0.,  0.,  0.,  1., -0.],
       [-0.,  0.,  0.,  0.,  1.]])

In [236]: q, r = qr(mat)

In [237]: r
Out[237]: 
array([[-1.6914,  4.38  ,  0.1757,  0.4075, -0.7838],
       [ 0.    , -2.6436,  0.1939, -3.072 , -1.0702],
       [ 0.    ,  0.    , -0.8138,  1.5414,  0.6155],
       [ 0.    ,  0.    ,  0.    , -2.6445, -2.1669],
       [ 0.    ,  0.    ,  0.    ,  0.    ,  0.0002]])
```

表达式`X.T.dot(X)`计算`X`和它的转置`X.T`的点积。

表 4-7 中列出了一些最常用的线性代数函数。

![](img/7178691-dcdb66e49e5f70ea.png)

# 4.6 伪随机数生成

`numpy.random`模块对 Python 内置的`random`进行了补充,增加了一些用于高效生成多种概率分布的样本值的函数。例如,你可以用`normal`来得到一个标准正态分布的`4×4`样本数组:

```python
In [238]: samples = np.random.normal(size=(4, 4))

In [239]: samples
Out[239]: 
array([[ 0.5732,  0.1933,  0.4429,  1.2796],
       [ 0.575 ,  0.4339, -0.7658, -1.237 ],
       [-0.5367,  1.8545, -0.92  , -0.1082],
       [ 0.1525,  0.9435, -1.0953, -0.144 ]])
```

而 Python 内置的`random`模块则只能一次生成一个样本值。从下面的测试结果中可以看出,如果需要产生大量样本值,`numpy.random`快了不止一个数量级:

```python
In [240]: from random import normalvariate

In [241]: N = 1000000

In [242]: %timeit samples = [normalvariate(0, 1) for _ in range(N)]
1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [243]: %timeit np.random.normal(size=N)
61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
```

我们说这些都是伪随机数,是因为它们都是通过算法基于随机数生成器种子,在确定性的条件下生成的。你可以用 NumPy 的`np.random.seed`更改随机数生成种子:

```python
In [244]: np.random.seed(1234)
```

`numpy.random`的数据生成函数使用了全局的随机种子。要避免全局状态,你可以使用`numpy.random.RandomState`,创建一个与其它隔离的随机数生成器:

```python
In [245]: rng = np.random.RandomState(1234)

In [246]: rng.randn(10)
Out[246]: 
array([ 0.4714, -1.191 ,  1.4327, -0.3127, -0.7206,  0.8872,  0.8596,
       -0.6365,  0.0157, -2.2427])
```

表 4-8 列出了`numpy.random`中的部分函数。在下一节中,我将给出一些利用这些函数一次性生成大量样本值的范例。

![](img/7178691-97ba09c96dab93a2.png)

![](img/7178691-6ed04fae3d1178e2.png)

# 4.7 示例:随机漫步

我们通过模拟随机漫步来说明如何运用数组运算。先来看一个简单的随机漫步的例子:从 0 开始,步长 1 和 -1 出现的概率相等。

下面是一个通过内置的`random`模块以纯 Python 的方式实现 1000 步的随机漫步:

```python
In [247]: import random
   .....: position = 0
   .....: walk = [position]
   .....: steps = 1000
   .....: for i in range(steps):
   .....:     step = 1 if random.randint(0, 1) else -1
   .....:     position += step
   .....:     walk.append(position)
   .....:
```

图 4-4 是根据前 100 个随机漫步值生成的折线图:

```python
In [249]: plt.plot(walk[:100])
```

![图 4-4 简单的随机漫步](img/7178691-0833621694f6dda0.png)

不难看出,这其实就是随机漫步中各步的累计和,可以用一个数组运算来实现。因此,我用`np.random`模块一次性随机产生 1000 个“掷硬币”结果(即两个数中任选一个),将其分别设置为 1 或 -1,然后计算累计和:

```python
In [251]: nsteps = 1000

In [252]: draws = np.random.randint(0, 2, size=nsteps)

In [253]: steps = np.where(draws > 0, 1, -1)

In [254]: walk = steps.cumsum()
```

有了这些数据之后,我们就可以沿着漫步路径做一些统计工作了,比如求取最大值和最小值:

```python
In [255]: walk.min()
Out[255]: -3

In [256]: walk.max()
Out[256]: 31
```

现在来看一个复杂点的统计任务——首次穿越时间,即随机漫步过程中第一次到达某个特定值的时间。假设我们想要知道本次随机漫步需要多久才能距离初始 0 点至少 10 步远(任一方向均可)。`np.abs(walk)>=10`可以得到一个布尔型数组,它表示的是距离是否达到或超过 10,而我们想要知道的是第一个 10 或 -10 的索引。可以用`argmax`来解决这个问题,它返回的是该布尔型数组第一个最大值的索引(`True`就是最大值):

```python
In [257]: (np.abs(walk) >= 10).argmax()
Out[257]: 37
```

注意,这里使用`argmax`并不是很高效,因为它无论如何都会对数组进行完全扫描。在本例中,只要发现了一个`True`,那我们就知道它是个最大值了。

## 一次模拟多个随机漫步

如果你希望模拟多个随机漫步过程(比如 5000 个),只需对上面的代码做一点点修改即可生成所有的随机漫步过程。只要给`numpy.random`的函数传入一个二元元组就可以产生一个二维数组,然后我们就可以一次性计算 5000 个随机漫步过程(一行一个)的累计和了:

```python
In [258]: nwalks = 5000

In [259]: nsteps = 1000

In [260]: draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1

In [261]: steps = np.where(draws > 0, 1, -1)

In [262]: walks = steps.cumsum(1)

In [263]: walks
Out[263]: 
array([[  1,   0,   1, ...,   8,   7,   8],
       [  1,   0,  -1, ...,  34,  33,  32],
       [  1,   0,  -1, ...,   4,   5,   4],
       ..., 
       [  1,   2,   1, ...,  24,  25,  26],
       [  1,   2,   3, ...,  14,  13,  14],
       [ -1,  -2,  -3, ..., -24, -23, -22]])
```

现在,我们来计算所有随机漫步过程的最大值和最小值:

```python
In [264]: walks.max()
Out[264]: 138

In [265]: walks.min()
Out[265]: -133
```

得到这些数据之后,我们来计算 30 或 -30 的最小穿越时间。这里稍微复杂些,因为不是 5000 个过程都到达了 30。我们可以用`any`方法来对此进行检查:

```python
In [266]: hits30 = (np.abs(walks) >= 30).any(1)

In [267]: hits30
Out[267]: array([False,  True, False, ..., False,  True, False], dtype=bool)

In [268]: hits30.sum() # Number that hit 30 or -30
Out[268]: 3410
```

然后我们利用这个布尔型数组选出那些穿越了 30(绝对值)的随机漫步(行),并调用`argmax`在轴 1 上获取穿越时间:

```python
In [269]: crossing_times = (np.abs(walks[hits30]) >= 30).argmax(1)

In [270]: crossing_times.mean()
Out[270]: 498.88973607038122
```

请尝试用其他分布方式得到漫步数据。只需使用不同的随机数生成函数即可,如`normal`用于生成指定均值和标准差的正态分布数据:

```python
In [271]: steps = np.random.normal(loc=0, scale=0.25,
   .....:                          size=(nwalks, nsteps))
```

# 4.8 结论

虽然本书剩下的章节大部分是用 pandas 规整数据,我们还是会用到相似的基于数组的计算。在附录 A 中,我们会深入挖掘 NumPy 的特点,进一步学习数组的技巧。