Fisher_EN.ipynb 130.5 KB
Newer Older
Q
Quleaf 已提交
1 2 3 4
{
 "cells": [
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
5
   "metadata": {},
Q
Quleaf 已提交
6 7 8 9
   "source": [
    "# Quantum Fisher Information\n",
    "\n",
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
Q
Quleaf 已提交
10
   ]
Q
Quleaf 已提交
11 12 13
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
14
   "metadata": {},
Q
Quleaf 已提交
15 16 17 18
   "source": [
    "## Overview\n",
    "\n",
    "In this tutorial, we briefly introduce the concepts of the classical and quantum Fisher information, along with their applications in quantum machine learning, and show how to compute them with Paddle Quantum."
Q
Quleaf 已提交
19
   ]
Q
Quleaf 已提交
20 21 22
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
23
   "metadata": {},
Q
Quleaf 已提交
24 25 26 27 28 29
   "source": [
    "## Background\n",
    "\n",
    "The quantum Fisher information (QFI) originates from the field of quantum sensing and have been versatile tools to study parameterized quantum systems [[1]](https://arxiv.org/abs/2103.15191), such as characterizing the overparameterization [[2]](https://arxiv.org/abs/2102.01659) and performing the quantum natural gradient descent [[3]](https://arxiv.org/abs/1909.02108). The QFI is a quantum analogue of the classical Fisher information (CFI). The CFI characterizes the sensibility of a parameterized **probability distribution** to parameter changes, while the QFI characterizes the sensibility of a parameterized **quantum state** to parameter changes.\n",
    "\n",
    "In a traditional introduction, the CFI will appear as a quantity of parameter estimation in mathematical statistics, which might be complicated and confusing for the beginners. This tutorial will introduce the CFI from a geometric point of view, which is not only helpful for intuitive understanding, but also easier to see the relationship between the CFI and QFI."
Q
Quleaf 已提交
30
   ]
Q
Quleaf 已提交
31 32 33
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
34
   "metadata": {},
Q
Quleaf 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
   "source": [
    "### Classical Fisher information\n",
    "\n",
    "Let's consider the classical Fisher information first. Suppose we now have a parameterized probability distribution $p(\\boldsymbol{x};\\boldsymbol{\\theta})$. Here comes a question:\n",
    "\n",
    "- How much does a small parameter change result in the probability distribution change ?\n",
    "\n",
    "Since the question sounds like a perturbation problem, an intuition is to perform something like the Taylor expansion. But before expansion, we need to know which function to expand, i.e. we need to quantify the probability distribution change first. More formally, we need to define a distance measure between any two probability distributions, denoted by $d(p(\\boldsymbol{x};\\boldsymbol{\\theta}),p(\\boldsymbol{x};\\boldsymbol{\\theta}'))$, or $d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')$ for short.\n",
    "\n",
    "Generally, a legal distance measure is supposed to be non-negative and equal to zero if and only if two points are identical, i.e.\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')\\geq 0,\\\\\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')=0~\\Leftrightarrow~\\boldsymbol{\\theta}=\\boldsymbol{\\theta}'.\n",
    "\\end{aligned}\n",
    "\\tag{1}\n",
    "$$\n",
    "\n",
    "Considering the expansion of a small distance $d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})$, the conditions above lead to\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta})=0~\\Rightarrow~\\text{the zero order}=0,\\\\\n",
    "&d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\geq 0~\\Rightarrow~\\boldsymbol{\\delta}=0~\\text{takes minimum}\n",
    "~\\Rightarrow~\\text{the first order}=0.\n",
    "\\end{aligned}\n",
    "\\tag{2}\n",
    "$$\n",
    "\n",
    "Thus, the second order is the lowest order that does not vanish in the expansion. So the expansion can be written as\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\n",
    "=\\frac{1}{2}\\sum_{ij}\\delta_iM_{ij}\\delta_j+O(\\|\\boldsymbol{\\delta}\\|^3) \n",
    "=\\frac{1}{2} \\boldsymbol{\\delta}^T M \\boldsymbol{\\delta} + O(\\|\\boldsymbol{\\delta}\\|^3),\n",
    "\\end{aligned}\n",
    "\\tag{3}\n",
    "$$\n",
    "\n",
    "where\n",
    "\n",
    "$$\n",
    "M_{ij}(\\boldsymbol{\\theta})=\\left.\\frac{\\partial^2}{\\partial\\delta_i\\partial\\delta_j}d(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\right|_{\\boldsymbol{\\delta}=0},\n",
    "\\tag{4}\n",
    "$$\n",
    "\n",
    "is exactly the Hessian matrix of the distance expansion, which is called [metric](http://en.wikipedia.org/wiki/Metric_tensor) of manifold in the context of differentiable geometry. The brief derivation above tells us that we can approximate a small distance as a quadratic form of the corresponding parameters, as shown in Fig.1, and the coefficient matrix  of the quadratic form is exactly the Hessian matrix from the distance expansion, up to a $1/2$ factor.\n",
    "\n",
    "![feature map](./figures/FIM-fig-Sphere-metric.png \"Figure 1. Approximate a small distance on the 2-sphere as a quadratic form\")\n",
    "<div style=\"text-align:center\">Figure 1. Approximate a small distance on the 2-sphere as a quadratic form </div>\n",
    "\n",
    "If the distance measure is specified to be the relative entropy / KL divergence, i.e.\n",
    "$$\n",
    "d_{\\mathrm{KL}}(\\boldsymbol{\\theta}, \\boldsymbol{\\theta}^{\\prime})=\\sum_{\\boldsymbol{x}} p(\\boldsymbol{x};\\boldsymbol{\\theta}) \\log \\frac{p(\\boldsymbol{x};\\boldsymbol{\\theta})}{p(\\boldsymbol{x};\\boldsymbol{\\theta}^{\\prime})}.\n",
    "\\tag{5}\n",
    "$$\n",
    "\n",
    "The corresponding Hessian matrix\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "\\mathcal{I}_{ij}(\\boldsymbol{\\theta})&= \\left.\\frac{\\partial^2}{\\partial\\delta_i\\partial\\delta_j}d_{\\mathrm{KL}}(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\right|_{\\boldsymbol{\\delta}=0}\\\\\n",
    "&=-\\sum_{\\boldsymbol{x}} p(\\boldsymbol{x};\\boldsymbol{\\theta}) \\partial_{i} \\partial_{j} \\log p(\\boldsymbol{x};\\boldsymbol{\\theta})\n",
    "=\\mathbb{E}_{\\boldsymbol{x}}[-\\partial_{i} \\partial_{j} \\log p(\\boldsymbol{x};\\boldsymbol{\\theta})] \\\\\n",
    "&=\\sum_{\\boldsymbol{x}}  \\frac{1}{p(\\boldsymbol{x};\\boldsymbol{\\theta})} \\partial_i p(\\boldsymbol{x};\\boldsymbol{\\theta}) \\cdot \\partial_j p(\\boldsymbol{x};\\boldsymbol{\\theta})\n",
    "=\\mathbb{E}_{\\boldsymbol{x}}[\\partial_i\\log p(\\boldsymbol{x};\\boldsymbol{\\theta})\\cdot \\partial_j \\log p(\\boldsymbol{x};\\boldsymbol{\\theta})].\n",
    "\\end{aligned}\n",
    "\\tag{6}\n",
    "$$\n",
    "\n",
    "is the so-called classical Fisher information matrix (CFIM), with large entries indicating large sensibility to the corresponding parameter changes. Here we use the notation $\\partial_i=\\partial/\\partial \\theta_i$.\n",
    "\n",
    "Why is $\\mathcal{I}(\\boldsymbol{\\theta})$ called \"information\"? Geometrically, the CFIM characterizes the sensitivity / sharpness of a probability distribution in the vicinity of $\\boldsymbol{\\theta}$. The more sensitive it is to a parameter change, the easier one can discriminate it from others, the fewer samples are needed to discriminate it, the more information per sample can give.\n",
    "\n",
    "The measurement outcomes from a parameterized quantum circuit (PQC) form a parameterized probability distribution. So one can define a CFIM for each kind of measurement on a PQC. Currently, the main challenge of calculating CFIM on NISQ devices is that the number of possible measurement outputs increases exponentially with the number of qubits, which means that there may be many measurement outputs with low probabilities that never appear, leading to divergence in CFIM calculations. Possible solutions includes neglecting small probabilities (cause diverge) and Bayesian updating [[1]](https://arxiv.org/abs/2103.15191)."
Q
Quleaf 已提交
112
   ]
Q
Quleaf 已提交
113 114 115
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
116
   "metadata": {},
Q
Quleaf 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
   "source": [
    "### Quantum Fisher information\n",
    "\n",
    "The quantum Fisher information is a natural quantum analogue of the classical notion above, where the expanded distance is not defined between two probability distributions, but two quantum states. A common choice is the fidelity distance \n",
    "\n",
    "$$\n",
    "d_f(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')=2-2|\\langle\\psi(\\boldsymbol{\\theta})|\\psi(\\boldsymbol{\\theta}')\\rangle|^2.\n",
    "\\tag{7}\n",
    "$$\n",
    "\n",
    "where an additional factor $2$ here is manually multiplied to make the subsequent results resemble the CFIM. Hence formally, the quantum Fisher information matrix (QFIM) at a parameterized pure quantum state $|\\psi(\\boldsymbol{\\theta})\\rangle, \\boldsymbol{\\theta}\\in\\mathbb{R}^m$ is the Hessian matrix of the fidelity distance expansion, i.e.\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "\\mathcal{F}_{ij}(\\boldsymbol{\\theta})\n",
    "&= \\left.\\frac{\\partial^2}{\\partial\\delta_i\\partial\\delta_j}d_{f}(\\boldsymbol{\\theta},\\boldsymbol{\\theta}+\\boldsymbol{\\delta})\\right|_{\\boldsymbol{\\delta}=0} \\\\\n",
    "&=4 \\operatorname{Re}\\left[\\left\\langle\\partial_{i} \\psi \\mid \\partial_{j} \\psi\\right\\rangle - \\left\\langle\\partial_{i} \\psi \\mid \\psi\\right\\rangle\\left\\langle\\psi \\mid \\partial_{j} \\psi\\right\\rangle\\right],\n",
    "\\end{aligned}\n",
    "\\tag{8}\n",
    "$$\n",
    "\n",
    "where we have omitted the argument $\\boldsymbol{\\theta}$ for simplicity. Similar to the CFIM, the QFIM characterizes the sensibility of a parameterized quantum state to a small change of parameters. In addition, it is worth mentioning that the QFIM can be seen as the real part of a complex matrix called the quantum geometric tensor, or say the Fubini-Study metric [[1]](https://arxiv.org/abs/2103.15191).\n",
    "\n",
    "Currently, the community has developed some techniques to calculate the QFIM for pure states on NISQ devices, among which the two most straight methods are\n",
    "\n",
    "- applying the second order parameter shift rule [[4]](https://arxiv.org/abs/2008.06517)\n",
    "$$\n",
    "\\begin{aligned}\n",
    "\\mathcal{F}_{i j}=-\\frac{1}{2} \\Big(&|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}+(\\boldsymbol{e}_{i}+\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\n",
    "-|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}+(\\boldsymbol{e}_{i}-\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\\\\\n",
    "-&|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}-(\\boldsymbol{e}_{i}-\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\n",
    "+|\\langle\\psi(\\boldsymbol{\\theta}) \\mid \\psi(\\boldsymbol{\\theta}-(\\boldsymbol{e}_{i}+\\boldsymbol{e}_{j}) \\frac{\\pi}{2})\\rangle|^{2}\\Big),\n",
    "\\end{aligned}\n",
    "\\tag{9}\n",
    "$$\n",
Q
Quleaf 已提交
152
    "where $\\boldsymbol{e}_{i}$ denotes the unit vector corresponding to $\\theta_i$. Note that the parameter shift rule can not be directly applied to the case where there are dependencies among parameters in single-qubit rotation gates, such as controlled rotation gates.\n",
Q
Quleaf 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    "\n",
    "- applying the finite difference expression to calculate the projection along a certain direction [[1]](https://arxiv.org/abs/2103.15191)\n",
    "$$\n",
    "\\boldsymbol{v}^{T} \\mathcal{F} \\boldsymbol{v} \\approx \\frac{4 d_{f}(\\boldsymbol{\\theta}, \\boldsymbol{\\theta}+\\epsilon \\boldsymbol{v})}{\\epsilon^{2}}.\n",
    "\\tag{10}\n",
    "$$\n",
    "which can be regarded as the quantum analogue of the famed Fisher-Rao norm.\n",
    "\n",
    "For mixed states, the QFIM can be defined by the expansion of the Bures fidelity distance\n",
    "\n",
    "$$\n",
    "d_B(\\boldsymbol{\\theta},\\boldsymbol{\\theta}')\\equiv \n",
    "2-2\\left[\\text{Tr}\\left([\\sqrt{\\rho(\\boldsymbol{\\theta})} \\rho(\\boldsymbol{\\theta}')\\sqrt{\\rho(\\boldsymbol{\\theta})}]^{1/2}\\right)\\right]^2,\n",
    "\\tag{11}\n",
    "$$\n",
    "\n",
    "or equivalently ($\\log x\\sim x-1$), the $\\alpha=1/2$ \"sandwiched\" Rényi relative entropy [[5]](https://arxiv.org/abs/1308.5961)\n",
    "\n",
    "$$\n",
    "\\begin{aligned}\n",
    "d_R(\\boldsymbol{\\theta},\\boldsymbol{\\theta}') &\\equiv 2\\widetilde{D}_{\\alpha=1/2}(\\rho(\\boldsymbol{\\theta'}) \\| \\rho(\\boldsymbol{\\theta})), \\\\\n",
    "\\widetilde{D}_{\\alpha}(\\rho \\| \\sigma) \n",
    "&\\equiv \n",
    "\\frac{1}{\\alpha-1} \\log \\operatorname{Tr}\\left[\\left(\\sigma^{\\frac{1-\\alpha}{2 \\alpha}} \\rho \\sigma^{\\frac{1-\\alpha}{2 \\alpha}}\\right)^{\\alpha}\\right].\\\\\n",
    "\\end{aligned}\n",
    "\\tag{12}\n",
    "$$\n",
    "\n",
    "Please see the review [[1]](https://arxiv.org/abs/2103.15191) for more details."
Q
Quleaf 已提交
182
   ]
Q
Quleaf 已提交
183 184 185
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
186
   "metadata": {},
Q
Quleaf 已提交
187 188 189 190 191 192 193 194 195 196 197
   "source": [
    "### The relation between CFIM and QFIM\n",
    "\n",
    "By definition, for a parameterized quantum circuit, the CFIM depends on the measurement bases while the QFIM does not. In fact, one can prove that the QFIM of a quantum state $\\rho(\\boldsymbol{\\theta})$ is an upper bound of the CFIM obtained by arbitrary measurement from the same quantum state, i.e.\n",
    "\n",
    "$$\n",
    "\\mathcal{I}[\\mathcal{E}[\\rho(\\boldsymbol{\\theta})]]\\leq \\mathcal{F}[\\rho(\\boldsymbol{\\theta})],~\\forall\\mathcal{E},\n",
    "\\tag{13}\n",
    "$$\n",
    "\n",
    "where $\\mathcal{E}$ denotes the quantum operation corresponding to the measurement, and the inequality between two positive matrices means that the large minus the small is still a positive matrix. This is a natural result since measurements can not extract more information than the quantum state itself, which mathematically stems from the monotonicity of the fidelity distance with respect to trace-preserving quantum operations [[1]](https://arxiv.org/abs/2103.15191)."
Q
Quleaf 已提交
198
   ]
Q
Quleaf 已提交
199 200 201
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
202
   "metadata": {},
Q
Quleaf 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
   "source": [
    "### Application: effective dimension\n",
    "\n",
    "The maximal rank of the CFIM / QFIM over the parameter space $\\Theta$ is a quantity to characterize the **capacity** of a classical / quantum neural network, called effective classical / quantum dimension\n",
    "\n",
    "$$\n",
    "d_{\\text{eff}}=\\underset{\\boldsymbol{\\theta}\\in\\Theta} {\\max}\n",
    "\\operatorname{rank}{\\mathcal{F}}(\\boldsymbol{\\theta}).\n",
    "\\tag{14}\n",
    "$$\n",
    "\n",
    "The rank captures in how many directions parameter changes will result in the probability distribution / quantum state changes. A not-full rank means that some changes of parameters can not actually change the probability distribution / quantum state, or say there are redundant degrees of freedom of parameters that can be projected out and the model is therefore overparameterized. On the other hand, a larger effective dimension corresponds to more directions that can be extended, suggesting a more extensive space occupied by the model, i.e. a larger capacity.\n",
    "\n",
    "In the context of machine learning, the so-called empirical CFIM [[6]](https://arxiv.org/abs/2011.00027) is more widely used, which is defined by a summation over samples instead of the expectation in the original definition\n",
    "\n",
    "$$\n",
    "\\tilde{\\mathcal{I}}_{ij}(\\boldsymbol{\\theta})\n",
    "=\\frac{1}{n}\\sum_{k=1}^{n}\n",
    "\\partial_i\\log p(x_k,y_k;\\boldsymbol{\\theta})\n",
    "\\partial_j\\log p(x_k,y_k;\\boldsymbol{\\theta}),\n",
    "\\tag{15}\n",
    "$$\n",
    "\n",
    "where $(x_k,y_k)^{n}_{k=1}$ are identical independent distributed training data drawn from the distribution $p(x,y;\\boldsymbol{\\theta})=p(y|x;\\boldsymbol{\\theta})p(x)$. Clearly, the empirical CFIM can converge to the CFIM in the limit of infinite samples if (1) the model has been well-trained and (2) the model has enough capacity to cover the underlying data distribution. The advantage of the empirical CFIM is that it can be calculated directly using the training data at hand, instead of calculating the original integral by generating new samples. \n",
    "\n",
    "By use of the empirical CFIM, a variant of the effective dimension can be defined as\n",
    "\n",
    "$$\n",
    "d_{\\text{eff}}(\\gamma, n)=\n",
    "2 \\frac{\\log \\left(\\frac{1}{V_{\\Theta}} \\int_{\\Theta} \\sqrt{\\operatorname{det}\\left( 1 + \\frac{\\gamma n}{2 \\pi \\log n} \\hat{\\mathcal{I}}( \\boldsymbol{\\theta})\\right)} \\mathrm{d}  \\boldsymbol{\\theta} \\right)}\n",
    "{\\log \\left(\\frac{\\gamma n}{2 \\pi \\log n}\\right)},\n",
    "\\tag{16}\n",
    "$$\n",
    "\n",
    "where $V_{\\Theta}:=\\int_{\\Theta} \\mathrm{d} \\boldsymbol{\\theta} \\in \\mathbb{R}_{+}$ is the volume of the parameter space. $\\gamma\\in(0,1]$ is an artificial tunable parameter. $\\hat{\\mathcal{I}} (\\boldsymbol{\\theta}) \\in \\mathbb{R}^{d\\times d}$ is the normalized empirical CFIM\n",
    "\n",
    "$$\n",
    "\\hat{\\mathcal{I}}_{i j}(\\boldsymbol{\\theta}):= \\frac{V_{\\Theta} d }{\\int_{\\Theta} \\operatorname{Tr}(F( \\boldsymbol{\\theta} ) \\mathrm{d} \\theta} \\tilde{\\mathcal{I}}_{i j}(\\boldsymbol{\\theta}).\n",
    "\\tag{17}\n",
    "$$\n",
    "\n",
    "This definition might be strange and confusing at first glance, which is far more complicated than the maximal rank of the CFIM. However, it can converge to the maximal rank of the CFIM in the limit of infinite samples $n\\rightarrow \\infty$ [[6]](https://arxiv.org/abs/2011.00027). Regardless of the coefficients and the logarithm, the effective dimension here can be seen roughly as the geometric mean of the spectrum of the normalized CFIM plus an identity, then averaging over the parameter space. Associated with the inequality between the geometric mean and the arithmetic mean, we may expect that a more uniform empirical CFIM spectrum leads to a larger effective dimension, which is consistent with our natural impression. In this sense, it is a \"soft\" version of the effective dimension.\n",
    "\n",
    "In addition, the Fisher information can not only provide an capacity measure, but also can serve as an indicator of trainability. If the entries of the Fisher information vanish exponentially with the system size averaging over the parameter space, i.e. the sensitivity becomes exponentially small, we can not distinguish them efficiently, which indicates the existence of barrens plateaus [[6]](https://arxiv.org/abs/2011.00027)."
Q
Quleaf 已提交
247
   ]
Q
Quleaf 已提交
248 249 250
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
251
   "metadata": {},
Q
Quleaf 已提交
252 253
   "source": [
    "## Paddle Quantum Implementation"
Q
Quleaf 已提交
254
   ]
Q
Quleaf 已提交
255 256 257
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
258
   "metadata": {},
Q
Quleaf 已提交
259 260 261 262 263
   "source": [
    "### Calculate the QFIM\n",
    "\n",
    "With Paddle Quantum, one can obtain the QFIM conveniently by the following steps.\n",
    "\n",
Q
Quleaf 已提交
264
    "1. Define a quantum circuit using `Circuit`.\n",
Q
Quleaf 已提交
265 266 267
    "2. Define a `QuantumFisher` class as a calculator of the QFIM.\n",
    "3. Use the method `get_qfisher_matrix()` to calculate the QFIM.\n",
    "\n",
Q
Quleaf 已提交
268
    "The calculator `QuantumFisher` will keep track of the change of the circuit `Circuit`.\n",
Q
Quleaf 已提交
269 270
    "\n",
    "Now let's code. Firstly, import packages."
Q
Quleaf 已提交
271
   ]
Q
Quleaf 已提交
272 273 274
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
275 276 277
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
Q
Quleaf 已提交
278 279
   "source": [
    "import paddle\n",
Q
Quleaf 已提交
280
    "from paddle_quantum.ansatz import Circuit\n",
Q
Quleaf 已提交
281 282
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
Q
Quleaf 已提交
283
    "from paddle_quantum.fisher import QuantumFisher, ClassicalFisher\n",
Q
Quleaf 已提交
284 285
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
Q
Quleaf 已提交
286
   ]
Q
Quleaf 已提交
287 288 289
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
290
   "metadata": {},
Q
Quleaf 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
   "source": [
    "Then, define a quantum circuit. As a simple example, we exploit a single qubit parameterized by two Bloch angles\n",
    "\n",
    "$$\n",
    "|\\psi(\\theta,\\phi)\\rangle=R_z(\\phi)R_y(\\theta)|0\\rangle=e^{-i\\phi/2}\\cos\\frac{\\theta}{2}|0\\rangle+e^{i\\phi/2}\\sin\\frac{\\theta}{2}|1\\rangle.\n",
    "\\tag{18}\n",
    "$$\n",
    "\n",
    "The corresponding QFIM can be directly calculated using Eq.(8). The analytical result reads\n",
    "\n",
    "$$\n",
    "\\mathcal{F}(\\theta,\\phi)=\\left(\\begin{matrix}\n",
    "1&0\\\\\n",
    "0&\\sin^2\\theta\n",
    "\\end{matrix}\\right).\n",
    "\\tag{19}\n",
    "$$"
Q
Quleaf 已提交
308
   ]
Q
Quleaf 已提交
309 310 311
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
312 313 314
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
Q
Quleaf 已提交
315 316
   "source": [
    "def circuit_bloch():\n",
Q
Quleaf 已提交
317 318 319
    "    cir = Circuit(1)\n",
    "    cir.ry()\n",
    "    cir.rz()\n",
Q
Quleaf 已提交
320
    "    return cir"
Q
Quleaf 已提交
321
   ]
Q
Quleaf 已提交
322 323 324
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
325 326
   "execution_count": 18,
   "metadata": {},
Q
Quleaf 已提交
327 328 329
   "outputs": [
    {
     "name": "stdout",
Q
Quleaf 已提交
330
     "output_type": "stream",
Q
Quleaf 已提交
331
     "text": [
Q
Quleaf 已提交
332
      "--Ry(2.384)----Rz(5.641)--\n",
Q
Quleaf 已提交
333 334 335 336
      "                          \n"
     ]
    }
   ],
Q
Quleaf 已提交
337 338 339 340
   "source": [
    "cir = circuit_bloch()\n",
    "print(cir)"
   ]
Q
Quleaf 已提交
341 342 343
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
344
   "metadata": {},
Q
Quleaf 已提交
345 346
   "source": [
    "Define a QFIM calculator and calculate the QFIM element $\\mathcal{F}_{\\phi\\phi}$ corresponding to different $\\theta$."
Q
Quleaf 已提交
347
   ]
Q
Quleaf 已提交
348 349 350
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The QFIM at [0.         5.64109135] is \n",
      " [[ 9.99999881e-01  0.00000000e+00]\n",
      " [ 0.00000000e+00 -5.96046400e-08]].\n",
      "The QFIM at [0.15707963 5.64109135] is \n",
      " [[1.00000000e+00 6.53168000e-09]\n",
      " [6.53168000e-09 2.44715806e-02]].\n",
      "The QFIM at [0.31415927 5.64109135] is \n",
      " [[1.0000000e+00 6.0467490e-08]\n",
      " [6.0467490e-08 9.5491401e-02]].\n",
      "The QFIM at [0.4712389  5.64109135] is \n",
      " [[1.00000000e+00 3.25239200e-08]\n",
      " [3.25239200e-08 2.06107365e-01]].\n",
      "The QFIM at [0.62831853 5.64109135] is \n",
      " [[0.99999988 0.        ]\n",
      " [0.         0.34549142]].\n",
      "The QFIM at [0.78539816 5.64109135] is \n",
      " [[ 9.99999881e-01 -3.67179700e-08]\n",
      " [-3.67179700e-08  4.99999940e-01]].\n",
      "The QFIM at [0.9424778  5.64109135] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.65450851]].\n",
      "The QFIM at [1.09955743 5.64109135] is \n",
      " [[0.99999976 0.        ]\n",
      " [0.         0.79389244]].\n",
      "The QFIM at [1.25663706 5.64109135] is \n",
      " [[0.99999988 0.        ]\n",
      " [0.         0.90450845]].\n",
      "The QFIM at [1.41371669 5.64109135] is \n",
      " [[ 1.00000000e+00 -4.52859700e-08]\n",
      " [-4.52859700e-08  9.75528206e-01]].\n",
      "The QFIM at [1.57079633 5.64109135] is \n",
      " [[1.000000e+00 4.214685e-08]\n",
      " [4.214685e-08 1.000000e+00]].\n",
      "The QFIM at [1.72787596 5.64109135] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.97552827]].\n",
      "The QFIM at [1.88495559 5.64109135] is \n",
      " [[ 1.00000000e+00 -3.54160800e-08]\n",
      " [-3.54160800e-08  9.04508529e-01]].\n",
      "The QFIM at [2.04203522 5.64109135] is \n",
      " [[ 9.99999881e-01 -8.24729700e-08]\n",
      " [-8.24729700e-08  7.93892489e-01]].\n",
      "The QFIM at [2.19911486 5.64109135] is \n",
      " [[ 1.00000000e+00 -1.02392670e-07]\n",
      " [-1.02392670e-07  6.54508507e-01]].\n",
      "The QFIM at [2.35619449 5.64109135] is \n",
      " [[9.99999762e-01 3.67179700e-08]\n",
      " [3.67179700e-08 4.99999905e-01]].\n",
      "The QFIM at [2.51327412 5.64109135] is \n",
      " [[ 9.99999881e-01 -3.05229200e-08]\n",
      " [-3.05229200e-08  3.45491419e-01]].\n",
      "The QFIM at [2.67035376 5.64109135] is \n",
      " [[1.0000000e+00 3.2523910e-08]\n",
      " [3.2523910e-08 2.0610763e-01]].\n",
      "The QFIM at [2.82743339 5.64109135] is \n",
      " [[9.99999881e-01 4.79417900e-08]\n",
      " [4.79417900e-08 9.54914519e-02]].\n",
      "The QFIM at [2.98451302 5.64109135] is \n",
      " [[1.         0.        ]\n",
      " [0.         0.02447182]].\n",
      "The QFIM at [3.14159265 5.64109135] is \n",
      " [[ 9.99999881e-01  8.42936900e-08]\n",
      " [ 8.42936900e-08 -5.96046400e-08]].\n"
     ]
    }
   ],
Q
Quleaf 已提交
424 425 426 427 428 429 430
   "source": [
    "qf = QuantumFisher(cir)\n",
    "# Record the QFIM element F_{phi,phi}\n",
    "list_qfisher_elements = []\n",
    "num_thetas = 21\n",
    "thetas = np.linspace(0, np.pi, num_thetas)\n",
    "for theta in thetas:\n",
Q
Quleaf 已提交
431
    "    list_param = cir.param.tolist()\n",
Q
Quleaf 已提交
432 433 434 435 436 437
    "    list_param[0] = theta\n",
    "    cir.update_param(list_param)\n",
    "    # Calculate the QFIM\n",
    "    qfim = qf.get_qfisher_matrix()\n",
    "    print(f'The QFIM at {np.array(list_param)} is \\n {qfim.round(14)}.')\n",
    "    list_qfisher_elements.append(qfim[1][1])"
Q
Quleaf 已提交
438
   ]
Q
Quleaf 已提交
439 440 441
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
442
   "metadata": {},
Q
Quleaf 已提交
443 444
   "source": [
    "Plot the outputs of the QFIM element $\\mathcal{F}_{\\phi\\phi}$ as function of $\\theta$."
Q
Quleaf 已提交
445
   ]
Q
Quleaf 已提交
446 447 448
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGDCAYAAADK5Q/LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABYRklEQVR4nO3dd3hU1drG4d+bUEOLEBCIQASlWSliQZoFUIq94BHE3lDBgljRY+OoKHbFgorlw4ZdEaSIKAqC7YAFBFFQCChICS1Z3x97wkmZJDPJTPaU576uuQK75cnOZOadtddey5xziIiIiCSzFL8DiIiIiPhNBZGIiIgkPRVEIiIikvRUEImIiEjSU0EkIiIiSU8FkYiIiCS9Kn4HiGUZGRkuKyvL7xgiIiISAV999dVa51zDYOtUEJUiKyuL+fPn+x1DREREIsDMfi1pnS6ZiYiISNJTQSQiIiJJTwWRiIiIJD0VRCIiIpL0VBCJiIhI0lNBJCIiIklPBZGIiIgkvZgdh8jMrgM6Ap2APYFfnXNZ5TjOEGAE0Bb4B3gHuM45lx25tCISL7qOmc7K9TkhbZuZXpM5o46IciIRiQUxWxABdwJ/AQuA9PIcwMxGAPcBs4ArgD2AK4FDzayLc25zZKKKSLxYuT6H5WP6hbRt1qj3opxGRGJFLBdErZxzvwCY2fdA7XB2NrMM4HZgHnCkcy43sHwe8DZegXRnRBOLiIhIXIrZPkT5xVAFHA+kAQ/lF0OB474D/AKcWcHji4iISIKI2YIoAg4KfP08yLq5QFszC6vVSUQSjHOQ/ZP3cM7vNCLio1i+ZFZRTQNfVwZZtxKwwDY/FVxhZhcAFwA0b948mvlExE+fPwrzn4Z1S7z/N9gL2vaHdgOgaUdISeTPiyJSVCL/xacFvm4Lsm5rkW12cc6Nd851ds51btiwYdTCiUglyssrvmzzGqjXDPqNhWPvhXp7wOcPw1NHwrtXVH5GEfFVIrcQbQl8rQ4Uvce2RpFtRCTR7MiBpdNh8buwZCpc+iWk1f/f+iNHg9n//t/lfMj5G36a4hVKBeXu9I7RsidUrVkp8UWkciVyQbQq8DUTWFJkXSbgCmwjIjGk3GMFbd0AP30Ei9+GJdNgxxaoUQ9aHwPbNxcuiAoWQ/lq7gYHnF58+YrP4eXToWot2OtIaDcQWvf2jh2J3CLiu0QuiObh9QU6lOIF0SHAj865TZWeSkTKVK6xgv5eDg91hrwdUHt3r7BpNwCyukFq1YoFan4IDJ4Mi9+BH97zCq6UqtCyh9fvaP/ToFqaxjgSiWMJURCZWXO8/kBLnXM7AovfAh4EhpnZSwXGIRoAtARu8iWsiFTc38th20ZovN//lqW3gB4jvctamZ0j2yk6tSq0OsJ7HDsWfp8HP7zjFUhTbgjeqiQicSVmCyIzGwy0CPy3IVDNzG4M/P9X59zEAps/D/TAm+JjOYBzLtvMbgLuBaaZ2ct4l8quAn4AxkX7ZxCRCHEO1iwOtNC8A39+5xU+Q9763zZmXkFUhsz0miG3zmSmB+kvlJICzQ/2HkffBht+L96v6JN7vMxt+0OjdsEvz4lITInZggg4F6/IKei2wNdZwETK4Jwba2br8OYyexBvLrNXgFG6XCYSJ3Zug8kXwn8nAwbNukDv271ioxwi2m/HDNKbFV++ciH8+D7MuAP2OQFOeAKqVI/c9xWRiIvZgsg51zMS2zrnngWerXAgEal82zbC//0Lls2CHqOg89lQp7Hfqco26CXY+CfMnwCzxnh3r532IlTXWLAisSqRxyESkXi3bRNs+A2Ofxx6XRcfxVC+Oo29zMc/Bstmw/MDYfM6v1OJSAlUEIlI7KrbBC6ZCwcO8jtJ+R14Bpz2Avz5PUzVvRwisSpmL5mJiACJ0fem7bEw9F3I2NvvJCJSAhVEIhI7Vi6AhRNJIQEHLGzWxe8EIlIKXTITkdjwyyx4bgAsmUYGG/xOE3W1yIHfvvQ7hogEqIVIRPy3+B147Ryo3woGT6bqo4srNlaQT8IZ4+j+Wq/AszPg5Ge8EbVFxFfmnPM7Q8zq3Lmzmz9/vt8xRBLbgonwzuWQ2QnOeKXwfGOJbMtf8OIpsGoBDHgQOg72O5FIwjOzr5xznYOt0yUzEfHPnAfg7WHQspc36nSyFEPg/axD3oI9e3jnYM4DficSSWoqiETEH9s3e61D+5wIg/4PqtXyO1Hlq14bzpjkjWY99WbvoVZ7EV+oD5GI+KNaLTjnQ6i5G6Sk+p3GP1Wqw0lPQ410r5WoTlM45CK/U4kkHRVEIuKfWhl+J4gNKanQ/35ovB/sf5rfaUSSki6ZiUjl2PoPzLgTcnf4nSQ2mcFB52q+MxGfqCASkejbvNYbY+iTe+H3eX6niR9b/vLOnYhEnQoiEYmu9b/BM30h+wcY9DK0OMzvRPHBOXhliHfu1v/mdxqRhKeCSESiJ/tHeKYPbFoDgydD6z5+J4ofZtDzOti02juH2T/6nUgkoalTtYiUS9cx01m5PqfE9fvbUp6t9h9ySeXq6qN5Ti1D4cvqCkPfgxdOZP0jRzJk20i+da3K3C0zvSZzRiXgfHAiUaSCSETKZeX6HJaP6Rd8pXMw4Rj4pwEMeZNZdy+u3HCJpMn+cM4UNj7Qh7fr/AdOfxFa9ix1l1CnDxGR/9ElMxGJPDM45Tk4ZwrUb+l3mvjXoBUnbb8F6jXzpvv49XO/E4kkHLUQiUh01Nnd7wQJZQ27wdnvwyf3QNMOfscRSThqIRKRyFj5Fezc5neKxJZWH/reBVVr+J1EJOGoIBKRivt7OTw3ED641u8kIiLlooJIRComLxcmXwSWAt2u9DtNcvn7V/jweu93ICIVooJIRCrmswdhxedw7D2Q3tzvNMnl189g7iPw2UN+JxGJeyqIRKT8/vgWpt8B7Y/TpKR+OOB0aDcApt8Of37ndxqRuKaCSETKpTrb4Y0LIK0B9B/n3WovlcsM+j/gdbZ+4wLYsdXvRCJxSwWRiJTLkNSPIHsxHPeI94Ys/qjVwPsdrFkE02/zO41I3NI4RCJSLh/VPp5lG5sw7eltQOkjI2em16ycUAksM71mqSNQ31blKP712SP8a1Y9MtM7V2IykcRgzjm/M8Sszp07u/nz5/sdQ0SkbNs3wxPdYd+Todd1fqcRiUlm9pVzLugnBrUQiYgkgmq14IKZUL2O30lE4pL6EIlI6JbOgL9+8TuFlETFkEi5qSASkdD8swpeHQrvDPc7iYhIxKkgEpGy5eXBm5dA7nbod5/faSQUP7wHr58H6icqEhIVRCJStnlPwS8zoPftkLGX32kkFBv/gO9e9X53IlImFUQiUrrsH2HqTbDX0dD5HL/TSKg6n+v9zj66CbJ/8juNSMxTQSQiJdu5Hd44H6qmwXEPazTqeGLm/c6q1oTJF0DuDr8TicQ0FUQiUrJfZsAf38CAB6BOY7/TSLjqNPZ+d6sWwqy7/U4jEtNUEIlIyVr3gYs/g/YD/U4i5dV+IBxwBsy+F36b53cakZilgkhESrf7Pn4nkIo6Zgzsvi9sWed3EpGYpZGqRUQSXY16cMEsSNFnYJGS6K9DRAr7eSp8/7rfKSTSVAyJlEotRCLyP5vXwpsXQ+3G0O44SNVLRMLKy4WUVL9TiMQMfWQQEY9z8PblsHUDnDhexVAi++hGeGWIRrEWKUAFkYh4Fr4AP74HR46G3dv7nUaiqfbu8MO78PWLficRiRkqiEQE/loGH46CrG5wyCV+p5FoO+RS73f9wbXw93K/04jEBBVEIskuLxcmXwSWCsc/ps63ySAlxftdW4r3u8/L9TuRiO9i9pXPzFLMbISZ/WBmW83sNzMba2a1Qty/tpldb2bfmdlGM1trZp+Z2VAzzT8gssu6pbD2J+h3L6Q38zuNVJb0ZnDsvbDic5jzgN9pRHwXswURcD9wH7AIuAx4FbgceMfMSs0dWP8BcBswD7gKuB1IBSYAY6IXWyTONGwNl30F+53idxKpbPufCu2Phxl3elO0iCSxmLyNxMz2wSuC3nDOnVRg+TLgQeB04KVSDnEwcDgwzjk3osD+jwI/ABcC10Yhukh8SqvvdwLxgxn0vx9cLlSv43caEV/FZEEEDAIMGFdk+ZN4rTtnUnpBVDfwdVXBhc657Wa2FqgemZgisa/rmOmsXJ8T0raZ6TWZM+qIKCeSWNL1wa9ZuX4QLFwMLC51Wz0/JJHFakF0EJAHfFlwoXNuq5l9HVhfmi+B9cBIM1sOfAGkAWcBnYCLIhtXJHatXJ/D8jH9Ci/8ZSYsegt63wHV0nYtzhr1XuWGE98FfX6UQM8PSWSxWhA1BdY657YFWbcSOMzMqjnntgfb2Tn3t5kNBJ4CXimwaiNwknPuzUgHFokbOX/D5IuhWkj3J0iy2bkdcrfpEpoknVjtVJ0GBCuGALYW2KY0m4DvgXuBE4HzgCXAS2Z2dEk7mdkFZjbfzOZnZ2eHl1okHrx3NWxe441GXa2sPyNJKrk7YUJfeHdE2duKJJhYLYi2UHI/nxoFtgnKzPYDPgOmOueucc5Nds49jdfR+k/gSTMLOomPc268c66zc65zw4YNy/8TiMSiHz+E71+DHtdCZke/00isSa0CrfvCd6/CT1P8TiNSqWK1IFoFZJhZsKIoE+9yWtDLZQEj8AqnVwsudM5tAd4DWgBZkYkqEidyd8LUm6DBXnC4WgCkBIePgPqt4KObvOeMSJKI1YJoHl62LgUXmlkN4EBgfhn7Zwa+BmsFqlLkq0hyWPi8NwDjUbdCalW/00isSq0KR98Ka3+EhRP9TiNSaWK1IJoEOGB4keXn4/Ud2jUjoZm1MrO2RbZbFPg6tOBCM0sHjgP+xutPJJI8lk6H5odB29DuKJIk1rY/NDvEG7Bx2ya/04hUiphsJXHOfWdmjwDDzOwN4H2gHd5I1bMoPAbRx3iXwApOxzEOGAKMCfQnmgPUxyuomgCXOuc0eY8kl1Mnwtb13mB8IqUxg963w9NHwWcPQq/r/U4kEnUxWRAFDAeWAxcA/YC1wEPAzc65vNJ2dM79amZdgJuBI/FGts4Bvgaucs69EbXUIrHKDGru5ncKiRfNDoIDzoCUWH6bEImcmH2mB1pwxgYepW2XVcLypXgDMYqISHkc/6haFCVpxGxBJCIRkP0TR9ZdGfIIw5npNaMcSGJNZnpNPT9EUEEkktg+HMXTqQvg34s0CKMEpbnJRDyxepeZiFTU0umw9GPodrWKIamYndvh80dg2Wy/k4hETURaiMysNnAZsA/eSNBvOuc+jcSxRaQc8nK9gfXSW0CX8/1OI3HPwRePQ/V6cOEsSAk60L9IXItUC9FzwJl4xVAD4DUzm1TCSNMiEm3f/B+s/h6OGg1V9GcoFVSlOhw5GlZ/B99O8juNSFSUuyAys2/M7EUzuwHoDRzvnLvaOXc23rQYO4DbIhNTREK2fQtMvx0yO8E+J/qdRhLFPidC047ec2t7iVNJisStirQQjcYbEXofoCawyMx+N7O3gGvxBlMcVPGIIhKWuY/CxlXewHq6ZVoiJSXFe079s9J7jokkmHL3IXLOvQm8CWBmHYCTgbpAR6ATcAKQaWar8Qqnxc65SyqYV0TK0uYY72uLw/zNIYknqyu0ORY+HQcdz4LaDf1OJBIxkepDdA/wMrDTOfeIc+4c4Gy80aX7Ac8A6yP0vUSkNLvvA92v9juFJKqjboUdW+Dzh/1OIhJREbnLzDn3TKAD9VQz2wz8BbQBbnfOzafs2elFRCQeNGwNZ7zitRaJJJCIDczonHvMzJ4GegG7A4sCxZCIVAbn1GdIKsfeR/mdQCTiIjowo3Nuu3NuinPueRVDIpVo+RwY3xP+WuZ3EhGRuKSBGUXiXV4efHQjbM6G2rv7nUaSzaZsSGvg3YUmEsc0MKNIvPvvG7BqARxxo6bokMr153fwwAHec1AkzpW7hcjMvgG+x7ulvjfQ0Tn3c2BdDeApvIEZR0Ygp4gEs3MbfHwr7L4f7H+a32kk2TRqD/X39J6D7QZoVHSJaxqYUSSefTke1q+A3rdpfimpfCmp3nNv/Qr48km/04hUiAZmFIlXW/6CT+6BvY6CVr38TiPJqtUR0OpI+ORuOPAMSKvvdyKRctHAjCLxasXn3iWzozVloPis922wbSPMHut3EpFyC7mFyMzuBA4ArnPOfVtwnQZmFPFB235w5WJ9Ihf/7b6P1zr0xRNw0HlevyKROBNSQWRmA4ABeP2FFgPF5gUoMDBjT6AxGphRJPpUDEms6HUD/PENbF6rgkjiUqgtRH2BgcAhwOclbeSc2w58FIFcIiIST+o2hQtna7R0iVuh9iHKcM4tc8697JxbDmBm90YvlogE5Rz8903I3el3EpHiVAxJHAu1IKodZNlhkQwiIiH44V149Sz4/jW/k4iIJJRQC6JWZlavyDJ9FBCpTLk7YOpoyGgD+57sdxqRkv39K3x4vfecFYkToRZETYDfzOx1MzvHzJoALoq5RKSo+RPgr6Vw9L8hNSLTEIpEx5rFMPcR+OpZv5OIhCzUgigH77LZCcCTwO9ARzO7y8wON9OFY5Go2roBZo2BrG7Quo/faURK17qP91ydeZf33BWJA6EWRKuAo/H6Dd2FN4dZNbwpOmYBa8zsCTPbJyopRZLdp/fDlnXeAHj6/CGxzsx7rm5ZB5+O8zuNSEhCLYjmAH865+Y65250zh0ANAcuBaYAtYDzgQVmdnxUkookq/W/wdzHYL9ToWkHv9OIhKZpB+85O/dR2PC732lEyhRqQfQoUKid3jn3u3PuMefcsUAD4Hi8CV3/E9GEIsmu5m7QdTgceZPfSUTCc+RN3lAR0+/wO4lImUIqiJxzi4GdZtashPU5zrm3nXMn4LUmiUikVK8Nva6D9OZ+JxEJT3pzOOQi+OZlWLfU7zQipTLnQr9ZzMzSnHNbopgnpnTu3NnNn6/ZRyT6uo6Zzsr1OSFtm5lekzmjjohyIpGK6zpmOhvXr2W/lF+Yk7dfqdvqeS2Vwcy+cs51DrYurHt3k6kYEqlMK9fnsHxMv8ILnQvagTpr1HuVlEqkYrzn9akhbavntfgt1D5EIlKZcnfCM31h4Qt+JxERSQoqiERi0dcvwG9zoXodv5OIRNbmtX4nEAlKBZFIrNm+BWbcCc0OhnYD/U4jEjnTboXHunrPcZEYo4JIJNbMfwY2rYajbtUgjJJY9j4aNv0JX03wO4lIMSqIRGLJ9i0w5wHYswe0ONTvNCKR1eIw2LO79xzfEdpdlSKVJayCyMyeMbODS1nfxcyeqXgskST11QTYvAZ6jvI7iUh09BjltYDOVyuRxJZwW4iGAq1KWb8ncFa504gkM+fg+9e9T9AtDvM7jUh0ZHX1Jn6dM06tRBJTIn3JrBawI8LHFEkOZnD2h3DCE34nEYmunoFWoq+e9TuJyC5lDsxoZs2BrAKL2ppZ9yCb1gcuBpZEJppIEqpSDeo29TuFSHRlHe61hGo6D4khoYxUfTYwGnCBxw2BR1EG5AW2F5EwZKbXDHmk3sz0mlFOIxIZpT2vq3IeO6gCs9/bta2In8qcy8zMDgAOxCt4ngHGA58X2cwBm4B5zrnfIh/TH5rLTCrFjhzIWQ91m/idREQkoVVoLjPn3DfAN4EDtQBed859H9mIIknsq2dh6mi49Auov6ffaUREklJYnaqdc7eqGBKJoB058Ok4aNZFxZAkJ+fgxw9hx1a/k0iS08CMIn766jlv5N4e1/qdRMQfv8+Dl0+DBc/5nUSSXNgFkZkdamYvmtmXZrbUzH4p8ojIbQNmlmJmI8zsBzPbama/mdlYM6sVxjHqm9m9ZrYkcIxsM5thZt0ikVGkQnZshU/vhxaHw556SkqS2uMgaNHV+1tQK5H4KJS7zHYxsyHABLyxhn4CVkQjVMD9wOXAZGAs0C7w/w5mdpRzLq+MrC2AmUBt4OlA3nrA/kBm9GKLhGhBoHXopCf9TiLiHzOvhfT5gbDgeTj4Ar8TSZIKqyDCu93+R+Ao59yqKOQBwMz2AS4D3nDOnVRg+TLgQeB04KUyDvMC3s+3v3Puj2hlFSmXXa1DgVF7RZLZnt2h+aHe30THIVC1ht+JJAmFe8msBfBYNIuhgEF4t/mPK7L8SWALcGZpOwcGjjwcuNs594eZVTWztGgEFSmXf1ZCWgPvk7FmtJdkZ+aNXr1xFSyc6HcaSVLhFkS/A9WjEaSIg/AGefyy4ELn3Fbg68D60hwb+LrCzN4BcoDNZvaTmZVaTIlUigat4MLZ3idjEYE9e0CzQ2D2fbBzm99pJAmFWxA9DvzLzFKjEaaApsBa51ywv4qVQIaZVStl/zaBr0/iTSlyFnAOsB2YaGYljqZtZheY2Xwzm5+dnV2+9CKhSElR65BIPjPodT20PVaTvoovwu1D9BVwEvClmT0CLANyi27knPukgrnSgJI+ImwtsM32ErapE/i6EejlnNsOYGZvAr8Ad5rZc8E6ZjvnxuONxk3nzp1LH8ZbREQip2UP7yHig3ALoo8L/PspvCk7CrLAsoq2IG0BGpWwrkaBbUqS//Hi5fxiCMA597eZvQ0MwWtFWlzBnCLhWTod6mZCwzZlbysiIpUm3IKosiZuXQW0N7PqQS6bZeJdTiupdQi8vk4AfwZZl3/H2W4VzCgSnp3b4K1hkN4CzvnA7zQiIlJAWAWRc66yhhKdB/QGugCz8xeaWQ28iWbLuiT3JXARsEeQdfnL1lQ4pUg4Fk707i477hG/k4jEtrw8+PoFqJoG+53sdxpJEuWeusPMqptZZhmdm8trEt6lt+FFlp+P13foxQI5WplZ2yLbvYnXf+hMM6tdYNsmwPHAT865JRFPLVKSndu8u2eaHQwte/qdRiS2mcGCid6kx7rjTCpJeabu6Ghm0/EKjhV44/1gZo3M7GMzO6qioZxz3wGPACea2Rtmdp6ZjQXuA2ZReFDGjynSF8g59zdwNd7ltblmdqWZjQLmAtXwBn0UqTwLX/Bah3qO0p1lImXJH5fon9+9vx2RShBWQWRmB+JdwmoFPF9wnXNuDVAT7xb3SBiOV9Tsg1ccnQ48BPQva9qOQJ7xeHfEbQJu43+jbPdyzn0UoYwiZctvHdqjC7Ts5XcakfjQ6ghvnrPZ98HO0rqMikRGuC1E/8br8LwPMArvrrKCPsbr91Nhzrlc59xY51wb51x151ymc+5K59ymIttlOeeCfuR2zr3hnDvEOVfLOVfHOdfbOTcnEvlEQrbwBe+TrlqHREJXsJXoa7USSfSFWxB1A54MFCXBxuhZgTeooojka3IAHHKJ94lXRELX6kjI7KxWIqkU4RZENYANpayvW4EsIolpj87Q9y61DomEywx6XgcbfoNvyprPW6Riwi2IlgKdSll/BLCo/HFEREQK2OtI6HcftD/e7ySS4MItiF4CBhe5k8wBmNlVQF9AUxWLiEhkmMFB50LNdL+TSIILtyC6F+/W9Sl4gyM64H4zWwncDUwFHo1oQpF4tHM7vH4+rFrodxIREQlBWAVRYLqMo/Fuh8/Bm2i1NbAWGEmIt8SLJLxvXoLvXoHNa/1OIpJYnObclugIe2BG59xO59z9zrnOgdvZ05xzBwRukd8ZjZAicWXndvhkLGR2gr0qPE6piOT7ZhI82Qtyd/idRBJQuafuEJESfPMybFgBPTTukEhE1Uz3LkN/87LfSSQBlWfqjjPMbI6ZrTGz3CAPtRJJ8srdAbPvhaYdYe+j/U4jklj27g1NO8An96qVSCIurNnuzexG4FZgNfAZ8Hc0QonErW9ehvUr4Nh71TokEmlmXsvry6fBN/8HHQf7nUgSSFgFEXAJMBPo65xTeS5SUF6eN6Ju0w7eJ1kRibzWfaDJgV5L7AGnQ2pVvxNJggj3klld4BUVQyJBpKTAoP/zBpFT65BIdOSPXv33cvh2kt9pJIGEWxAtBJpFI4hIQmjUFjI7+p1CJLHltxJ9rek8JHLCvWR2I/C6mb3unNOIcyIiUvnM4NTnoE4Tv5NIAgmrIHLOzTKzc4G5ZjYXWA7kFt/MnRuhfCKxLy8XMO+SmYhUjt2y/E4gCSbcu8wOBp4DqgLdAo+iHKCCSJLHN/8Hcx+FwZOhdiO/04iISDmEe8nsAWA7cBww2zm3PuKJRGJU1zHTWbk+p9CyVHL5uNqtbKQmA27/EvA6U2em12TOqCN8SCmSHAr+PTZkPX9Rh1xSg26rv0cJRbgF0f7ALc65d6IRRiSWrVyfw/Ix/QovXPgivLUaTn+Z5W2P3bU4a9R7lZxOJLns+ntcsxjG94T+4+DAQUG31d+jhCLcTg9r8FqIRCR3J3xyDzTeH9oc43cakeTUsC1k7A2f3O39TYqUU7gF0TPAmWYWbsuSSOL57hX4exn01JxlIr7JH736r1/gu1f9TiNxLNzC5lOgP95dZo8Cyyh+lxnOuU8ikE0kdu1qHdoP2hxb9vYiEj1t+8Hu+3mtRPudAqn6zC7hC/dZM63Av5/Cu6OsIAssC96zTSRR/PkNbFgJJz+j1iERv5lBz2th0pnw/WvelB4iYQq3IDo7KilE4k1mJxj+LdTe3e8kIgLQph/svq/XcrvvyWolkrCFOzDjc9EKIhJ36jT2O4GI5EtJgR7Xwsy7YOMfkK5ZpiQ85S6hzaw6kAFkO+d055mIiPirbX/voVHjpRzCftaYWUczmw5sBFYAhweWNzKzj83sqAhnFIkd65bCTtX/IjEpJUXFkJRbWM8cMzsQmA20Ap4vuM45twaoCZwVqXAisSSFPHjpVK/jpoiIJJRwL5n9G1gFdABqAOcUWf8xcGoEconEnLPqzId1S7joj/58WMbIt5npNSsplUhyykyvWeoI1K1sJels4ivXRn+PEpJwC6JuwF3OuU2BPkRFrQCaVjyWSIzJy2V03fcgdR8ev2i0muVFfFbq3GTOwRPdYMdWuPQLSNFIMFK2cF/VawAbSllftwJZRGLX92/Aup+hx0gVQyKxzgy6Xe39zf53st9pJE6E+8q+FOhUyvojgEXljyMSg/JyYdZ/oFF7aDfQ7zQiEop2A72/2Vn/8f6GRcoQbkH0EjC4yJ1kDsDMrgL6AhMjlE0kNvx3slqHROJNSgp0vwbW/qRWIglJuK/u9wJzgSnAJ3jF0P1mthK4G5gKPBrRhCJ+274Zmh8G7Y7zO4mIhKP98dCwLcy6W61EUqawCqLAAIxHA1cDOcBWoDWwFhgJ9HfO5UU6pIivOp0FZ7+v1iGReJOS4rXsrv0RFr3pdxqJcWGPVO2c2wncH3iIJAdN4CoSn9ofDx2mQ73mfieRGKfZ70REJHGlpMJxj/idQuJAqQWRmQ0pz0Gdc8+XvZVIDMvLhXlPwwGnQY16fqcREZEoK6uF6Fm8jtPhXC9wFJnWQyTuLHoTPrgGajWAfU/yO42IiERZWQVRr0pJIRJL8vK8u1Iy2nj9D0QkMaxaCF89B/3u000SUkypBZFzblZlBRGJGYvehOwf4KSnNeS/SCJZtxS+mgAte8A+J/idRmJMuUtkM6tuZplmVi2SgUR8tat1qLVeMEUSzT4neH/bs+72/tZFCgi7IDKzjmY2HdiIN5nr4YHljczs4yKjWIvEl8VvQfZi6HGtWodEEk1KKnQfCWsWweK3/U4jMSasgsjMDgRmA60o0nHaObcGqAmcFalwIpVKrUMiiW/fE6HB3molkmLCbSH6N7AK2AcYRfG7zz4GukQgl0jlc3nQ5Xw46la1DokkqpRUb/TqNf+FH97xO43EkHALom7Ak865TQQmdS1iBdC0wqlE/JBaBTqfA22P9TuJiETTvidBg71g1j3ggr2VSTIKtyCqAWwoZX3dCmQpxMxSzGyEmf1gZlvN7DczG2tmtcpxrDQz+8XMnJk9HKmMIiISh1JSYcCDcOJ4Tcsju4Q7dcdSoFMp648AFpU/TiH3A5cDk4GxQLvA/zuY2VFhTiL7b6BhhHKJiEi8y+rqdwKJMeG2EL0EDC5yJ5kDMLOrgL7AxIqGMrN9gMuAN5xzJzrnnnTOXQlciTdY5OlhHKsjMBwYXdFckqB+eB/eHwnbNvmdREREfBJuQXQvMBeYAnyCVwzdb2YrgbuBqcCjEcg1CK/D9rgiy58EtgBnhnIQM0sN7PMh8EYEckmiycuDGXfA0o+hSg2/04iIH5xTXyIJryByzm0HjgauBnKArUBrYC0wEugf5qWskhwE5AFfFvn+W4GvA+tDMQJoCwyLQCZJRD++B6u/98YmSQ33CrKIxL0Nv8MT3eGH9/xOIj4Le2BG59xO59z9zrnOzrlazrk059wBzrmxzrmdEcrVFFjrnNsWZN1KIKOsEbLNbE/gVuDfzrnloX5jM7vAzOab2fzs7OxwMku8ycuDmf+B+q00gatIsqrdGLZvgllj1EqU5GJ1drs0IFgxBF6rVP42pXkc+AW4L5xv7JwbHyj2OjdsqH7YCe3H92H1d96YJGodEklOqVW8FuI/v/NeEyRpxWpBtAWoXsK6GgW2CcrMzsS7tHexc25HhLNJInDO+0RYvyXse7LfaUTET/ud4r0WzFQrUTKL1YJoFd5lsWBFUSbe5bTtwXYM7HMf8D7wp5ntZWZ7AS0Cm9QLLEuPQm6JF0une58I1XdIRFKrQPdr4M9v4ccP/E4jPonVgmgeXrZC04CYWQ3gQGB+KfvWxBtzqB/wc4HHzMD6MwP/Py+SgSXOtOwFgyZ5nwxFRPY7FXbbE2bepVaiJBWrBdEkvFv6hxdZfj5e36EX8xeYWSsza1tgm83AKUEelwTWfxj4v6Y6TmYpKdCmr1qHRMSTWsXrT5j9A6xZ7Hca8UFMvhs4574zs0eAYWb2Bt7lr/yRqmfhDRCZ72O8y2EW2HcH8FrRY5pZVuCfS51zxdaLiEiS2+9U2LMH1Mv0O4n4ICYLooDhwHLgArzLX2uBh4CbIzTWkSSjndugSkn99UUkqaVWUTGUxGK2IHLO5eLNYTa2jO2yQjzecgKtSJKknINn+kLW4dD7Nr/TiIhIDCmzIDKz6WEe0znnjixnHpHo+elDWLUADjrX7yQiEutyd8DGPyG9md9JpJKE0kLUE9gBBL3NPQh1z5fY45w3xshuWbD/aX6nEZFY98KJsG0jnD8DTBcXkkEod5ntxLvUNA34F1DPOVenlEfdqCYWKY+fpsAfX0O3qyG1qt9pRCTW7XcKrFoIP3/kdxKpJKG0EGUCQ4ChwGRgjZk9DzzjnPsxitlEwtZ1zHRWrs8pstTxVrWb2I2GHPFKXXa+4k3imJlekzmjjqj8kCIS07qOmc7q9fWYUa0hf70wiuO276CkLqh6HUkcZRZEzrlsAp2bzawLcA7enV9Xm9mXwNPA/znnNkU1qUgIVq7PYfmYfoUX/jQFXvoFBj7Eko7H7VqcNUqzW4tIcd7ryHGwYAPN3r6M5edUg9a9g26r15HEEdbAjM65L51zFwFN8FqNNgNPAH8E5g8TiT1LZ0B6czhgkN9JRCSeHDDIe+3Q6NVJoVwjVTvntjrnXgRG4w2MWAtoGclgIhFzzBi4YJb6DolIeFKrev0OVy2AJdP8TiNRFnZBZGZNzGyUmf0AfII3gvRdwIRIhxOJmLT6ficQkXh0wCDYfV/Yss7vJBJlIQ3MaGZVgeOAs4HeQC7eXGAjgCkaOVpERBJSlWpw4Wxv/kNJaGX+hs3sQeAPvAlXM4GrgKbOuVOdcx+oGJKYtGMrLJ/jdwoRSQQqhpJCKC1Ew4Ac4GVgQWCfoVbyQFXOOXd/ZOKJlNMXj8O00XDRp9B4P7/TiIhIjAt1LrOawBmBR1kcoIJI/LN5HcweC637qhgSkcjZvhnmPgqdz1W/xAQUSkHUK+opRCLpk7th+yY46la/k4hIIln/G8y40/vQdcwYv9NIhIUyMOOsyggiEglZ9gfMewo6DoFGbf2OIyKJpFFb6DDYe43pcj40aOV3IomgUC+ZicSF0TVfY3NuKj3ndCF7TukjyGam16ykVCISTzLTa5Y4AnVDujCz+v8xc9xFXLpjuF5HEkiZBZGZXRnuQZ1z95UvjkgFrPiCXnmfQ6/rmdfzX36nEZE4VebcZDN/p9/Mu+h3QUNo1qVyQknUhdJCdG+Yx3SACiKpfHV2h05D4bBhficRkUR22GUwfwJMuQHO/QhKvuta4og6VUvi2C0LBjzgdwoRSXTVakGv6+Gdy+GnD6HNMX4nkghQp2oREZFwdTjTm+tsr6P8TiIREspI1V3MTAMuiIiI5EtJhQPP0KTRCSSU8cg/B/rm/8fMapvZS2bWPnqxREKUsx6e7gMr5vqdRERE4lgoBVHR3mLVgdOBxpGPIxKm2WPhty+gaprfSUQkmW3b6HcCqSDNWCfx6+9f4Ysn4IBB0GR/v9OISLL6/nW4rz2sX+F3EqkAFUQSv6bf5t3uesSNficRkWTW7GDI3Q4f3+Z3EqkAFUQSn1YugO9ehUMugXqZfqcRkWRWbw/vtei7V2DVQr/TSDmFOnXHsWaW32coDW/wxVPM7MAg2zrnnGa7l+hxDj66CdIy4PARfqcREYHDh8OC57zXprPe0WCNcSjUguiMwKOgC0vY1gEqiCR6/voFVi2Ao/8NNer6nUZEBGrUg57XwftXw09ToE3fsveRmKKRqiX+NGgFly2AWhl+JxER+Z9OQ+GLx2Hqzd6AjamaPz2eaKRqiU91m/idQESksNSqcNQtMOs/sGm1+jfGmXKVr2aWBtQB1jrnciMbSUREJE617Q9t+kGK7lmKNyH/xswsw8z+Y2ZLgI3AKmCrmS0xs9Fm1jBqKUUAfv0cdmz1O4WISMnMVAzFqZB+a2bWBfgOuAZoBnwPfAYsCvx/NLDAzDoU2KekTtci4ftnFUw8AT66we8kIiKSgEKZ3LUh8C5QA7gUSHfOHeCc6+acOwBIBy4BagHvmlldMxsOPBq11JJ8ZtwBLhcOu8zvJCIioVmzGL580u8UEqJQ+hBdDdQDDnXOLSi60jmXAzxuZl/itRp9CuwDfBDJoJLE/vweFr4Ih14Ku2X5nUZEJDQLX4C5j0KLw2D3ffxOI2UI5ZJZf2BisGKooMD6F4B9gbeAEyoeTwTvFtYadaHbVX4nEREJXberoHod7zVMYl4oBVEWMDfE432BNzDjyc65HeUNJbLLko9h6cfQfSSk1fc7jYhI6NLqQ/drYMk0WDrd7zRShlAKolygaojHqwJsds7llT+SSEBervfJKr0FdDnf7zQiIuHrcgGkN4ePbvZe0yRmhVIQ/Uzoo1X3DGwvUnEuD/Y/DfrcAVWq+51GRCR8VarDkaNh9Xfw7SS/00gpQimI3gRONLNSJ2Yxsz7AicAbEcgl4o362vVyaDfA7yQiIuW370nQtCNMvwNy1ZskVoVyl9k44BzgTTO7H3jSOfdL/kozawmcB1wJrAAeiEJOERGR+GQG/e/zLpmlhtoDRSpbKHOZbQy0/rwDXAuMNLONwAagbuBhwE/AQOfcpijmFRERiT9NO5S9jfgqpJGqnXM/AQcCV+CNM7QTaILX4Xo2cDnQIbCdSMVMuQFmjvE7hYiIJJGQJ3cNDMD4UOAhEh3ZP8Hcx6DzOX4nERGJDudg+2aoXtvvJFKAZqCT2DJtNFRNg56j/E4iIhJ5zsHLp8NkTfcZa0JuIRKJlK5jprNyfU6x5V1sMa9Uf5+7d5zGo7d9AUBmek3mjDqisiOKiERF1//M4PiNdbmm6iucct1Y5rm2JW6r17/KFbMFkZml4PVZuhBvtOxs4BXgZufc5jL2bQ2cCfQGWuFNTLsUeBUYV9b+El0r1+ewfEy/wgvz8uCpe2FTJiMve4CRVWsCkDXqPR8SiohEx8r1OVzz7wfgoU95tem7cN4ISAl+sUavf5Urli+Z3Q/cBywCLsMrZi4H3gkUS6U5BxiBVwT9G7gG+BG4HfjMzGpGK7SU03/fgFUL4Igboap+PSKSwKqlea91qxZ4r30SE2KyhcjM9sErgt5wzp1UYPky4EHgdOClUg7xGnCXc25DgWWPm9nPwA3AucDDEQ8u5fftJGi8nzcytYhIojvgdO8Gko9v9Qaf1Wj8vovVFqJBeGMbjSuy/ElgC97lsBI55+YXKYby5Y+bvm9FA0qEnf4yDPo/SEn1O4mISPSlpELvf8P6FfD5I36nEWK3IDoIyAO+LLjQObcV+Dqwvjz2CHxdXe5kEh2pVaDeHmVvJyKSKFodAe0GwpZ1ficRYvSSGdAUWOuc2xZk3UrgMDOr5pzbHuoBzSwVuAlvUMnSLreJiIhUjpMneB8IxXex2kKUBgQrhgC2FtgmHOOAQ/HuUvuxpI3M7AIzm29m87Ozs8P8FhKWeU/B2iV+pxAR8Y+KoZgRqwXRFqCkHmY1CmwTEjO7DRgGjHfO3VXats658c65zs65zg0bNgz1W0i4ls2G966GL5/wO4mISOxwzu8ESStWC6JVQIaZBSuKMvEup4V0uczMbgFuBCYAF0UsoZRbHbbAmxdD/ZZw1C1+xxERiQ0/TYEnusPWYPcESbTFakE0Dy9bl4ILzawG3iSz80M5SKAYGg08B5znnErvWHBL1Wfhn1Vw4nioVsvvOCIisaFmfVj9PXygqYv8EKsXLycB1wPDgdkFlp+P13foxfwFZtYKqOqc+6HgAczsZrxiaCJwjnMuL8qZJRT/ncxJqZ8ybseJjHt4NVD6SKyZ6RqkUUQSR2Z6zVJHoB5R5Tiu+OYlLprXiMz0HpWYTCxWG03M7CG8fj+TgfeBdngjVc8BjsgvcMxsOdDCOWcF9r0Ub+DFFXh3lhUthlY756aWlaFz585u/vyQGqMkFP/8AY8dCrvtCed+BKlV/U4kIhJbcnfA00fD38vhkrlQp7HfiRKKmX3lnOscbF2sthCB1zq0HLgA6AesBR7Cu0usrNae/HGKmuNdLitqFlBmQSQRtmQq7NzuXSpTMSQiUlxqVTjxSXi8G7x1KfzrNTArez+psJhtIYoFaiGKgo2roc7ufqcQEYltXz4J718N/cbCQef5nSZhxGsLkSQiFUMiImU76Dz47Quo1cjvJElDBZGIiEisMYOTnvI7RVKJ1dvuJVHMeQC+fcXvFCIiIqVSQSTR89s8mHYrLJ3udxLx2bJlyzj++ONp2LAhZsbQoUMBCv07HEOHDsXU0bTCZs6ciZnx7LPPVug4jz32GHXr1mXduv9NUjpixAhat27Njh07im3fs2dPzAwzo0qV8l+o+PPPP3cdp+hz6dlnny207oUXXij39+nbt2+hY/lm2yb/vncSUEEk0bF9M0y+AOo2hWP+43caKWLcuHEVfhMMx9ChQ5k1axbXXnstEydO5MILL6y0750MKvv3WdCGDRsYPXo0I0aMoEGDBruWX3vttfz+++889thjQffLyMhg4sSJPP/884WW//HHH9xwww307du3WAFdVHp6OhMnTmTixIkl5rv++uuZOHEiXbt2LbT8iSee4F//+hdt27YlNTW11EJn5MiRTJw4kW7dupW4TdTN/A+M7+G9tkpUqA+RRMdHN8Jfy2Dou1Cjnt9pStV1zHRWrs8JadvM9JrMGXVElBNF37hx48jKyipX60y4tm3bxuzZsxk2bBhXX311oXU5OTmkpqZGPUOiK+/vs3v37uTk5FC1avmHwXj00UdZv349w4YNK7S8cePGnH766YwZM4ZLLrmkWEtQrVq1OPPMM4sd78cff+TOO++kWbNmHHTQQXzwwQclfu8aNWrsOsbgwYODbnP00UfTs2fPYsvvuusu1q1bR4cOHdi8eTO///57id/niCO8v/lp06Yxe/bsEreLqhaHwcy74KOboP99/mRIcCqIJPJ++gjmPwOHXQZZh/udpkwr1+ewfEy/kLYtbYRZCW716tU456hfv36xdTVq1AiyR+zZuHEjderU8TtGxOT/PCkpKRX6HeTl5fHEE09wzDHHEGwy7MGDBzNhwgTeeustTjrppJCO2alTJ9asWUPDhg1Zu3Zt0ONGwsyZM2nevDkpKSn079+/1IIoJuzZDQ69FD5/GNocA3sf7XeihKNLZhJZm9d6g4k12geOuMnvNHFv+fLlnHTSSdStW5e6dety3HHHsWzZMrKysoJ+6p02bRq9e/cmPT2dGjVqsP/++/P4448X2sbM+PXXX5k1a1ahfhHLly8PK9tbb71Fhw4dqFGjBs2aNeOmm25i6tSphfqkDB06lBYtWgBw66237vpeM2fO3JWlaKvGe++9R48ePcjIyKBmzZo0b96cE088kZ9++qlYhg0bNnDxxRfTqFEjatSoQdeuXfniiy+Kbeec47HHHqNTp06kpaVRu3ZtevXqxYwZMwptt3z5csyMW265hUmTJtGpUydq1qzJZZddFvJ5ueWWWzAzFi1axPDhw2nSpAlpaWkceeSR/PjjjwC88cYbdOzYkZo1a5KVlcX48eOLHWfSpEkMHDiQ5s2bU716dTIyMjj++OP59ttvC21X1u8z/7mycOFC+vTpQ7169dh///2B4H2ITjvtNFJTU3f9jvJNmTKFlJQUhgwZsmvZl19+ya+//sqxxx4b9Fx0796dWrVq8eqrr4Z8/urUqRO1IqigrKwsUlLi7C3wyJu919a3LoXN68reXsKiFiKJrL9+CYy0Oh6qVPc7TVxbt24d3bp1Y/Xq1Vx00UW0a9eO2bNn06tXLzZvLt6PYPz48Vx00UUccsgh3HDDDdSqVYupU6dy8cUXs3TpUu655x4AJk6cyIgRI8jIyOCGG27YtX84b0KTJ0/mpJNOIisri5tvvpkqVaowYcIE3nuvcAvahRdeyIEHHsiIESM44YQTOPHEEwFo165d0OPOmjWLgQMHsu+++3LdddeRnp7OqlWrmDZtGkuWLKF169aFtu/Tpw8NGzbk5ptvZt26ddx3333069ePZcuWFWrRGTx4MC+//DInn3wyZ599Ntu2bePFF1/k6KOP5o033mDgwIGFjvvmm2/y4IMPcvHFF3PRRRdRt27dkM9NvrPOOovatWtz/fXXk52dzdixY+nTpw+33XYbI0eO5OKLL+acc87h6aef5sILL6R9+/Ycfvj/WlQffvhhGjRowAUXXEDjxo1ZunQp48ePp2vXrixYsIC9994bCO33uWLFCo444ghOOeUUTjrpJDZtKrlz7vjx45k3bx5nnnkmX3/9NRkZGfz5558MGTKEvfbai0cffXTXtrNmzQKgS5cuQY+VmprKQQcdtGs7qaAq1b3X1id7wbtXwKkTNYp1JDnn9Cjh0alTJyflsGOb3wnC0uLad6OybUVdc801DnAvvPBC0OU9evTYtWzVqlWuevXqbtCgQcWOc/nll7uUlBS3dOnSXctatGhRaP9w7Ny50zVr1sw1aNDAZWdn71q+fv1617x5cwe4CRMm7Fq+bNkyB7jRo0cXOxbgzjrrrF3/HzFihAPc6tWrS81w1llnOcBdfPHFhZa/8sorDnCPP/74rmVvvPGGA9wTTzxRaNsdO3a4Tp06uaysLJeXl1coa5UqVdyiRYvKOhVBjR492gGuf//+u47rnHMPPPCAA1ydOnXcihUrdi1fs2aNq169ujv99NMLHWfTpk3Fjr1o0SJXrVq1Yj93ab/PFi1aOMA9+eSTxdbNmDGj2O/LOefmzp3rqlat6vr37+9yc3PdUUcd5apVq+a++uqrQtsNGTLEAW7Dhg1Bv7dzzp177rkOcGvXrt21rEePHq5FixYl7pMvOzu72HOkJEW3mzBhggPcjBkzyty3X79+zns7LF3+8853n45zbnRd5xa+5HeSuAPMdyW858dZe6HEhSrV/E6QEN555x2aNGnCoEGDCi0v2jEZ4LXXXmPbtm2ce+65rF27ttBjwIAB5OXlMW3atIjk+uqrr/jtt984++yzycjI2LW8Xr16XHTRRRU6dr16Xgf8119/nZ07d5a5/YgRIwr9P7/z688//7xr2QsvvECdOnU4/vjjC52X9evXM2DAAJYvX15oe4B+/fqV2IoVqssvv7zQnUv5dygNHDiQZs2a7VresGFD2rRpUyxDrVq1AO9D6z///LOrP02bNm2CXhYsTf369Tn77LND3v7ggw/m9ttv591336V79+5MmzaNMWPG0LFjx0LbZWdnU6VKlVJb0PLvPFuzZk1YmaUUhw6DQy6FFof6nSSh6JKZVJxzaraNgmXLltGlS5di/RwaNWpEenp6oWWLFy8G4KijjirxeKtXr45Irl9++QWAtm3bFlvXvn37Ch172LBhvPXWW1xyySVce+21HH744fTt25dBgwYFvaTXsmXLQv/Pf/MtOB7O4sWL2bhxI7vvXvK0MatXry50Oa7opbnyKJptt912A2DPPfcstu1uu+3Gr7/+WmjZwoULuemmm5g5c2axS6TBjlGaVq1ahX033zXXXMO7777L7Nmz6d27N8OHDy+2TShj8rjAfJkaNyqCUlKh751+p0g4Koik4uY8AH8thX73aRZ7n+S/6Tz//PM0adIk6DZF36BjUYMGDZg3bx6zZ89m6tSpfPLJJ4wYMYLRo0fz/vvvc+ihhT8Rl/Qmn38+8v/dsGFDXnrppRK/77777lvo/2lpaRX4KUrPFkrmFStW0L17d+rWrctNN91EmzZtqFWrFmbG8OHDS+0DFEx5fp7ly5fv6sC9ZMkSNm3aVOxOu4YNG7Jz5042bNiwq3WvqL/++mvXtiKxTAWRVMyf38H026HtsZCip1MkZWVlsWTJEvLy8gq1Eq1Zs4b169cX2ja/g21GRkaprUT5KvJpPb+w+uGHH4qtW7RoUbmPmy81NZWePXvuuovu22+/pVOnTtx+++3FOm2HYu+99+ann37ikEMOoXbt2hXOVxkmT57Mpk2bePvtt+nVq1ehdevWraN69cI3LES69WXnzp0MGjSInTt38uCDD3LFFVdw8cUXFxvtOb+Q/Pnnn+ncOegE4ixZsoTGjRsXGrRRImznNti0BtKblb2tlEh9iKT8dmyF18+HtAbQf5wum0XYgAED+OOPP3j55ZcLLb/33nuLbXvqqadSvXp1Ro8eTU5O8UEmN2zYwLZt23b9v3bt2rs+uYerU6dO7LHHHkyYMIG1a9fuWv7PP/8Uu8U/XAWPl69t27bUrFmz3HmHDBlCXl4e1113XdD1kbqUGEn5rUgFW40AnnzySf78889i21fk9xnMjTfeyBdffMHDDz/MZZddxlVXXcWLL77Ic889V2i7/KJ17ty5QY+Tm5vL/Pnz6dGjR8SySRD/9y946VTvNVnKTR/ppfym3wbZi+Ffr0Na8UH3pGKuvfZaXnrpJc4++2y+/PJL2rZty+zZs/nss8/IyMgo1Cqwxx578Nhjj3HeeefRrl07Bg8eTIsWLcjOzua7777jzTffZNGiRWRlZQFwyCGH8PTTT3PTTTfRrl07UlJSGDBgwK6OvKVJTU3l/vvv59RTT6VLly6cf/75VKlShWeeeYYGDRqwYsWKcv/M559/Pr///ju9e/emRYsW5OTkMGnSJDZu3Fho/Jtw5N9q//DDD7NgwQL69+9PRkYGv//+O59//jlLlizZ1S8qVhxzzDGkpaUxePBghg0bxm677cacOXN4//33adWqVbEO5xX5fRY1depU7r77bs4444xdY0TdeeedzJo1i2HDhnHYYYftapHs1KkTLVu25P333y82UjV4t+Vv3ryZU045JawMt99+OwBbtmwBvFbC/GXdu3ene/fuYf9cRb3zzjt88803gNeKVfD7pqenB/15YtbBF8KLJ3uvyX3u8DtN3FJBJOXzyyxvxNSDzoO9y75EE8sy02uGPAJ1ZnrNKKf5n4yMDD799FOuuuoqnnnmGcxs12CCBx10EDVrFs5y9tln07p1a+69916eeOIJ1q9fT0ZGBm3atOG2226jcePGu7a94447+Ouvv3jkkUdYv349zjmWLVsW8hvoySefzGuvvca///1vbrnlFho1asTQoUPp3r07vXv3LvfPPHjwYJ599lmee+45srOzqVu3Lu3bt+e1114LeaTjYJ555hl69erF+PHjueuuu9i+fTuNGzemY8eO3HXXXeU+brS0atWKDz74gOuvv54777yT1NRUunbtuqsoKTqIZkV/n/nWrFnDkCFDaNmyZaHWvqpVq/Lyyy/ToUMHBg0axGeffUa1atUwMy688EKuv/56Vq9eXazj+sSJE2ncuDHHHXdcWDluuqnwoK4LFy5k4cKFAIwePToiBdHrr79erMUr//u2aNEivgqivY+GzufC549A6z6wZ8XPT1Iq6X58PTQOUYm2/O3c2PbOPdjRuW2b/U6TdNauXesAd+GFF/odpZiSxrWRxLVhwwbXqFEjd8MNNxRa/scff7iaNWu6Bx54oNg+PXr0cM2aNXPZ2dmFxicKV15ensvOzg46XlH+OERvvvmmy87Odlu3bi3399mwYYPLzs52p59+emyMQxTMtk3OPdDBe23OWe93mphFKeMQqYVIgiptwtOG/M3Yqrtx785T+fbmGQkz4WksysnJKdYSNGbMGMCbtFLEb3Xr1uXWW29l5MiRhWa8HzNmDHvssQcXX3xx0P1+++03GjZsSGpqakhjTgWzevXqEu+qzHf88ccDXmtVsMlkQ3HqqacyZcqUcu1baarV4rxNF/D4tut4+44zuHLHJaVurtft4lQQSVBlT3h6JvmNsprwNHqOPfZYWrRoQceOHcnLy+Pjjz/m3Xff5bDDDtv1Qh8pGzZsCNohu6Bq1aoFnaQ10eXk5LBhw4Yytyt4WTKZXHTRRcUG5Rw3bhzjxo0Luv3YsWP5+++/ASo0n1j9+vWZOnXqrv83bdp017/79OlTaF3RoRXCMWbMmKADosaaaf80o0rfazlx5l2cOPhy7/JZCfS6XZwKIpEY1r9/f55//nkmT55MTk4Oe+yxB1dddRWjR48Oe6C9slxxxRXF+lQU1aNHj2KTfiaDSZMmhTTSsytyV5gE16lTp4gcp1q1aiUOM9GkSZMyW49CdeCBB0bkOJWi21Xenb8te5W9rRSigkhCk5cHuduhag2/kySVq666iquuuqpSvtfIkSPLvKSQP9pySXr27JmQRUHR1gaRmJVaFbqc73eKuKSCSMqWlwcf3QhLp8PQd6FWRtn7SNxp3759hafeSFSRbG0QkdikgRmldLk74a1LYe4j3q2caRptVkQkbmT/BB+M8l7LpVQqiKRkO3LglcHwzUvQ83o45j8ajVpEJJ4snQ5fPAavDNFI1mVQQSRB1WELvHAy/PgBHHsv9LxWxZCISLw55CLvNfzH9+GFk2Br2XdLJisVRFJczt+8XO12+G0unPSUOuiJiMSzLud7r+W/zYVn+8OmbL8TxSQVRFJctTr87DJh0P/Bfif7nUZERCpqv5O91/S1P8MzfchERVFRKoikuNQqjNhxqTc/joiIJIa9j4Yhb8GWtQxI/dzvNDFHt92LJy8PCowYG6sTnkpkbdu2jWHDhvHxxx+TnZ1NkyZNuOyyy7jsssv8jiYiYQr1dbsJt5NSL5NRlZApnqggEljyMUy9Gc58A+p4s1VrjpvksHPnTho3bsxHH31Ey5Yt+fbbb+nTpw+77747p556qt/xRCQMet2uGF0yS3bfvwEvnQboDrJ4NXPmTMyMZ599Nux9a9WqxW233cZee+1FSkoKBx54IAMHDuTTTz8tcZ8pU6bQs2dPateuTcOGDRk2bBhbt+p2XpG49ce38N83/U7hOxVEyWze0/DaObBHZ28E6kDrkCSvHTt2MHv2bPbff/+g68eOHUvfvn1p0qQJ999/PwMGDOCRRx7hiiuuqOSkIhIxn9wDrw6F+c/4ncRXlojzDkVK586d3fz58/2OEXnOwex7YfrtsHcfOOVZqJbmdyopp7y8PLZv307VqlUrPOHrhRdeyIIFC5gzZw7VqlUrtG7atGn07t2bu+++u9DM33379mXGjBlkZ2dTt27dCn1/EfHB9i1eQfTzFDjiJm+C2AQdd87MvnLOdQ62Ti1EySYvD6bc4BVD+58Gp7+oYijOpaSkUKNGjQoXQ1deeSWff/45H3zwQbFiKC8vjyuuuIIOHToUm2y2Z8+ebN++ne+//75C319EfFItzXsv2P80mH6b9x6Rl+d3qkqngigZbVkHB18Mxz/uzYwsMWvr1q3ccssttGnThrS0NNLT09lvv/245pprdm0TrA/Rs88+i5kxffp07r33Xlq1akX16tVp3bo1zz33XLHvM3z4cKZOncrHH39MRkbxyXunTJnCokWLuPzyy7Einxzzi6cNGzQCrkjcSq3qvSccfLE3d+Vbl0DuDr9TVSrdZZZsUlLg+EfBUhK2STSRXHrppTzzzDMMGTKEK6+8kp07d/Lzzz8zffr0kPa//vrrycnJ4cILL6R69eo89thjDB06lL322ouuXbsCcPnllzN9+nRmzJhBw4YNgx5n0qRJpKam0q1bN9auXVto3erVqwGoU6dOBX5SEfFdSgr0vQvS6sOMO6B1H9jnBL9TVRoVRMkopWKXVqTyTJ48mWOOOSZoq04otm3bxrx583a14px88sm0bNmShx9+mK5du/Lrr7/y0EMPUb16dfbcc89d+3Xr1o0PPvhg1/9nzJhBbm4urVq1KvF7tWzZslwZRSSGmEGPkbBnD2jWxe80lUoFUaLbtAbevgyOvQfSm/udJvom9Ct53YFnQId/Ve72FVSvXj3++9//8v3337PvvvuGvf8ll1xSqD9QZmYmrVu35ueffwagRYsWlHVjxdq1a1mxYgUnnHACl1xySbH1p556KtWrV6dp06Zh5xORGNX8YL8TVDoVRHGu65jprFyfE3TdHpbNxKp3srut59zv/48VdTtr4K44M27cOAYPHsx+++1Hy5Yt6dWrFwMGDGDAgAGkpJTdBTBYq02DBg349ddfQ87wyy+/AHDQQQdx1FFHFVq3bNky/v77b84444yQjyci8aXrmOlkbPiOddTld9eo1G0z02vG7fuMCqI4t3J9DsvHBGm1WL0IXrgKdmyDf73Hy80OCnkqjrh2dpg/Y7S3r6DjjjuO5cuX8/777zNr1iymTZvG008/Tbdu3Zg2bVqxu8GKKunOs3CG29i0aRMQvI/Qa6+9BsBpp50W8vFEJL78uX4Tc5pMgJ1bvRkNdm9f4rbx/D6ju8wS0W9fwoRjvH+f8yE0O8jfPFIh9evX58wzz+TJJ5/kl19+YeTIkcyePZu33nqrUr5//thC//zzT6Hl27dv57HHHqNNmzb061fKpUQRiWu5pMLpL3lj2E04xnuPSUAqiBLNkmnw/HHeXQLnTIFG7fxOJOWUm5vL+vXrCy0zMzp06ADAX3/9VSk52rdvT1paGlOmTCm0/IYbbmD58uU8+OCDFR4DSURi3O7t4dwp3nvL88d57zUJRpfMEs3PU6FBK69Zs3bp13oltm3cuJEmTZowcOBAOnToQKNGjVi2bBmPPfYYu+22GwMGDKiUHGlpaZx33nk8+OCDnHnmmfTo0YMPPviAyZMnc88999C7d+9KySEiPtsty/ugPfFEePEUyDocelzrfU0AKoji1dol8MM7ZLJb4eV97oQdW6C6xoSJd2lpaQwfPpyPP/6YadOmsWnTpl0F0nXXXVepd3Xdc889mBkvvvgikydPplOnTnzwwQf07du30jKISAyo3cjrSznnQVj8NuRuL7JB/E4HprnMShFTc5k5B398Az+8C4vfgewfALhq+0WMvfM/IR0ia9R7wTtgi4iIlKDU9w7nCg3ye/H1N/NY5kfQrj+0GwCN94+pQYBLm8ssZluIzCwFuAK4EMgCsoFXgJudc5ujvX8klXZrfFHFblnMy4OPbvSKoA0rvBGmW3SFTmdD2368PuZbxkYpt4iISKmKFDubqQG1MmD2WPjkHqjX/H/FUbODiw0MXKH3xwiL2YIIuB+4HJgMjAXaBf7fwcyOcs6VNfNcRfePmBJvjQ8ia9S7hRekpMCqhV6Hth4joc0x3pNtl28jF1RERKQCPsk7AIZeD5vXwo8feFc15j0Fcx+F3feDiz8ttH1474/RvaU/JgsiM9sHuAx4wzl3UoHly4AHgdOBl6K1f6XbtgmWTIXF7zKp2vdA/8Lrh77nFUYiIiLxoFYGdBzsPbZt9G742b6p2Gad7QfY1gOq1/YhZGGx+i47CDBgXJHlTwJbgDOjvH/0bV4HC1+Al06Hu1vCq0Phl5ksy2tcfIZhFUMiIhKvqteBfU+EjkMKL9++mReq3eW9B750uveeuKVyhhMJJiZbiICDgDyg0OhPzrmtZvZ1YH0094+uRW/Bq2eDy4V6zeCgc6Ftf2h+CKOu/5DTU6uGfKjM9JohNyNmptcsb2IREUlSUXufqVKDIdtH8coha71Laz99AJYKp0yA9seVM235xWpB1BRY65zbFmTdSuAwM6vmnCt6v1+F9zezC4ALAJo3j9JkqJmdoduVXhHU5IAK9cCP1zljREQkPkTtfSYllS9dOzimH/S9y7uTevE73nukD2K1IEoDghUzAFsLbFNSQVTu/Z1z44Hx4N12H0rYsNXLhCNujMqhRURE4o4ZND3Qe/gkVjunbAGql7CuRoFtorW/iIiIJJFYLYhWARlmFqyoycS7HFZS61Ak9hcREZEkEqsF0Ty8bF0KLjSzGsCBQFnDR1d0fxEREUkisVoQTcKbEGV4keXn4/X9eTF/gZm1MrO25d1fREREJCY7VTvnvjOzR4BhZvYG8D7/G2l6FoUHVfwYaIE37lB59o863RovIiJSXCy9P8bs5K5mlorXwnMB3lxka/Fafm52zm0qsN1yoIVzzsqzf2lianJXERERqZDSJneN2YIoFqggEhERSRylFUSx2odIREREpNKoIBIREZGkp4JIREREkp4KIhEREUl6KohEREQk6akgEhERkaSn2+5LYWbZwK9ROnwG3thIEpzOT9l0jsqmc1Q6nZ+y6RyVLZ7OUQvnXMNgK1QQ+cTM5pc0FoLo/IRC56hsOkel0/kpm85R2RLlHOmSmYiIiCQ9FUQiIiKS9FQQ+We83wFinM5P2XSOyqZzVDqdn7LpHJUtIc6R+hCJiIhI0lMLkYiIiCQ9FUQiIiKS9FQQRYiZpZjZCDP7wcy2mtlvZjbWzGpVxv6xLgLnx5Xw2BTt7JXFzK4zs1fN7JfAz7a8nMcZYmYLzSzHzFab2VNmFnTcjXgSifNjZstLeS5lRCF2pTGz1mb2bzOba2bZZrbRzL42sxvCeR0xs2PN7DMz22xmfwXO+Z7RzF5ZInGOzGxmKc+huL/13MzamNmLZrbYzDaY2ZbA6/Z9ZtYkjOPE3fNIfYgixMweAC4HJgMfAO2Ay4DZwFHOubxo7h/rInB+XGDbop33djjnJkU+ceUL/Ix/AQuATsA/zrmsMI8xArgPmAW8BOwBXIk3wGgX59zmSGauTBE6P8uBHOCOIKtfdc5tq2BM35jZGOBS4G1gLrAD6AWcCnwLHOKcyynjGCcCrwHfAE8C9YDhQC7Q2Tm3Klr5K0OEztFMYB9gRJDV7zvn/opk5spmZkcCN+Cdn9+BncB+wNnAP8CBzrk1ZRwjPp9Hzjk9KvjA++PIA14vsvwywAFnRHP/WH9E4ucLbPes3z9LlM9TywL//h5YHub+GcBm4EsgtcDyAYHzd73fP6Of5yew33Jgpt8/S5TOT2egXpDltwd+/8PK2L8qsBKveK5dYPmBeG9k4/3+Gf0+R4FtZ5bnuRfvD+CUwDkaWcZ2cfs80iWzyBgEGDCuyPIngS3AmVHeP9ZF7Oczs2pmVjty0WKHc+6XCh7ieCANeMg5l1vguO8AvxDnz6MInJ9dzKyKmdWN1PFigXNuvnNuQ5BV+S2o+5ZxiB5AU+Ap59yuS9HOua/xioDTzKxqBKL6JgLnaJdAN4C6ZmaRSRfz8qex2q2M7eL2eaSCKDIOwmsB+bLgQufcVuDrwPpo7h/rIvXznYxXQG00szVm9pCZ1Ytk0DiXfx4/D7JuLtA2UYvJMB2M9zzaYGbrzew5M2vqd6go2iPwdXUZ25X1/KkLtI5UqBgT6jnKlwlsAjYAm8zsDTNrG5VkPjGzGmaWYWZ7mFlv4InAqvfL2DVun0dV/A6QIJoCa13w/gcrgcPMrJpzbnuU9o91kfj5vgReBZbg/UEdCwwDepjZYQU/iSSx/Df1lUHWrcRrpWsK/FRpiWLPf4GngMV4Tfs9gfOAI82si4vVvg3lZGapwE14/UBeKmPzsp4/4BUC/41MutgQ5jkCWAbMwetzlItXYA/Dew4d7pz7LlpZK9l5wEMF/r8cONM5N7uM/eL2eaSCKDLSgJI6Y24tsE1Jb/gV3T/WVfjnc84dXGTR82b2LV7n2CsI3kk22aQFvgY711uLbJOUnHP9iiz6PzP7BHgRuBU4v/JTRdU44FC8/mM/lrFtsj5/xhH6OcI5d3aRRa+Z2dt4l4PuA46OdECfvAn8ANQGOgAD8fopliVun0e6ZBYZW4DqJayrUWCbaO0f66L1892DV0QVfZNLVvnnMNi5ToTnUVQ4517C+/SbUM8jM7sNr+VivHPurhB2SbrnTznOUVCBVpNPgF5mVjNS+fzknPvdOTfNOfemc240cBZwt5ldV8aucfs8UkEUGauADDML9gTIxLtcVFrrTkX3j3VR+fmcczvyj13BfIki/3JPZpB1mXh3iCTUJaEIWk4CPY/M7BbgRmACcFGIu5X1/IHgl0HiUjnPUWmWA6mU3ek4LjnnvgUWApeUsWncPo9UEEXGPLxz2aXgQjOrgXer4fwo7x/rovLzBfbfg9A7Qia6eYGvhwZZdwjwo/palWgvEuR5FHijHw08B5znAvc8h6Cs588/JEj/swqco9LsjdcPKa7HISpDTaB+GdvE7fNIBVFkTML79D28yPLz8a6Vvpi/wMxaBbkbIeT941SFzo+ZNSjhuLfh9YN7J2JJ44SZNTeztkVuX30Lb9DBYYGOovnbDgBaEv/Po5AFOz9mFvSF3MwuxSus4/55ZGY3473RTwTOcSUMeGpmTQLnp2BfjlnAH8B5Be9GNLMD8DqfvxpolY1rFTlHZlav4N9WgeX9gK7A1MDds3HLzBqXsLwX3rAEcwssS6jnkUaqjhAzewjvWvRkvNsS2+GNzDwHOCL/jy4wUm4L55yVZ/94VZHzY2b3432ymAGswOvkdyzeCLNfAL1cGaPLxgMzGwy0CPz3MqAaMDbw/1+dcxMLbDsTb7yPPZ1zywssvwq4F6+D58t4TdRXAb8BB8VzC1FFz4+ZDQfOBT7Eu7xRBe8F+nhgKXCocy47qj9EFAUKu4fx/kZuwhvqoqDVzrmpgW2fxesT0ss5N7PAMU7B+wCTP8JwXbwRmR3QyTkXk5c6QlXRc2Rmx+N1nM4f22snXsv3mXgtQ12dczHZ+hEqM5sMNAGm4409VANvZPjT8fr+9AyMKZR4zyO/R4ZMlAfeteOrgB/xetevxPvDqV1ku+XeaS/f/vH6qMj5AY4DpgT22Yo3GvPXwPVADb9/tgieo5l4LxjBHjNL2DYryHGG4r0QbQXWAM8Ajfz++fw+P3if4N/GezPMCZyfxcAYIN3vny8C5+fZUs5PoXNUYNueQY7TH68VYAvwN94UDK38/vli4RzhfZB7Ba+A3hR4LVsKPAJk+v3zRegcnQq8i/chamvgb+UHvFvwm5dwPhPieaQWIhEREUl66kMkIiIiSU8FkYiIiCQ9FUQiIiKS9FQQiYiISNJTQSQiIiJJTwWRiIiIJD0VRCIiIpL0VBCJSFIzsz5mNtPMNplZtpk9HJgnT0SSiAoiEUlagalOPsSbe2kE3pQMlwIP+JlLRCqfRqoWkaRkZkcBHwEjnXP3Flj+Id48eQ2dc//4lU9EKpdaiEQk6ZhZCl4r0EL+N0Fsvpl4E8fuW8mxRMRHVfwOICLigz5Ae2CoK95Mvj3wtV7lRhIRP6kgEpFkdBqQC8w2s4wi63YPfN1YuZFExE/qQyQiScfMfgWal7FZpnNuVWXkERH/qSASkaQSaBHKBiYDjwbZ5BVgm3OuSaUGExFf6ZKZiCSbloGv85xz0wquMLM9gd2Alyo9lYj4SneZiUiyqR34GqyP0MmBr5MqKYuIxAgVRCKSbPLHFqpbcKGZVQMuBn4E3qvsUCLiLxVEIpJsFgFb8G69L+gOIAu43DmXW9mhRMRf6kMkIknFObfFzJ4CLjezF4BZwDHACcA1zrmPfA0oIr7QXWYiknQCl8fuBv4FpAFfAXc65z70NZiI+EYFkYiIiCQ99SESERGRpKeCSERERJKeCiIRERFJeiqIREREJOmpIBIREZGkp4JIREREkp4KIhEREUl6KohEREQk6akgEhERkaSngkhERESS3v8DVv1nJjxd+QsAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 648x432 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
Q
Quleaf 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
   "source": [
    "# Create a figure\n",
    "fig = plt.figure(figsize=(9, 6))\n",
    "ax = fig.add_subplot(111)\n",
    "# Plot the QFIM\n",
    "ax.plot(thetas, list_qfisher_elements, 's', markersize=11, markerfacecolor='none')\n",
    "# Plot sin^2 theta\n",
    "ax.plot(thetas, np.sin(thetas) ** 2, linestyle=(0, (5, 3)))\n",
    "# Set legends, labels, ticks\n",
    "label_font_size = 18\n",
    "ax.legend(['get_qfisher_matrix()[1][1]', '$\\\\sin^2\\\\theta$'], \n",
    "          prop= {'size': label_font_size}, frameon=False) \n",
    "ax.set_xlabel('$\\\\theta$', fontsize=label_font_size)\n",
    "ax.set_ylabel('QFIM element $\\\\mathcal{F}_{\\\\phi\\\\phi}$', fontsize=label_font_size)\n",
    "ax.tick_params(labelsize=label_font_size)"
Q
Quleaf 已提交
480
   ]
Q
Quleaf 已提交
481 482 483
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
484
   "metadata": {},
Q
Quleaf 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
   "source": [
    "We can see that the outputs are consistent with the analytical results.\n",
    "\n",
    "Moreover, one can use the method `get_qfisher_norm()` to calculate the quantum Fisher-Rao norm in Eq.(10), i.e. the QFIM projection along a certain direction.\n",
    "\n",
    "As a different example, we exploit two qubits with a typical hardware-efficient ansatz\n",
    "\n",
    "$$\n",
    "|\\psi(\\boldsymbol{\\theta})\\rangle=\\left[R_{y}\\left( \\theta_{3}\\right) \\otimes R_{y}\\left( \\theta_{4}\\right)\\right] \\text{CNOT}_{0,1}\\left[ R_{y}\\left( \\theta_{1}\\right) \\otimes R_{y}\\left( \\theta_{2}\\right)\\right]|00\\rangle.\n",
    "\\tag{20}\n",
    "$$\n",
    "\n",
    "The corresponding QFIM reads\n",
    "\n",
    "$$\n",
    "\\mathcal{F}(\\theta_1,\\theta_2,\\theta_3,\\theta_4)=\\left(\\begin{array}{cc|cc}\n",
    "1 & 0 & \\sin  \\theta_{2} & 0 \\\\\n",
    "0 & 1 & 0 & \\cos  \\theta_{1} \\\\\n",
    "\\hline \n",
    "\\sin \\theta_{2} & 0 & 1 & -\\sin\\theta_1\\cos\\theta_2 \\\\\n",
    "0 & \\cos \\theta_{1} & -\\sin\\theta_1\\cos\\theta_2 & 1\n",
    "\\end{array}\\right).\n",
    "\\tag{21}\n",
    "$$\n",
    "\n",
    "Define the corresponding quantum circuit."
Q
Quleaf 已提交
511
   ]
Q
Quleaf 已提交
512 513 514
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
515 516 517
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
Q
Quleaf 已提交
518 519
   "source": [
    "def circuit_hardeff_2qubit():\n",
Q
Quleaf 已提交
520 521 522 523
    "    cir = Circuit(2)\n",
    "    cir.ry()\n",
    "    cir.cnot([0, 1])\n",
    "    cir.ry()\n",
Q
Quleaf 已提交
524 525
    "\n",
    "    return cir"
Q
Quleaf 已提交
526
   ]
Q
Quleaf 已提交
527 528 529
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
530 531
   "execution_count": 22,
   "metadata": {},
Q
Quleaf 已提交
532 533 534
   "outputs": [
    {
     "name": "stdout",
Q
Quleaf 已提交
535
     "output_type": "stream",
Q
Quleaf 已提交
536
     "text": [
Q
Quleaf 已提交
537
      "--Ry(0.069)----*----Ry(5.656)--\n",
Q
Quleaf 已提交
538
      "               |               \n",
Q
Quleaf 已提交
539
      "--Ry(0.001)----x----Ry(5.061)--\n",
Q
Quleaf 已提交
540 541 542 543
      "                               \n"
     ]
    }
   ],
Q
Quleaf 已提交
544 545 546 547
   "source": [
    "cir = circuit_hardeff_2qubit()\n",
    "print(cir)"
   ]
Q
Quleaf 已提交
548 549 550
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
551
   "metadata": {},
Q
Quleaf 已提交
552 553
   "source": [
    "Define a QFIM calculator and calculate the quantum Fisher-Rao norm $\\boldsymbol{v}^T\\mathcal{F}\\boldsymbol{v}$ along the direction $\\boldsymbol{v}=(1,1,1,1)$ corresponding to different $\\theta$ (set $\\theta_1=\\theta_2=\\theta$)."
Q
Quleaf 已提交
554
   ]
Q
Quleaf 已提交
555 556 557
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The QFI norm along [1, 1, 1, 1] at [0.         0.         5.65593147 5.06090069] is 6.00792258.\n",
      "The QFI norm along [1, 1, 1, 1] at [0.31415927 0.31415927 5.65593147 5.06090069] is 5.93163433.\n",
      "The QFI norm along [1, 1, 1, 1] at [0.62831853 0.62831853 5.65593147 5.06090069] is 5.85534601.\n",
      "The QFI norm along [1, 1, 1, 1] at [0.9424778  0.9424778  5.65593147 5.06090069] is 5.83627391.\n",
      "The QFI norm along [1, 1, 1, 1] at [1.25663706 1.25663706 5.65593147 5.06090069] is 5.93163433.\n",
      "The QFI norm along [1, 1, 1, 1] at [1.57079633 1.57079633 5.65593147 5.06090069] is 6.01269060.\n",
      "The QFI norm along [1, 1, 1, 1] at [1.88495559 1.88495559 5.65593147 5.06090069] is 5.87441809.\n",
      "The QFI norm along [1, 1, 1, 1] at [2.19911486 2.19911486 5.65593147 5.06090069] is 5.37854233.\n",
      "The QFI norm along [1, 1, 1, 1] at [2.51327412 2.51327412 5.65593147 5.06090069] is 4.49644803.\n",
      "The QFI norm along [1, 1, 1, 1] at [2.82743339 2.82743339 5.65593147 5.06090069] is 3.28057238.\n",
      "The QFI norm along [1, 1, 1, 1] at [3.14159265 3.14159265 5.65593147 5.06090069] is 1.98361799.\n",
      "The QFI norm along [1, 1, 1, 1] at [3.45575192 3.45575192 5.65593147 5.06090069] is 0.87260724.\n",
      "The QFI norm along [1, 1, 1, 1] at [3.76991118 3.76991118 5.65593147 5.06090069] is 0.25749165.\n",
      "The QFI norm along [1, 1, 1, 1] at [4.08407045 4.08407045 5.65593147 5.06090069] is 0.26702836.\n",
      "The QFI norm along [1, 1, 1, 1] at [4.39822972 4.39822972 5.65593147 5.06090069] is 0.91552211.\n",
      "The QFI norm along [1, 1, 1, 1] at [4.71238898 4.71238898 5.65593147 5.06090069] is 2.04083701.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.02654825 5.02654825 5.65593147 5.06090069] is 3.32825413.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.34070751 5.34070751 5.65593147 5.06090069] is 4.54412905.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.65486678 5.65486678 5.65593147 5.06090069] is 5.40715063.\n",
      "The QFI norm along [1, 1, 1, 1] at [5.96902604 5.96902604 5.65593147 5.06090069] is 5.89349018.\n",
      "The QFI norm along [1, 1, 1, 1] at [6.28318531 6.28318531 5.65593147 5.06090069] is 6.01269060.\n",
      "The QFI norm along [1, 1, 1, 1] at [6.59734457 6.59734457 5.65593147 5.06090069] is 5.94117037.\n",
      "The QFI norm along [1, 1, 1, 1] at [6.91150384 6.91150384 5.65593147 5.06090069] is 5.85057798.\n",
      "The QFI norm along [1, 1, 1, 1] at [7.2256631  7.2256631  5.65593147 5.06090069] is 5.83150589.\n",
      "The QFI norm along [1, 1, 1, 1] at [7.53982237 7.53982237 5.65593147 5.06090069] is 5.93163433.\n",
      "The QFI norm along [1, 1, 1, 1] at [7.85398163 7.85398163 5.65593147 5.06090069] is 6.00315457.\n",
      "The QFI norm along [1, 1, 1, 1] at [8.1681409  8.1681409  5.65593147 5.06090069] is 5.87918611.\n",
      "The QFI norm along [1, 1, 1, 1] at [8.48230016 8.48230016 5.65593147 5.06090069] is 5.38331038.\n",
      "The QFI norm along [1, 1, 1, 1] at [8.79645943 8.79645943 5.65593147 5.06090069] is 4.49167993.\n",
      "The QFI norm along [1, 1, 1, 1] at [9.1106187  9.1106187  5.65593147 5.06090069] is 3.29487691.\n",
      "The QFI norm along [1, 1, 1, 1] at [9.42477796 9.42477796 5.65593147 5.06090069] is 1.98361799.\n",
      "The QFI norm along [1, 1, 1, 1] at [9.73893723 9.73893723 5.65593147 5.06090069] is 0.88691220.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.05309649 10.05309649  5.65593147  5.06090069] is 0.24795494.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.36725576 10.36725576  5.65593147  5.06090069] is 0.26702836.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.68141502 10.68141502  5.65593147  5.06090069] is 0.90598547.\n",
      "The QFI norm along [1, 1, 1, 1] at [10.99557429 10.99557429  5.65593147  5.06090069] is 2.02176400.\n",
      "The QFI norm along [1, 1, 1, 1] at [11.30973355 11.30973355  5.65593147  5.06090069] is 3.32825413.\n",
      "The QFI norm along [1, 1, 1, 1] at [11.62389282 11.62389282  5.65593147  5.06090069] is 4.52982475.\n",
      "The QFI norm along [1, 1, 1, 1] at [11.93805208 11.93805208  5.65593147  5.06090069] is 5.40715063.\n",
      "The QFI norm along [1, 1, 1, 1] at [12.25221135 12.25221135  5.65593147  5.06090069] is 5.88395414.\n",
      "The QFI norm along [1, 1, 1, 1] at [12.56637061 12.56637061  5.65593147  5.06090069] is 6.00792258.\n"
     ]
    }
   ],
Q
Quleaf 已提交
609 610 611 612 613 614 615 616
   "source": [
    "qf = QuantumFisher(cir)\n",
    "v = [1, 1, 1, 1]\n",
    "# Record the QFI norm\n",
    "list_qfisher_norm = []\n",
    "num_thetas = 41\n",
    "thetas = np.linspace(0, np.pi * 4, num_thetas)\n",
    "for theta in thetas:\n",
Q
Quleaf 已提交
617
    "    list_param = cir.param.tolist()\n",
Q
Quleaf 已提交
618 619 620
    "    list_param[0] = theta\n",
    "    list_param[1] = theta\n",
    "    cir.update_param(list_param)\n",
Q
Quleaf 已提交
621
    "    # 计算 QFIM 投影\n",
Q
Quleaf 已提交
622 623 624 625 626
    "    qfisher_norm = qf.get_qfisher_norm(v)\n",
    "    print(\n",
    "        f'The QFI norm along {v} at {np.array(list_param)} is {qfisher_norm:.8f}.'\n",
    "    )\n",
    "    list_qfisher_norm.append(qfisher_norm)"
Q
Quleaf 已提交
627 628 629 630 631 632
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
Q
Quleaf 已提交
633 634
   "outputs": [
    {
Q
Quleaf 已提交
635 636 637 638 639 640 641 642 643 644
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGDCAYAAADahUEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABbBElEQVR4nO3dd3gU1f7H8fdJIIUaOkgLKFWkoyIiYMGK/WdX7IJYrw0b2K5iu/Z+Bb22q6hgvwpSRCwI2OkCKkWkBZFO8v39MZuQkE2yu9nN7GY/r+fZZ8nMyewnQ2bz3Zkz5zgzQ0RERCTRpPgdQERERCQSKmJEREQkIamIERERkYSkIkZEREQSkooYERERSUgqYkRERCQhVfE7QLTVr1/fsrOz/Y4hIiIiUTBr1qw1ZtYg2LpKV8RkZ2czc+ZMv2OIiIhIFDjnfi1pnS4niYiISEJSESMiIiIJSUWMiIiIJCQVMSIiIpKQVMSIiIhIQlIRIyIiIglJRYyIiIgkJBUxIiIikpBUxIiIiEhCUhEjIiIiCUlFjIiIiCQkFTEiIiKSkFTEiIiISEJSESMiIiIJSUWMiIiIJCQVMSJSaSxZsoTjjz+eBg0a4Jzj3HPPBSjy73Cce+65OOeiG1IKfPTRR1SpUoV58+YVLHvkkUeoV68e69ev9zGZJAoVMSISMw8//DAvvPBChb3eueeey9SpU7nhhht46aWXuOSSSyrstSU8O3fu5JprruHMM8+kffv2BcsvueQS0tPTufPOO31MJ4miit8BRJJFn1GTWJ6zJaS2TbMymT784Bgnir2HH36Y7OzsiM6ChGvbtm1MmzaNyy67jGuvvbbIui1btpCamhrzDBK6sWPHMnfuXF577bUiyzMyMhgyZAh33303N998M/Xq1fMpoSQCFTEiFWR5zhaWjjo6pLbZwz+IcZrKZ9WqVZgZdevWLbYuIyPDh0Th27hxIzVr1vQ7RlDRzvbkk0/SuXNnunTpUmzdWWedxciRI3nhhRe45pprovaaUvnocpKIsHTpUk466SRq1apFrVq1OO6441iyZAnZ2dn079+/WPuJEycycOBAsrKyyMjIoHPnzjz99NNF2jjn+PXXX5k6dSrOuYLH0qVLw8r2zjvv0K1bNzIyMmjevDm33norEyZMwDlXcKnq3HPPpWXLlgDcfvvtBa81ZcqUgiy7nw364IMP6NevH/Xr1yczM5MWLVpw4oknsmDBgmIZNmzYwNChQ2nYsCEZGRn06dOHr7/+ulg7M+Opp56iR48eVKtWjRo1ajBgwAAmT55cpN3SpUtxznHbbbfx+uuv06NHDzIzM7n88stD3i+33XYbzjnmz5/PTTfdRLNmzUhPT6dLly58+OGHxdrv3LmTe++9l44dO5KRkUG9evU44YQT+PHHH8PKlr8vJ02aRO/evalWrRrNmjXj3nvvBWD9+vVccMEFNGzYkGrVqnHMMcewYsWKIq/xxx9/8Pnnn3PUUUcF/dlat25Nu3btGDt2bMj7Q5KTzsSIJLm1a9fSt29fVq1axZAhQ+jQoQPTpk1jwIABbNq0qVj7Z599liFDhrD//vtz8803U716dSZMmMDQoUP55ZdfuP/++wF46aWXuPrqq6lfvz4333xzwfc3aNAg5Gzjxo3jpJNOIjs7mxEjRlClShXGjBnDBx8UPVN1ySWX0LVrV66++mpOOOEETjzxRAA6dOgQdLtTp07l2GOPpVOnTtx4441kZWWxYsUKJk6cyKJFi2jbtm2R9ocffjgNGjRgxIgRrF27ln/9618cffTRLFmypMjZibPPPpvXXnuNk08+mfPOO49t27bxyiuvcNhhh/H2229z7LHHFtnu+PHjefTRRxk6dChDhgyhVq1aIe+bfIMHD6Zq1apce+21bN++nYcffpjjjz+eBQsWkJ2dXdDuzDPP5I033uCwww5j6NCh/PHHHzzxxBP07t2badOm0a1bt5Czffvtt7z33ntcfPHFnHPOObzxxhsMHz6cjIwMXnzxRbKzs7nttttYtGgRjz76KOeccw4TJ04ssv8B9t133xJ/rt69e/Pyyy/z999/U6NGjbD3iyQJM6tUjx49ephIPGp5w/sxaVte1113nQH28ssvB13er1+/gmUrVqyw9PR0O/3004tt54orrrCUlBT75ZdfCpa1bNmyyPeHY+fOnda8eXOrV6+erV69umB5Tk6OtWjRwgAbM2ZMwfIlS5YYYCNHjiy2LcAGDx5c8PXVV19tgK1atarUDIMHDzbAhg4dWmT5G2+8YYA9/fTTBcvefvttA+yZZ54p0nbHjh3Wo0cPy87Otry8vCJZq1SpYnPmzClrVwQ1cuRIA+zoo48u2K6Z2YwZMwyw4cOHFyz75JNPDLBTTjmlSNvvvvvOUlNT7cADDyxYVlY2wJxz9tVXXxUs27ZtmzVu3Nicc3b55ZcXaZ+/r+fNm1ewbMSIEQbY999/X+LPd+eddxpgM2fODHGPSGUFzLQS/ubrcpJIknvvvfdo0qQJp59+epHlu3eOBXjzzTfZtm0bF1xwAWvWrCnyGDRoEHl5eUU+cZfHrFmz+P333znvvPOoX79+wfLatWszZMiQcm27du3aALz11lvs3LmzzPZXX311ka8PPtjrdL1w4cKCZS+//DI1a9bk+OOPL7JfcnJyGDRoEEuXLi3SHuDoo48u8WxRqK688soit4H36tWLGjVqFHmtcePGAXDzzTcXadulSxcGDRrE559/zurVq0PO1rt3b/bbb7+Cr9PS0th3330xM6644ooibfv27QsU3Vf5rxWs/1K+/A69f/75Z4ltRHQ5SSTJLVmyhH333ZeUlKKfaRo2bEhWVlaRZXPnzgXg0EMPLXF7q1atikquxYsXAxS5/TZfx44dy7Xtyy67jHfeeYdLL72UG264gQMPPJAjjjiC008/PejlrtatWxf5Ov8P7Nq1awuWzZ07l40bN9KoUaMSX3fVqlVFLlXtftkqErtny89XONuSJUtISUkJWpTsvffejB8/niVLlhT52UvLFuw169SpA0CrVq2CLi+cJ7+Q8j5kB5e/TuP0SGlUxIhIyPL/sPznP/+hSZMmQdsE+wMXb+rVq8c333zDtGnTmDBhAp999hlXX301I0eO5MMPP6R3795F2pd0e3bhP8JmRoMGDXj11VdLfN1OnToV+bpatWrl+ClCzxaJ0rKVdrt6KHnyi6V169bRvHnzoO3XrVtXpK1IMHFXxDjnagBXAKcD2cA2YAHwLPCilffIFJEisrOzWbRoEXl5eUXOxvz555/k5OQUadumTRsA6tevX+rZmHzl+RSdXwwVHs0135w5cyLebr7U1FT69+9fcPfVDz/8QI8ePbjrrruKdRwORZs2bViwYAH7779/3HVEbd26NXl5ecydO5fOnTsXWZe/L3c/gxJL+cXcwoULg95iDbBo0SKqVKlCu3btKiyXJJ646hPjnEsBPgLuBL4BrgHuAlKBMcAo/9KJVE6DBg1i5cqVxQYde+CBB4q1PeWUU0hPT2fkyJFs2VJ84L4NGzawbdu2gq9r1KhR8Ik6XD169KBZs2aMGTOGNWvWFCz/66+/it3OHa7C28vXvn17MjMzI857zjnnkJeXx4033hh0fbQus0Xi+OOPB+Cee+4pckbkp59+4t133+XAAw+s0DMe/fr1A+Crr74qsc1XX31Fjx494q4glPgSb2di9gMOBB42s4KedM65J4F5wCXADT5lE6mUbrjhBl599VXOO+88ZsyYQfv27Zk2bRpffPEF9evXL3I2pVmzZjz11FNceOGFdOjQgbPPPpuWLVuyevVqfvzxR8aPH8+cOXMKbu3df//9ef7557n11lvp0KEDKSkpDBo0iOrVq5eZKzU1lYceeohTTjmFfffdl4suuogqVaowevRo6tWrx2+//Rbxz3zRRRexbNkyBg4cSMuWLdmyZQuvv/46Gzdu5Jxzzolom/m3VT/++OPMnj2bY445hvr167Ns2TK+/PJLFi1aVNDPp6IddthhnHLKKfz3v/9l/fr1HHPMMQW3WGdkZPDoo49WaJ4GDRrQv39/Pvzww6DF8i+//ML8+fODrhMpLN6KmPyBCIqMjGRm251za4D0io8kEh1NszJDHom3aVZmjNPsUr9+fT7//HOuueYaRo8ejXOuYIC2Xr16kZlZNMt5551H27ZteeCBB3jmmWfIycmhfv36tGvXjjvvvJPGjRsXtP3nP//JunXreOKJJ8jJycHMWLJkSUhFDHiFwZtvvskdd9zBbbfdRsOGDTn33HM56KCDGDhwYMQ/89lnn80LL7zAiy++yOrVq6lVqxYdO3bkzTff5KSTTop4u6NHj2bAgAE8++yz3HPPPWzfvp3GjRvTvXt37rnnnoi3Gw2vvPIK3bt3LxgFt3r16vTr148777yTffbZp8LzDB06lFNPPZVZs2bRo0ePIutefvll0tPTK2S6CklsLp66mDjn6gCLgZ3ApcDXQDVgMHA9MMTMnittGz179rSZM2fGOqpIpbd27Vrq16/PJZdcUu7LN9E2ZcoUBgwYwJgxY/SHLkHl5ubSpUsXunbtyssvv1ywfOvWrbRu3ZrTTjuNf/3rXz4mlHjhnJtlZj2DrYurPjFmth44FlgHvAH8CswFhgEnlVTAOOcuds7NdM7N3H2sAxEpW7D+LaNGeV3QDjvssIqOI0kgNTWVBx54gNdee63g1n2Ap59+mq1bt3Lrrbf6mE4SRUSXk5xzbYG9gYaAAauBn8xsYanfGJq/gZ+Ad4EvgLp4RcyrzrnjzGzC7t9gZs/i3b1Ez5494+fUkkiCOOqoo2jZsiXdu3cnLy+PTz/9lPfff58DDjigoFNotGzYsCFo0VRYWlpaqQOhVVZbtmxhw4YNZbYrfMkukR1xxBHk5uYWWXbVVVdx1VVX+RNIEk7IRYxzrgMwBDgZyD+C8nv8WaDNKrwzKM+Y2dxiGyn7NfbBK1yuNrOnCy1/Da+wec45t6eZ5Za0DREJ3zHHHMN//vMfxo0bx5YtW2jWrBnXXHMNI0eOLHVMkEhceeWVvPjii6W26devX8Hkjcnk9ddf57zzziuzXTx1AxDxU5l9YpxzewL3AicAW4BpwJfAL8BavEKmLrAXsD/QF8gE3gZuMLOQu+M750YD5wH1zWztbuseAy4D9jKzX0rahvrEiMS3OXPmFJvVeHd16tQp1tkzGaxcuZKff/65zHahjNEjUlmU1icmlDMxc4AfgXOBt82s+LS2RV+sOt7ZmisD35sRRtamgedgH/2q7PYsIgmoY8eO5Z42oLJq0qRJiSMhi0hxoXTs/T8z62lmL5VVwACY2SYze9HMugOnhpknfxjOcwsvdM5lAccB64FFYW5TREREKqEyz2qY2buRbtzM3gnzWx4GzgFGBfrHTMe7VHUR0AQYpv4wIiIiAnF2acbMfnXO7QuMAA4BTsPrh/MdcI2Zve1jPBEREYkjUS9inHNnAeeb2cGRfH+g0+7g6KYSERGRyiYWg921BPrFYLsiIiIiBeJqxF4RERGRUIV0Ock5F87Uq7UjzCIiIiISslDPxGTjFSebQnjsiHpKEZEITJkyBeccL7zwQlS3+/HHH9O/f39q1KhBgwYNuOyyy9i6dWtUX6Myqkz7Tb9bHr/zhlrELAFmmtk+ZT2Ax2OYV0QqwObNm2ndujXOOS677LIKec0FCxYwYsQI9t9/fxo0aEDNmjXp2rUr//znP9m0qcwhqirMgw8+yBFHHEGTJk146KGHGDRoEE888QRXXnllzF87UfZRMNpvZfNzH0UiLvKaWZkPvPmQVofY9mYgN5S2sXj06NHDRKR8rrnmGqtRo4YBNmzYsAp5zRtuuMFq1KhhZ5xxhj366KP21FNP2SmnnGKAde7c2TZv3hz2NnNzc23Lli22c+fOqGScMGGCOefs/vvvL7L88MMPt7S0NNuwYUNUXqcksdhHFaEy7rfK9rsVrorMi3cSJXjNUdKKIo3gRiAPyA6h7VnA5FC2G4uHihiR8pk1a5alpqbagw8+GFERM3nyZANs8uTJYX3fN998Yzk5OcWW33zzzQbYY489Ftb2oi03N9c6duxo3bt3t7y8vCLr7rnnHgNs+vTpIW8vkv0U7/somGjvt0jE+36Lh30UjorOW1oRE9LlJDO7x8xSzGxpCG1fNrMBoWxXROJLbm4uF110EUcccQQnnnhihb52z549qV27+H0Bp57qzV7y008/FVm+detWbrvtNtq1a0e1atXIyspin3324brrritoE6zfwgsvvIBzjkmTJvHAAw+w5557kp6eTtu2bUudXfvjjz9mzpw5XHHFFTjniqxLS0sDYMOGDWH/3OEIdx8BbN++nfvuu4+uXbtSrVo1ateuTc+ePXn88aJX/tesWcOwYcNo3rw5aWlpNG/enGHDhrF2bZG5eEPa74Ul4n6L998t/Z/uElcj9oqIvx566CHmzZvHW2+95XeUAsuWLQOgUaNGRZYPGzaM0aNHc8455/CPf/yDnTt3snDhQiZNmhTSdm+66Sa2bNnCJZdcQnp6Ok899RTnnnsue+21F3369CnW/vXXXyc1NZW+ffuyZs2aIutWrVoFQM2aNSP5EcutpH20fft2Dj/8cKZMmcLAgQM566yzyMjI4Mcff+Ttt98u6O+0YcMGDjjgABYtWsT5559P9+7d+fbbb3nqqaeYNGkSM2bMKPjZwt3vibjf4vl3S/+nuynpFE2iPnQ5SSrE6KNKfsx+ueLbR8HixYutWrVqNmrUKDMzW7JkSYVeTgpm586d1rt3b6tSpYrNmzevyLo6derYkUceGVKWMWPGFCwbM2aMAda1a1fbtm1bwfJly5ZZWlqanXbaaUG31aJFCwNKfSxfvjzkny1a+6m0fXTvvfcaYDfeeGOx78vNzS3490033WSAPfHEE0XaPP744wbYLbfcUrAslP1eWLT3W7Qk6u9WMv6fUsrlJJ2JEREAhgwZQuvWrfnHP/4R8vfk5eWxbt26IsvyTyNv2LCh2Ke0unXrkpIS+hibV111FV9++SV333037dq1K7Kudu3a/Pzzz/z000906tQp5G3mu/TSSwtOfQM0bdqUtm3bsnDhwmJt16xZw2+//cYJJ5zApZdeWmz9KaecQnp6OnvssUfQ14rlfiptH73yyivUqVOHESNGFPu+wtsfN24cDRo04OKLLy7S5pJLLuH2229n3Lhx3HnnnUB4+708+y0nJ4eHH3641O0XdsUVV1C3bt2Q2yfq71Yi/5/GREnVTaI+dCZGJHwvvfSSOeds2rRpBctCOROT3ybUx5IlS0LOdMsttxhgF198cdD148ePt5o1axpgrVu3tgsuuMDGjx9f5NNoaZ+WJ06cWGyb/fr1s+zs7GLLv/76awPs7rvvLrZu8eLFBtgZZ5xR4s8Sq/1U1j7KzMy03r17l7mdjIwMO/DAA4Ou69Onj2VmZhZ8Hcp+z1ee/RbuPlu4cGGZP2e+RP7dSuT/00ihMzEiUpJt27bxj3/8g6OOOorGjRuzaNEiAJYvXw54ZwoWLVpE/fr1ycrKKvK9jRs3ZsKECUWWff/991x77bU88MADdOnSpVj7UNx2223cddddnHfeeTz99NNB2xx33HEsXbqUDz/8kKlTpzJx4kSef/55+vbty8SJE4t8Eg4mNTU16HLvPbOov//+Gwh+nf/NN98EdnUSDSYW+ymUfRQL4ez38uy37OzsoP8X5VXZfreioaL+T2OipOomUR86EyMSnvXr14f0SXf38SBKUt6+HiNHjjTABg8eHPSTYEny8vLs+uuvN8DeeOONIlmCfVoOlq9fv37WsmXLYsu/+eYbA+yf//xnkeXbtm2zVq1aWbt27cIeL6Q8+ynUfdSlSxerU6eObd26tdTtdezY0Ro0aGA7duwosnzHjh3WoEED23vvvUv83mD7PV8s9lt5VIbfrWT8P6W8t1iLSOVVvXp1xo4dW+zx5JNPAnDEEUcwduxYjj322JhnueOOO7j99ts5++yzGT16dIn9QnJzc8nJySmyzDlHt27dAIr1Pymvjh07Uq1aNT7++OMiy2+++WaWLl3Ko48+WuKn72gLdR8BnHnmmaxfv5677rqr2DordFbg+OOPZ/Xq1fz73/8u0ua5555j9erVnHDCCUD4+z0R91u8/27p/7SoqF9Ocs7lAsuBW8zsP9HevohEV9WqVTn55JOLLV+6dCkAe+65Z9D10fbEE08wcuRIWrRowaGHHsqrr75aZH2jRo047LDDANi4cSNNmjTh2GOPpVu3bjRs2JAlS5bw1FNPUadOHQYNGhTVbNWqVePCCy/k0Ucf5ayzzqJfv3589NFHjBs3jvvvv5+BAwdG9fVKEs4+Arjyyit57733uOuuu/jmm28YOHAgGRkZ/Pzzz8yfP5+JEycCcP311zN27FiGDRvG7Nmz6datG99++y3PP/887dq14/rrrwfC3++JuN/i/XdL/6e7KekUTaQPYCmwGm+E39nR3n5ZD11OEomOir7FevDgwaVezurXr19B223bttnw4cOtV69eVrduXUtLS7OWLVvaeeedZwsWLCiWpbyn/PNf88orr7T69etbtWrVrG/fvvbRRx+F9TMWFsl+Cmcf5duyZYvddddd1rFjR0tPT7fatWtbz549i916++eff9rQoUOtadOmVqVKFWvatKldeumltnr16oI2oe73wqK93yJR2X63ku3/lFIuJzkrdPopmpxznYGBZvZATF6gBD179rSZM2dW5EuKiIhIjDjnZplZz2DrYnZ3kpn9APwQq+2LiIhIclPHXhEREUlIUS9inHNnOedCm2BCREREJEKxOBPTEugXg+2KiIiIFNDlJBEREUlIIXXsdc4tDmObtSPMIiIiIhKyUO9OygbWAytCaFst4jQiIiIiIQq1iFkCLDKzw8tq6Jy7Bbi9XKlEREREyhBqn5hZQPcQ28Zm9DwRERGRQkItYr4F6jnnskNo+yvwWcSJREREREIQUhFjZveYWYqZLQ2h7ctmNqDcyURERERKoVusRUREJCGpiBEREZGEpCJGREREEpKKGBEREUlIKmJEREQkIamIERERkYQU9SLGOZfrnPvNOXdOtLctIiIiki8WZ2J+BzKBF5xzs2OwfREREZGQ504KmZllAzjnOgMDo719EREREYhBEZPPzH4AfojV9kVERCS5qWOviIiIJCQVMSIiIpKQYnF30lnOuUnR3q6IiIhIYbE4E9MS6BeD7YqIiIgU0OUkERERSUgh3Z3knFscxjZrR5hFREREJGSh3mKdDawHVoTQtlrEaURERERCFGoRswRYZGaHl9XQOXcLcHu5UomIiIiUIdQ+MbOA7iG2tQiziIiIiIQs1CLmW6Cecy47hLa/Ap9FnEhEREQkBCEVMWZ2j5mlmNnSENq+bGYDyp1MREREpBS6xVpEREQSUswmgCwP51xd4CbgeKAZsBH4CRhhZtMqIkOfUZNYnrMlpLZNszKZPvzgGCeKvmT4GaVySIbf1WT4GaVyiKff1bgrYpxzLYEpQA3geWAB3tgznYGmFZVjec4Wlo46OqS22cM/iHGa2EiGn1Eqh2T4XU2Gn1Eqh3j6XY27IgZ4GS9XZzNb6XcYEUk8ob5x6oyGSGKLqyLGOXcQcCBwhZmtdM5VBaqa2Wafo5UpHt40wz3FJ1JZxcOnRB2PIrEXV0UMcFTg+Tfn3HvAkUCqc24hcIeZvexbsk1rwPKgRsOgq+PhTTOeTvGJlKZcf+DNIHcHVEmLQbLoKdfxuGMLrJ4HNfeAmo1C+54S6GyThCKcY7KYzeugWt3oBgpR1IsY51wusBy4xcz+E+a3tws8PwcsBAYDacA1wEvOuapmNibIa14MXAzQokWLSKOXbtYYmHQX1GgMTbpAk87ec+POhDu+n69vPmaw8Q8GpHxLJ7cEPpoGR44q2mbOO5BZF1r2gZRdN7DpTVOiJaI/8BuWwQ+vw/f/hY7HwcG3FG3445vQsAOp5IaVxfdOiju3s6+bS6eUpTDuPVj5PayeD5YLLgVOHg17n1Ds2/SBRaIp7GNy20aY+x58/xr8+iVc/XOJBXcsxeJMzO9AdeAF59xVZhbqSL8ANQPPG4EBZrYdwDk3HlgM3O2ce9HM8gp/k5k9CzwL0LNnz9iMGNzuaKha3XuD+eMHWDTBOzMDfJFeF+xocC6kTYXzi1Ku6jjfslkw730v98rvYdNqxuR/iF3cHvJyISV1V/vJd3ufAms3h86nQpfTws4tEhXbNnJSymecmDoNHpoDGLToDY32Ltpu4x/w1gUAzEmvCs/u433QaNwZmnSFRh2havBLNuG+eZfr93vTGsjbCTUb71q2YzNvpN/p/fuXRl7mdkd5P+Oqn6D5/kW3sWMLjjxEfLXwExg/FOq0goOuhRR/LuxE/VXNLBvAOdcZGBjmt+f/tX4tv4AJbHO9c+5d4By8szVzoxA1PI06eo98O7bAqjmw8jteHv811+9ewPzvRsj5DVod5D0atA+5yCksvDfY92HtL94vVaEzKPz+NXzxKDToAG0GQuPOnPzOJuZaS34ednLxDV00GeZ/6FXYn/8Lpj3A+LQ9YcYK6HSSb6cNJclM+xdMvY8H07awNK8R9L8ROp8CdVsVb1u9AQybASu/58U3xnNx+kb4eRzMesFbf/zT0PX0qMQKq5jfvA6WToMln3mPNQtg/2FwxN27GmZmccb2m1iY15Rvbjur6EY6nVh8w188xrT0Z+DTb6HL6VC/TTl+GpEQrPoZqmRAvT13LWt3FJz/CTTfN6K/bdESs9LJzH4Afgjz25YFnv8Isi7/TqU6EYeKpqqZ0KwHNOvBk2815vrd11fJ8M58zHvf+7p6A8juy+mpdWD93lAnOzo5NiyDJd6b5PT0j+GxtTDkc2i8z6423c+BnudD1YyCRTPHl/JpMq0a7HOy99j4B/w4lrT/PQcfXgvpNQvOzIjEVJ2W0OU0TvyiJbOtDUv7H1Ny25RUaNAOGrTj7lerc/Hgo71Lpzm/eWcfWx5QtP1vX8GUUQxNbcQXeR0hdyekRvHtcMq9fJj2Ctz3q/d11epehq5nQuv+xZp/kdcp9G036cqivKY0+/whmPYgNO3hFTP6gCHR9Pef8ONY78PsHz9C98Fw7KO71lfNhBb7+ZcvIN469s4AhuANcLe7/GV/Vlyccjh0pPdYv7SgyGDpNO6puhKm7YBjH9vVNi8PNvxebBPN3GrvH1s3QEbtXSv+WglTR3nbXLfYW5ZZl+/y9qLpsTdBzSZFN5ReI/Kfo2ZjOOByjnq3NUuvahn8U7BIef30tld4Fz6r0Okk6HQSs6dHePnGOa8QqtOy+Lqtf8Hfq7ih6mTv6/se8IqMVgdBdl/vUlRhm9fBto3eMbn+10IrzNvW7u3XLmK91fD67bTqB3t0g9Sqkf0cu2s7kHN37GDp9T28fkDf/9f7gDHpTu8sauFPyyKR+ONHeP5w2LEJ9ugOR94f/KxgHIi3ImY88AhwlnPuLjP7G8A51wRv9N4FZrbIv3gRqJPtPbqfDWYcfNO/mdRnt46B2/+GRzoX+9bP0wP/mP03HHDZrhVVM+Hn8V7fgF4XeW+8DTsy7KaPOLpXaKe6I9J4t0+LZt4n2pa9Y/eaUvmt/AHGXeKdnj7lxYp5zbYDoe1Aegx/lf1T5vJEj43eh4IF/4P0WnDjbh8qPrsfvnrSOyYf2W1bGVlw/eKi/cpOfJYzv/mQpQfF8His2dh7XzjgMljxLbx6Gqz8TkWMlM/2TTD2PO+s+0WfQsMOficqVSzuTjoLON/Mwu7CH+j7ci3wDPCVc2403t1JQwPPl0c1bCmaZmVGv4Oqcyy2PYq/yVTJgOOeLNb82je/B+CBvQ4puiIzC65fUrTfSwTK/TPOHA0f/APOfBPaHFauLJKktm+CN8/37oY7+sESm8XkeATWUpsP8vbniUGBYmPDMq8g2F2nk6FRJ65983seOLlL0XXB7siIoI9AuX7GPbrBFd96l4JFyuOj62HtIhj8bqkFTDh3q8ZSLM7EtAT6RfrNZvasc24NcD1wJ5AHfAmcYWbToxOxbOHcRlnuN9cqadDtzGKL33w9C4AHgv0ilbOAgSj8jF3PgG+eh3FDYOj0ondciITiw0JvmNXrl9iswo7H2s28x+4C/d/efD2LB7rF5uxKuX9GFTASDe2PgXptvDP8pQi1g3usxdvlJADM7G3gbb9zSBmqZsL/jYFn+sHbF8PZ46NSXEmS+GEsfPcyHHRdmW+Y4QjnjEbTrMzyD2EQr/LydDxK+Nod6T0SREhFjHNucRjbrF12k8olVqe6I1Hhp/gatIOj7oN3L4fpD0Hfa6KzXanUWrhV8P4IbwyUfsOjuu1wB6OL5bHr2yn3r5/xxvE4443oblckzoR6JiYbWA+sCKFt0p3TrNBLT2Xw5RRft7Phl8kw6Z/enR0iZRhUfR7rtxnHLDyd5Td/XGrbRJ5XKFbHY1kfnP4vdRH3V53IfbcOoWlWdMbHkUps1Zywz2DGi1CLmCXAIjM7vKyGzrlbgNvLlaoSS9RT3WXlrslRfJA2jZXPXU7TrHsqMJkkoutuuQ82D2d6HIxrEk9nUkNV5gcnOwreWsv1P7/F9WdcWDGhJDEtnAivnMT0k573xgZLMM6s7FH6nXNv4E0D0CCEtjfjTdaYWlbbWOjZs6fNnDnTj5eOCd/ndQnHn/O8OzUy42M8QpFoS6jjcesGeLqvNz3KkGk6LqW4javg6T7eYKwXTSpxag6/OedmmVnPYOtCPRPzLXCycy7bzJaW0fZX4LMw8kkpEmoixYbt/U4gElMJdTxm1IaTx8DogfDuFXDKf3wdHl7iTF4ejLsYtv0Ng9+P2wKmLCF1XTeze8wsJYQCBjN72cwGlDuZiFQeeXnw+lneCLNScZr1gENGwNx3vXGdRPJ98QgsngJHjkroD6BxeYu1VAKb13nzugy4WeNXJInSLrUMTX2XG6q+xw0/NOb1VzL9v9SSTHpfDuuWeAPiSdIo7Xjs6hYxNu1OPs7bn8vG1qfphEkJezyqiJGo6zNqEi3/+oZX0x7nlWlzuXnnBSW21R+zyqPEGdd/nwGjx0LHE7j35Pu517mE60ib0FJS6PPzsSyfvhIoe7/rmKwcSjwezeDZ/rClKccMeYNjMmon9PFYZhHjnDvEzD6NZOPOuUPNbGIk3yuJa3nOFqaPugEmbOLM6Y9w5ulnw94nBG2byAePhGBLDrx5AdRuCoMeUZ8Mn5T4By0IHZOVnHNw6suwZX3RiYUTVCh9Yv7nnJvknDvGOVfmHUfOuarOuROcc1OBD8sfURLWwbdC0x7w7pW7zfwrScEM3rsCNq6Ak0ZXijfMSsEM1iTWPLoSZVnNi8+8nqBCKWK6ATuBd4EVzrlXnHNXBoqaA5xzfZxzg5xz/wjciv0H8CawGegas+QS/1KrwknPAwZvXQi5O/1OJBVp9osw5x04+BZo3svvNJLv09vhuYP1wUIqhTKLGDP7ycwGAn2AT4BBwEPAO8A0vNupxwMPAAMDy/c3syPNbE6MckuiqNsKjnoAls2A+Toxl1TSakDP8+GAK/1OIoX1OBdyt8PnD/mdRCrSwone5d1KJuTZwczsSzM7G6gD7A9cAAwHbgDOB3oBdc3sfDP7JhZhJUHtczLUauYVMpI89jkZjnlIkxDGmzrZXh+1H9/0xgiRym/TWvjv6TD1Xr+TRF3YdyeZWS4wI/AQKVtKKgydDplZficREYAeg+H7V+HncdD9bL/TSKx9/5p39q37OX4niTp9RJKKoQJGJH403w/qt4NZL/idRGLNzPt/brYvNOzgd5qoUxEjItG1cAL8OdfvFFIa57yzMctnwqqf/U4jsfTbl7B2off/XQmpiJGKt32T3wkkVnJ3evP0fHKr30mkLJ1Pg4wsFTGV3awXIb1WiWN1JTqN2CsV65VTvD4yp7/mdxKJsqZZmVxw6908n7aCS9aeyselDJrWNCsxJ5urVKrXg2sXQJV0v5NIDDTNyqTz8NeZkf4WY3P7ceuIKaW2TVQRFTHOOQc0B/4ws+3OuRSgWf7X0QwoiadpVmaJo35eXyWdi1Pf54DhL/MndRL64JGipg8/GF59FpY35Jlbb/bGCZK4UNoxGaytJL7pww+GFd/Bm805+/9GcHaTLn5HiglnZuF/k3P1gD+Bw8xsknOuEbAi/+soZwxLz549bebMmX5GkNKsWwyPdvMGQDvoOr/TSDRtWA4Pd4I+V8GhI/1OIyLgdexN8Ok+nHOzzKxnsHXl6ROz+15J7L0kFaNua2h1EMz+D+Tl+Z1Goum7V8DydMtuItq5HbZu8DuFxEKCFzBlUcdeqXjdB0POb7B4st9JJFrycmH2S9Cqn1eoSuLYuQ0e6QJT7/M7iUjYVMRIxeswCDLrenPrSOWwZT00aAs9z/M7iYSrSjo06+kNiLZzm99pJBq2/e1d3k0CKmKk4lVJh65nwIJPYOtffqeRaKheH856q9Lexlnp9RgMm9fCvPf9TiLR8OMbXv+0NQv9ThJzKmLEHwdcAVd8Cxm1/E4iIq0PhtotvDFFJPHNehEadoR6e/mdJOZUxIg/ajaCWk38TiEi4E3S2f0cWDLVu4NQEteK72Dld17fw0reqRdUxIhIeZjB7zO8Z0ls3c4El+J10JbENftFqJIBnf/P7yQVQkWM+E9/ABPX0mnw/GEw912/k0h51doD2hwOCz7WMZmotm+CH8ZCx+Mhs47faSqEihjx16JP4Yn9YPM6v5NIJGa9ABm1oc1Av5NINAx6GC6enBSXISqln8fB9o3Q41y/k1QYFTHir5qNYc18+P6/fieRcG1aC3Pf8yYSrKqh6iuFmo01l1IiW/YN1G8HLfb3O0mFiXQCyHVAK+CPwNerd/taJDSN9oamPb3ruPsP1SfARPLDfyF3u3d7roj4b9AjsCUnqd5HIzoTY55fzWxb4Ou8wl+LhKXHYFg9D37/2u8kEioz7zbOZr28QlQqn7xcvxNIJDKz/E5QoXQ5Sfy394mQVkNjVCSS37/2LgN211mYSumrp7y+aipkJM6piBH/pdeAfU72OqVtyfE7jYTizzlQrT50OtHvJBILtfaAtQth0US/k0gotm/yO4FvIu0TIxJdPc717nT5cSzse5HfaSSgz6hJLM/ZEmRNI9J4kO0jphQsaZqVyfThB1dYNomhtkdC9QbeMdn2cL/TSEBJx+N/0+5kldXhyh2XFSxLluMx7CLGOfckcKuZrY1BHklWe3SDk57XrbpxZnnOFpaOOjqkttnDP4hxGqkwVdK8+c2+eBz+WqnRteNE0ONxzSJ4fC4cMoLj+u5alyzHYyRnYi4AznDO3Q08bGbbo5xJksyuTxeZwLRS2ybLpwsRv+Qfj9muBVPSc7n/3hE8kXt80LY6HuPA7BcgpQp0PcvvJL6IpIjZG7gXGAUMdc7daGYa5EMipk/7CWTLeq8TdmpVv5NIjBQ5Hl8Yz3U5X3HdFc948yvtRsejz3Zuh+9eg7ZHePPRJaGwO/aa2SIzOwk4EG9cmFedc1865w6IejoRiS8TRsAT++qulWTR41zI+c2bXkLiz/wPYPOapBqhd3cR351kZl+YWW/gNKABMM0594ZzrnXU0kny2bkNPr4ZfnzT7ySyu20b4ce3oOUBkJLqdxqpCO2PgXPegey+fieRYGa9ALWbw57Je0mv3LdYm9kbQAfgWuBgYI5z7oHybleSVGoaLPgffPeK30lkd4smwo5N0OUMv5NIRamaAa37B72UJD7bugGWTIPOpyb1h4qo/Gaa2Q7gdeAyIAe4OhrblSTknHd9d+nnST32QVxaOAEysqD5fn4nEZGM2nDVj7DvxX4n8VUkt1jXAzoVeuwdeGTlNwF0x5JErs1h8OXjsOQzaHek32kEIC/PK2L2OgRSNbyUSFyo3dTvBL6L5N1oNWB4xQrACuBr4IdCj3lRSSfJqcUB3h0wCz5WERMvVn4Hm/6ENhr4LCktngpz3oGjH0yqyQUl/kVSxIwBvidQsJjZuuhGkqRXJc27Dr9wgjfRoN40/bdwAuC8MzGSfNYugpnPw35DoEFbv9OIFAi7iDGzC2IRRKSINgNh3vveHD2aJdk3TbMyyR7+ARm0obO7hRl3ljzTeNOszApMJhUqfyTthR+riPFR/vF4WuokGpDDY7knsOuiSPG2yUAXtyU+tRkIHY4Fy/M7SVLTaKwCQFZzaNgRFn4CB1zud5qkVXA8PnMvVK3GNecf42+gOKAiRnyX/+miuNPg29+A34q0FZHYKel4HF5lTy5I/ZBuw8fyN9UK2koF2/gHrPweDhnhd5K4oCJGfKdP+yLxo8TjcWkWvPAeP52TDh1DmyZEYmDhBO9Zk+UCURonRkQqqdyd8MG1sOJbv5OI35rvC+m1vUtK4p+Fn0DNPaBRJ7+TxAUVMRLf8nJh3WK/UySvZTPgm+dg/a9+JxG/pVaF7md7w9yLP3Zuh18me2Np6a5NIM6LGOdcNefcYuecOece9zuP+OC9K+H5gd5ga1LxFn4CKVVgzwF+J5F4cPg/of8NfqdIXr9/Bds3QluN15QvrosY4A68ySUlWbU6CDathpW6nOGLhROgRW9viHMR8ZdLhT0PgVb9/E4SNyKZdmBSGU0M2IJ3S8knwDtmZhG8TnfgKuB64MFwv18qib0OBZz3x7RpD7/TJJcNy2HVT3DYHX4nERGA7D7eQwpEcndSayCTXWdIcgLPWYHn1XhneI4CLgGmO+eONLOQZ/NzzqUCzwH/A95GRUzyqlYXmvXypiDoP9zvNMklvwOn7oKQ3W3dAClVIa2a30kkyUVyOak/sBm4H2hkZnXNrC7QCHgA2AT0BOoD/wIOBMK9of1qoD3erNiS7NoMhBWz4e8//U6SXBZOgNotoEF7v5NIPFk9H+5rDfOCje0kUrEiKWIeAqab2Q1mtjp/oZmtNrPrgS+Bh8xsnZldB3wAnBTqxp1zrYDbgTvMbGkE+aSyaXOY97xoor85kk2tJtD5FN0FIUXVawMZWd4UBFJxcn735pKTIiIpYg4GppWyflqgTb6JQLMwtv80sBjvLE5InHMXO+dmOudmrl69uuxvkMTSpAvUaKwipqId/SAccqvfKSTepKR4HywWTfSGQJDY27EFHu8Jk+7yO0ncifTupNLOL7en6IxUeXgdfcvknDsLOAwYamY7Qg1jZs+aWU8z69mggW5mqnScg7PehGMf8zuJiIBXxGxZD8tn+Z0kOSz9HHZuhZa9/U4SdyIpYiYCQ51zp+2+wjl3OjAEmFBocXdgaVkbdc6l4519+RD4wzm3l3NuL6BloEntwLKsCDJLomu8D6RV9zuFiADsebB3u69G760YCz6GqtWg5YF+J4k7kRQx/8C7A+kV59wy59yUwGMZ8DKwBrgGwDmXgVeE/CeE7ebf8XQ0sLDQY0pg/VmBry+MILOIhGr7Jti5ze8UEs8y60Dz/bw/rhJbZl7/o1b9oGqG32niTthFjJn9CnTBu+35L2C/wGNjYFmXQBvMbKuZHWxmD4Ww6U3A/wV5XBpY/7/A1++Gm1lEwjD7Jbi3FWxa43cSiWdtDoM/foC/VvqdpHJbsxByftt1g4MUEdEs1ma2Dm8QuuujFSTQB+bN3Zc757ID//zFzIqtlySy9heY/gj0ux5qh9NXXMKy8BOo3RSq1/c7icSzLqfDXodAzcZ+J6ncNF5TqeJ92gGRXfJ2wuwXdR0+lrZv8joR6g1TylKriXfnoG7Bj62Fn0DDjpCliTeDiehMTEUKjBWjo0SgflvIaukNwtbzfL/TVE5LPoPcbTp1LRIvTh4Dfy33O0XciqiIcc71xhtNtw1Qj+JFhpnZnuXMJlKUc94Zgu9egR1b1cktFhZ8DGk1oMUBficREYDq9byHBBX25STn3DnA53ij8GbgTfT4626P36KYUWSXNgNhx2b4dbrfSSofM+8sV+v+UCXN7zSSKGb/B7592e8UkqQiORNzMzAfONTMVkQ5j0jpWvWFKhnedeK9DvE7TeXy51z4a5nXcVokVD+9DX+tgG5n+Z1EklAkHXtbAk+pgBFfVM2EVgepc28s1G8Dg9+D9sf4nUQSSZuBsGY+rF/qd5LK5c+58MktsPEPv5PEtUiKmGVAerSDiIRs7xOh2b7efCISPalVvQJR198lHG0P954XTii9nYRn3vvwxWPgdBNxaSLZO08DZzrnUqMdRiQkXU+HE5/xzsqIiL/q7Ql1W+vsaLQt+AT26AY1GvqdJK5F0idmFl6n3hnOuSeAJUCxqUzN7LNyZhMRkUTQZiDMegG2b4a0an6nSXyb1sKyb6DfDX4niXuRFDGfFvr3vwHbbb0LLNOZGpFEMXM0VG8AHQb5nUQSUZuB8PXT3kCJbTVQYrn9MgkwDToZgkiKmPOinkIkEju3wba/1YejvPLyYPLd3gRzKmIkEi37QNOekLfD7ySVw8KPoVp973KSlCrsIsbMXoxFEJGw5OXBI128ToWDHvE7TcLoM2oSy3OKdoju7H7h3fTVXDW7IeNnflCwvGlWJtOHH1zRESURVc2Aiz4tu50UEex4TCGPWekfMSmvG9fc9FHBch2PwcX9tAMihRU+6J+q2owuM9/lgOmHEWxmCh30xS3P2cLSUUcXXThlFExxPHzztTxc6KxW9vAPEClLsD/EJdExWVTQ43HTWni3Hyd1O5OT2u9ap+MxuEinHaiON4P1CUDrwOLFwNvA/Wa2KTrxRIoqctDPXgvvXs7Sq7KhcadibXXQh2jBx9Cspy7LSUSC/iEugY7JEFSvB6e/6neKhBHJtAN1gRnArUAj4NvAoxEwAu+upbrRDCkS1F6BSQp1a2fk/v4TVsyGNof7nUQqi60b/E4gSSSScWLuANrjTQC5h5n1NbO+wB7AMKAdcFvUEoqUpFYTaNxZRUx5LJroPWvWaomGr5+B+/dSISMVJpIi5ljg32b2pJkVjA9jZrlm9hQwGjg+SvlEStdmIPz+NWzJ8TtJYsrbCc16ecWgSHk16gS522HxVL+TJKYtOd5NCxKySIqY/EtIJZkdaCMSe3seDJbnjU8h4et+Dlw4EVI0tLlEQfN9Ia0GLJ7id5LE9ME18PSBfqdIKJG8c60CSrt5vVugjUjsNesFg9/X5RCReJBaFbIPhMWT/U6SePLyvOIvyE0KUrJIipj3gAucc5c4t2tmKudcinPuYuB84N1oBRQpVZU0aNUXqmhOUpG40Lo/rFsM63/1O0liWfUTbF7j7T8JWSRFzAi826mfBFY456Y656YCK4CnAutGRi+iiMRErkZXlRhoPcB71iWl8OTvLxUxYQm7iDGztUBPYBSwFugVeKwB7gF6BdqISLzasRXu29O7m0Qkmhq0g5pNdEkpXIsnQ4P2UGsPv5MklIgGuzOzv4CbAw8R/819HzauhH0v8jtJXGualUn28A/ok/Ijr6Rt4Lx3VjN5XPAByJpmZVZwOqkUnIPjn4Tazf1OEvfyj8d0tvNd+uf8N3cAt5cwIKCOx+A07YAklPyDfncPVn2K/inf0/PtxljgBKMO+uIKhnyf8DV8WZUxI6+C9Bq+ZpLEVtIxCQsCj6JtZZeC43HxVPjPds47+3zOa3eEv6ESTJlFjHPunEg2bGb/ieT7REpT4rwr32+EcZ+z5MoW0KRLxYZKRIuneLfDqoCRctJcSFHQtDuc9qp3Z5eEJZQzMS8ARrAZ9kpmgIoYqTit+nnPv0xWEVOWTWth5Q8wQFeDReJCek1oH9r8U1JUKEXMgJinECmvWk2gQQevc9yBV/mdJr4tmQKY7oKQ2Mr5HeaMh14XQlVdRpLYKLOIMTONHy2JYc8B8M3zsGOL3jRL88tkSK8Ne5Q2ZqVIOf05Fz65BRrt7Y2sLRIDGmtcKo/WAyB3G/z2ld9J4tu+F8GghyFV/folhrL7QEpVr2iWkv34Jiz61O8UCSvidzHnXE9gP6AOxYshM7M7yxNMJGwtD4B6e8G2v/xOEt+adFG/IYm9tOrQfD8NelcaM/j0dmi0D+x1iN9pElLYRYxzLhN4GxiI19m3cKdfK7RMRYxUrPQacPksv1OISL49+8Oku2DTGqhe3+808Wf9Esj5DQ64wu8kCSvSaQcGAv/E6/TrgMHAkcA04BugY7QCiohIgtIUBKXLv9TWWvfPRCqSIuZkYKyZjQB+CixbbmYfA4cCacC50YknIlGTlwuz/wMb//A7iSSLPbpBRm1NQVCSxZOhVjOot6ffSRJWJEVMcyD/jqXcwHMagJntBF4DTit/NJFyyMstu02yWfEtvHs5/Drd7ySSLFJSvTuTtm7wO0n8ycuFJZ95l9xcOMOwSWGRdOzdWOj7NgJ5QOEZqzYAjcuZSyRyk++Gn96Cy2bqzaGw/FPXrfr7mUKSzUmjIUU3whaz4juvuNOlpHKJ5DfrF6AtgJnlAj/jXWLCOeeAE4HfoxVQJGw1GsLaRbBusd9J4sviydC4M1Sv53cSSSYqYIL7azlUq69BJ8spkt+uicBJzrnUwNfPAEc4534BFuL1i3k+SvlEwpf/yeaXSf7miCfb/obfZ3gDAoqI/zoeC9ct0l1b5RRJETOKXXclYWZPAtfiXUZaD9wE3BetgCJhq9saarfQHRGF/foF5O3QqWuReKLL3eUWdhFjZn+b2fxAJ978Zf8ys+5m1svM7jUzi25MkTA453WWWzINcneW2TwpLJ4MqenQYn+/k0gy+uNHeGI/72ygSBTpYqVUTq37w7YN3h05Aut/hZa9NaeU+KNWU1g9X1MQSNSpiJHKqVV/wOmSUr7TX4XTX/c7hSSranW9qS50PHpGHwlTRvmdolJQESOVU/V6cPSD0P4ov5PEj6oZfieQZLbnAFg2A7Zt9DuJvzaugt++gCrpfiepFFTESOXV6wJotLffKUQEvE7leTthaZIPtph/Nkqd7KNCRYyIiMRe8/2gSqYuKS2eApl1vTGbpNxUxIhUZn/Og38f5o0OKuKnqhle5/JknkfJzPv5W/fTIIBREsm0AyKJ468V8NtX0OlEv5P445dJXj+EahqlV+LAvhd7E5CaJecYKavnw8aVupQURREVMc65M4BhQBsg2LujmZkKJPHfj2Nhwgho0RtqNfE7TcVbPBnq7QVZzf1OIgLtjvQ7gb/yz0JpqoGoCbvQcM7dAtwOrAK+wBulVyQ+5b9ZLJ4CXU/3M0nF27nd60SZbD+3SLxqsT8MuAXqtPQ7SaURydmSS4EpwBFmtiO6cUSirNE+3iRriycn3x/zZd/Ajk06dS0SL/bo5j0kaiLpWVQLeEMFjCSElBSvE93iKd51+GSyeDK4FMg+0O8kIrvk5cKyWV7fGJFyiqSI+RbQBXZJHK0HwN+r4M+5fiepWIunQNMekJnldxKRXTauhH8fDD++6XcSqQQiKWJuAYY453ROTBJDQb+YJLu1c+8ToNeFfqcQKap2M6jXJvnGi/llEmxe53eKSifsPjFmNtU5dwHwlXPuK2ApkFu8mV0QhXwi5ZfV3LtDZ/V8v5NUrN7D/E4gEtyeA+Dbl2HntuQYfn/rBnj5JOh7DRx8i99pKpVI7k7aD3gRqAr0DTx2Z4CKGIkfF0+B9Jp+p4iJPqMmsTxnS0htm2ZlMn34wTFOJFKG1v1hxrPw+wxoFexPSOIKdjwOTPmGZ9PyOHVCBl9/8kHBch2P5RfJ3UmPANuB44BpZpYTrTDOubbAWcBAYE8gA/gFGAs8bGabovVakhyS4Q/88pwtLB11dEhts4d/UHYjkRjJPx5rsplv01N4+vnneGDnX0HbVqrj8YNJ8F11Xr/lCqiSVrBYx2P5RVLEdAZuM7P3oh0GOB9vEL13gVeAHcAA4C7gFOfc/mYW2l8kEZL0D/yW9bBpjXcJLRlHRZW4VeR4fP45LstbxmUXBT8+K83xCF7/n+w+RQoYiY5IOvb+iXcmJhbeBJqZ2Zlm9piZPW1mpwL/xCuedIlKpCxz3oXHe8KaBX4nESlZ6wGw6mfY9rffSWIr53dYu0ij9MZIJEXMaOAs51zUpxUws5lmtiHIqtcDz52i/ZqSRJZ8Bs8fDlty/E4SW4unQM0mUL+t30lESrb/ELjuF0iv4XeS2CqYakCDTsZCJIXI58AxeHcnPQksofjdSZjZZ+XMVlizwPOqKG5Tkk1KFfj9K6+Y6Xis32liIy8XlkyFNgN1KUniW2YdvxNUjBXfQY1G0LCD30kqpUiKmImF/v1vvDuRCnOBZamRhiqyMedSgVuBncCrJbS5GLgYoEWLFtF4WamMmvWCjNqw4H+Vt4hZ9g1sXgt7Hep3EhEBOPpB79ZqfaiIiUiKmPMpXrjE0sNAb+AmMws60IeZPQs8C9CzZ88kG1teQpZaFdoeAfM/gtydkFoJJ1qf+x6kVIU2h/mdRETAK15qN/U7RaUVyWB3L8QgR1DOuTuBy4BnzeyeinpdqcTaHwM/vA6/fQGtDvI7TXSZwbz3vbmiMmr7nUakbGbwv+FQqyn0ucLvNJKAwurY65zLdM6dExjwLqacc7fhTXEwBhgS69eTJLHXIVAlA+a+73eS6Fu/BNb/6hVqIonAOW9Os9n/8TuJJKhw707ahtcPJqbzJgUKmJF4IwNfaJZs0w9LzKRVhz0PgXkfVL5Zreu2hmsXQqeT/E4iEroOg2Dtwso3LciymfDSCbD2F7+TVGphXU4yszzn3G9ArRjlwTk3Aq+AeQk438zyYvVakqR6ng9/zoHc7ZVi3pamWZkhDwzWNCszxmlEwtT+aPjwWu9SaIN2fqcpt/zjcXiVV7kgdSo97p/FX8wrsa2Ujwv3JIdz7lbgFKCnmW2LahjnhgGPA7/h3ZG0ewGzyswmlLaNnj172syZM6MZSxJYMkw7IJIoSjoex6fdChjHb7+rYFlCH49m8Fh3qJMNZ4/zO03Cc87NMrOewdZFcnvGF8CJwHeBcWIWApt3bxThODG9As8t8C4l7W4qUGoRI1JYwr4JilRCJR6P0+bDp7ez9MauleNOntXzYN1i6H2Z30kqvUiKmMJFxCNEcZwYMzsXODeCTCLJbfww2KMr7HuR30lEwtf+GPj0dq+v2n4X+52m/Oa+DzjvUpnEVCRFzHlRTyHihzWLvMkSm/cqu208+3s1fPdK5fgEK8mpQVvYfxg06uh3kuiY9543uGbNxn4nqfQiGScm2GUekcTz9oXgUuGiT/1OUj7zPwRMt1ZLYjvibr8TREfOb7Dyezj0dr+TJIVIJoAUqRzaHwPLZ8JfK/xOUj7z3oesFtB4H7+TiEhqGhx0HXQ8zu8kSSGiIsY5V905d7tz7gfn3N+Bxw/Ouducc9WjHVIkJvLPXMwL7fbkuLRtozdrdftBmptFJB7UbAwH3wJ1W/mdJCmEXcQ45+oCM/BugW4EfBt4NAJGADMCbUTiW4N2UG8v70xGolo4wRvvpoMuJUklkLsDfpkM24vd8CoSVCRnYu4A2uPNabSHmfU1s77AHsAwoB1wW9QSisSKc97ZmKWfex18E9G896FafWge85lARGLv1y/gpePhlwTvpyYVJpIi5ljg32b2pJnl5i80s1wzewoYDRwfpXwisdVhEOTthAWf+J0kMm0Oh37XQ0rYIxqIxJ+WfSCzTuLObbZwAmxc5XeKpBJJEZN/CakkswNtROLfHt29GXRXBx8WPO51ORX2u8TvFCLRkVoF2h4JCz7yLi0lkm1/w3/PhM//5XeSpBJJEbOK0ieA7BZoIxL/UlLgsplw6Ei/k4gIeAPEbd3gXeZNJIsmQu42DXVQwSIpYt4DLnDOXeKcK/h+51yKc+5i4Hzg3WgFFIm5tGp+JxCRfHseDFUyE6/D/bz3IbMutOjtd5KkEkkRMwJYDDwJrHDOTXXOTQVWAE8F1uljrUgsrVsCy2d7E82JVCZp1WCvQ7yhD/J2nwM4Tu3c7vWra3eUd0lMKkzYRYyZrQV6AqOAtXiTNvYC1gD3AL0CbUQST6IUBd/8G0Yf7o0TI1LZdBjk9THJWep3ktAsnQbbNmioAx9EVDKa2V/AzYGHSOJbPR/eGAxH3QetDvI7TenMvFPXrfpBRi2/04hE394neI8q6X4nCc2896FqdWjd3+8kSUfTDogA1G4G65ckxq2dq36G9Uv1qU8qryrpiVPAAKz9xbsEVjXT7yRJJ6IzMc653niD3bUB6gG7j3duZrZnObOJVJy06rBn4Dr8kffG9xD+894HnHf9XUT8N/hd2LHF7xRJKewixjl3DjAG2AEsAH6LdigRX7Q/GuZ/ACu+habd/U5TsrnveyP01mjodxIRyaezML6I5EzMzcB84FAzS/Dpf0UKaXckuFTvTEe8FjHrl8KqH2HgXX4nEYm9z+6HX7+Es9/2O4nEqUj6xLQEnlIBI5VOtbrQ8oD4ntV65feQUlUDaklycKnePEoblvmdJLhEuZuxEoukiFkGJFCPK5EwdBjkTUGwZpHfSYLreBzcsATqtvI7iUjs5Rfr8frBYtqDMPoIb5wY8UUkRczTwJnOOc04J5VPh2Ph6H9B9Xp+JylZek2/E4hUjAZtoX7b+B29d+67kJcLVdL8TpK0IukTMws4CZjhnHsCWALk7t7IzD4rZzaRilerCfS6wO8UIpKv/TEw/RHYvM675Bsvcn7zLu8edoffSZJaJEXMp4X+/W9g94uCLrBMZ2pEItBn1CSW54R2u2bTrEymDz84xolEfNThGG9m6AX/g65n+J1ml/xLXOqf5qtIipjzop5CRAosz9nC0lFHF1249S94bgAcenuRQe6yh8dpXwGRctpVzBtfpNflp7f+zcX/rR20bayL+WAfLP6b9iJZNOeI++cB8yosixQVdhFjZi/GIoiI3wq/UbVxy+iasoixuf2Dtq3wN6pFE2Dtovg6nS4SQ0WK+R+3skdmHZbudUjQtrEu5ot9sNi0Bh6YD32vYenBRT9w6INFxdJ0myIBRd6oJoyEL0dz/3U3QWadYm0r/I1q3gdQrb43yJ1IstnnZL8TFDX/I7A8XUqKA5o7SSSYDoMgbycs+MTvJLBzm5ej/VGQoq5mIr5rdRAcMQqadPE7SdJTESMSzB7doWYT7xZKvy2eCts3QvtBficREYA6LWH/ofE9x1qSUBEjEkxKCnQ+BeZ/CKvm+JfDDKY9ANUbep/+RJKVGSycAD++6XcSiSMqYkRK0ucqb2C5iSP9y7BoIvz+NQy4Capm+JdDJB588Rh8eB1syfE7icQJFTEiJalWF/peCws/8S7p+GHPg+Gk56Hb2f68vki8cA4G3glb1sHnD/mTYcJI+Oopf15bglIRI1KafS+GTicFvUOpQqSkendmpOpGQhGadIHOp3qFRM7vFfvaq+d7Z4LWLanY15VShfTO6Jz7R5jbNTPzqVQWiaKqGXDyaL9TiEi+g2+Bn8fDpLvgxGcq7nUnjIS06tDv+op7TSlTqB/vHghzuwaoiBGJQNOsTPYZPpaNVAuprUhSyWoB+w+B6Y9C70sr5Dbn/dxcWPARHDICqteP+etJ6EItYgbENIWIFJh+aXt4Yj848t74mitGpAI1zcoscVDJWnRianp1Zj95JRfsuC62xXxeHiMzXmNFXl0GfNCabR+UPtClPlhUrJCKGDPzqVejSMUp7U0ToK37nRuq/JdrdgyhaVbD2AWZ/E/YuRVaHhC71xCJc2VO67GoHoc0aMfS2s1iG+Tnt+loi+D4J5nf7YTYvpaELdQ+MfsCi8xsXYzziPimzDfNVXPg6Rv5rs8PcMTdsQmx6mf49hXoPQzqZMfmNUQqgxLmUYq6mWOgUSfoclrFvJ6EJdS7k74Ejsj/wjlXwzn3qnOuY2xiicShRh2h65kw49nY3aEwYSRk1IK+18Rm+yISnrPeglNf0pQfcSrUImb3sZXTgdOAxtGNIxLnBtwEKVXg0zuiv+3FU7zZqg+6TrNVi4Rj53bYsTU2266aAXVbx2bbUm4aJ0YkHLX2gAMug5/fhmWzorfdvDz45Fao3QJ6XRS97YpUdlty4Ile8OXjficRH6iIEQlXnyuhegOYcKs3n0s0bF4LVdK9Wzg1vYBI6DKzoOHe8PnD8Pfq6Gxz4x/w18robEtiSkWMSLjSa0L/4fDbl7Dqp+hss0YDuGCCNzqviITn0Ntgx2aYem90tjdhBDx1AGzfHJ3tScyEM5b5Uc65/D4w1fAGtPs/51zXIG01Yq9Ubt0HQ3ZfaNAuett0u3c9E5GQNGgLPQbDrDGw3xCov1fk21rxHfzwOhz4D0gre8BJ8ZezEE6HO+fywtyumZkvXbl79uxpM2fO9OOlRUrUZ9QkludsCalt06zMsm/3FpGi/v4THu0Gew6AU18utWnJx6PxStW7aZ/yG/23PcRGqul4jAPOuVlm1jPYOo3YKxKBcIuS5TlbWDrq6OIrZ46Bpt2LDJ1e2oB7IhJcn8d/4sRNR3DN3Dc58caHmG1tS20f9HhcOAFe+RmOvI8f9/s/QMdjvNOIvSIRKFKU5OXBn3OgcaegbUt8E1y3GD68DrqeDsc+FqOkIslhec4WrrnjUXj2B94+qBl0DlKkBAQ9JvNyvb4wdVtDj/NimFSiKeKOvc65as65Rs45jQAkye3T2+D5w7w7GsL6vjsgtSoMuDkmsUSSTlp1uPQr6Px/4X/vd694H0YOGQlV0qKfTWIirCLGOVffOXevc24RsBFYAWx1zi1yzo10zjWISUqReNbjXMjdAZPDmIpg2Uz4eRwccDnU1JiRIlET6ci6tZpCl9Oh43HRzSMxFfLdSYH5k94BGgE7gJ+Av4BaQHtgJHChc+5YM/s28D2XmNkzUU8tEk/qtoZeF8DXz8DCT3Ytbz0ATniqaNuXToA/58K2jd5YMwdcXrFZRZLJoonwzmXFFn+VvhUevAbOetubTgS8uZgqaj4miZpQJ4BsALwPVAWGAS+Y2ZZC6zOBwcDdwPvOuQ7A+cCDgIoYqfwG3OQNVrdl/a5ljfYp3q5Fb8ifdbfrmd6YMyISG9UbQpvDii2ePON3Tm/TXMdfJRDqmZhrgdpAbzObvfvKQEHztHNuBvAF8DmwN/BRtIKKxLWM2nBYCPMp9bs+9llExNOkc9BO8zd+8QGnH1tyx19JHKH2iTkGeClYAVNYYP3LQCe8S08nlC+eiIiISHChFjHZwFchtv0abzTfk81sR7iBnHMpzrmrnXPznHNbnXO/O+cedM5VD3dbIiIiUnmFWsTk4vWHCUUVYJOZhTvKb76HgH8Bc4DLgbHAFcB7zjnN9SQiIiJA6H1iFuKN2vtUWQ2B/oH2YXPO7Y1XuLxtZicVWr4EeBQ4DXg1km2L+KlpVmbII382zcqMcRoR0fFYOYRaxIwHRjrnjjCz/5XUyDl3OHAicFuEeU4HHPDwbsufA0YBZ6EiRuJAuEWJ5l4RiS0dk8kp1AkgawI/AE3wLvc8Z2aLC61vDVwI/ANYDnQxs7/DDuPcx8ChQDUz27bbuulAWzMrdUA9TQApIiJSeZQ2AWRIfUzMbCNwOPArcAOw0DmX45z71Tm3Hu/y0XBgKXBkJAVMwB7Amt0LmIDlQH3nXLHxoJ1zFzvnZjrnZq5evTrClxYREZFEEnJHWTNbAHQFrsQbB2Yn3pmZXGAaXufbboF2kaoGBCtgALYWarN7tmfNrKeZ9WzQQDMfiIiIJIOQpx2AgkHtHgs8YmEz0LCEdRmF2oiIiEiSi7dbllfgXTJKD7KuKd6lpu0VnElERETiULwVMd/gZdq38ELnXAbepSz12BUREREg/oqY1/FG+71qt+UX4fWFeaWiA4mIiEh8CqtPTKyZ2Y/OuSeAy5xzbwMfAh3wOg1PRWPEiIiISEBcFTEBV+Hdqn0xcDSwBq8j8YhyTGUgIiIilUzcFTFmlgs8GHiIiIiIBBVvfWJEREREQqIiRkRERBKSihgRERFJSCpiREREJCGpiBEREZGEpCJGREREEpKKGBEREUlIKmJEREQkIamIERERkYSkIkZEREQSkooYERERSUgqYkRERCQhqYgRERGRhKQiRkRERBKSihgRERFJSCpiREREJCGpiBEREZGEpCJGREREEpKKGBEREUlIKmJEREQkIamIERERkYSkIkZEREQSkooYERERSUgqYkRERCQhOTPzO0NUOedWA7/GaPP1gTUx2nZloP1TNu2jsmkflU77p2zaR6VLtP3T0swaBFtR6YqYWHLOzTSznn7niFfaP2XTPiqb9lHptH/Kpn1Uusq0f3Q5SURERBKSihgRERFJSCpiwvOs3wHinPZP2bSPyqZ9VDrtn7JpH5Wu0uwf9YkRERGRhKQzMSIiIpKQVMSIiIhIQlIRUwrnXIpz7mrn3Dzn3Fbn3O/OuQedc9X9zhYPnHNtnXN3OOe+cs6tds5tdM5955y7WfsoOOdcNefcYuecOece9ztPvHDO1XXOPeCcWxQ41lY75yY75/r6nS0eOOdqOOducs79GDjO1jjnvnDOneucc37nq0jOuRudc2MLHUdLy2i/n3NuYmC//eWc+59zrmvFpK14oe4f51yGc+4i59w7zrmlzrktge95zTnXoYJjR6yK3wHi3EPAFcA44EGgQ+Drbs65Q80sz89wceB8YBjwLvAKsAMYANwFnOKc29/MtviYLx7dAQQdtClZOedaAlOAGsDzwAKgNtAZaOpfsvjgnEsBPgIOAF4EHgOqAacDY/Del27wLWDFuxtYB8wGskpr6JzbH+93azkwIrD4MmCac+4AM/sxdjF9E+r+ycbr4Ps53nG3AmgNDAVOdM4dYWaTY5o0GsxMjyAPYG8gD3hrt+WXAwac4XdGvx9AT6B2kOV3BfbRZX5njKcH0B3YCfwjsH8e9ztTPDyAacDvQBO/s8TjA+gd+H15aLflacBiIMfvjBW8P1oX+vdPwNJS2s4A/gKaFlrWNLDsE79/Fj/3D1AP6BpkeUdgGzDT758llIcuJ5XsdMABD++2/DlgM3BWRQeKN2Y208w2BFn1euC5U0XmiWfOuVS8353/AW/7HCduOOcOAg4E7jOzlc65qs65an7nijO1As8rCi80s+14Q8dvqvBEPjKzxaG0c87tBfQCxprZ8kLfvxwYCxzqnGscm5T+CXX/mNlaM/suyPI5eMVPQrx/q4gpWS+8MzEzCi80s63Ad4H1ElyzwPMqX1PEl6uB9ninsmWXowLPvznn3gO2AJuccwucc0n/QSFgBpADXO+c+z/nXAvnXHvn3D1AD+A2P8PFsfz36C+DrPsK70Nqj4qLkxgCly+bkCDv3ypiSrYHsMbMtgVZtxyo75xLq+BMcS9wxuFWvMsmr/ocJy4451oBtwN3mNlSn+PEm3aB5+eAusBgvL5W24GXnHPn+RUsXpjZeuBYvH4Ob+BNcDsXrz/aSWb2nI/x4tkegeflQdblL0v6PldBDMErYl70O0go1LG3ZNXwrgsGs7VQm+0VEydhPIx3Df8mM5vvc5Z48TRe34V/+R0kDtUMPG8EBgQukeCcG4+3z+52zr1o6kT/N94p/neBL/AKvmHAq86548xsgp/h4lT+Zclg7+Nbd2sjgHPuALz3qe/xOgjHPZ2JKdlmIL2EdRmF2kiAc+5OvMslz5rZPX7niQeBSyKHAUPNbIffeeJQ/t1rr+UXMFBw9uFdoDG7ztYkJefcPniFywQzu87MxpnZ83h9if4AngucAZWi8t+fg72P6z18N865HsAHeH2vjg50nYh7KmJKtgLvklGwA6Ap3qUmnYUJcM7dBtyCd8vnEH/TxIfA786/gA+BP5xzewU6G7YMNKkdWJblV8Y4sCzw/EeQdSsDz3UqKEu8uhrvj+7YwgvNbDPeH52WeLfLSlH5HaGDXTLKXxbsUlPScc51ByYAG/DOiCbMflERU7Jv8PbPvoUXOucygK7ATB8yxaVAATMS7xrqhRa4T0/IxBsT5mhgYaHHlMD6swJfX+hHuDiR33G+WZB1+cv+rKAs8Sr/D26wsy1VdnuWXb4JPPcOsm5/vNvWZ1VcnPgUKGAmsuuS7q8+RwqLipiSvY73S37VbssvwruO+kpFB4pHzrkReAXMS8D56rtQxCbg/4I8Lg2s/1/g63d9SRcfxuO9eZ7lnKuRv9A51wQ4HlhgZov8iRY35gSezy28MHAG7zhgPZDs+6iYwO/NTOD/nHP5nXwJ/Pv/gElmFuwMYNJwznXDOwPzN14Bs8TnSGHTLNalcM49htfHYxzeJYH8EXunAwcn+x9s59ww4HHgN7w7knbfH6vU4bA451w2sAR4wsyS/pZr59zFwDPAz8BovEHchuLdIXGMmX3iYzzfBUY0no13We0VvPefungfqLKBYWb2pG8BK5hz7mx2XZK9HO/35cHA17+a2UuF2h4ATMa7bPlYoe9pBPQxs+8rJHQFCnX/BH6vZuH9Lt0O/BJkc+PMLK7HIVIRU4pAZ7mrgIvx3izW4J2hGWFmf/uXLD44517AuyW2JFPNrH/FpEkcKmKKc86dCFwP7INXDH8J3G5m030NFiecc3viDZt/CN4f4C1441U9bGZJNXiic24K0K+E1cXec5xzvfFGEd8P7+z6F8CNZjY7hjF9E+r+cc71xyvwStMq3oeFUBEjIiIiCUl9YkRERCQhqYgRERGRhKQiRkRERBKSihgRERFJSCpiREREJCGpiBEREZGEpCJGREREEpKKGBFJKM65w51zU5xzfzvnVjvnHg/MaSYiSUZFjIgkDOfcNXhzTq3Em935PWAY8IifuUTEHxqxV0QSgnPuUOAT4Hoze6DQ8v8BA4AGZvaXX/lEpOLpTIyIxD3nXAre2ZZv2TWZXb4peJPcdargWCLisyp+BxARCcHhQEfgXCt++nh74Ll2xUYSEb+piBGRRHAqkAtMc87V321do8DzxoqNJCJ+U58YEYl7zrlfgRZlNGtqZisqIo+IxAcVMSIS1wJnXlYD44AngzR5A9hmZk0qNJiI+E6Xk0Qk3rUOPH9jZhMLr3DOtQLqAK9WeCoR8Z3uThKReFcj8Bysz8vJgefXKyiLiMQRFTEiEu/yx36pVXihcy4NGArMBz6o6FAi4j8VMSIS7+YAm/Fusy7sn0A2cIWZ5VZ0KBHxn/rEiEhcM7PNzrl/A1c4514GpgJHAicA15nZJ74GFBHf6O4kEYl7gUtH9wFnAtWAWcDdZvY/X4OJiK9UxIiIiEhCUp8YERERSUgqYkRERCQhqYgRERGRhKQiRkRERBKSihgRERFJSCpiREREJCGpiBEREZGEpCJGREREEpKKGBEREUlIKmJEREQkIf0/I5tyP13uaOQAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 648x432 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
Q
Quleaf 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    }
   ],
   "source": [
    "# Create a figure\n",
    "fig= plt.figure(figsize=(9, 6))\n",
    "ax = fig.add_subplot(111)\n",
    "# Plot the QFI norm\n",
    "ax.plot(thetas, list_qfisher_norm, 's', markersize=11, markerfacecolor='none')\n",
    "analytical_qfi_norm = 4 + 2 * np.sin(thetas) + 2 * np.cos(thetas) - 2 * np.cos(thetas) * np.sin(thetas)\n",
    "ax.plot(thetas, analytical_qfi_norm, linestyle=(0, (5, 3)))\n",
    "# Set legends, labels, ticks\n",
    "ax.legend(\n",
    "    ['get_qfisher_norm()', '$4+2\\\\sin\\\\theta+2\\\\cos\\\\theta-2\\\\sin\\\\theta\\\\cos\\\\theta$'], \n",
    "    loc='best', prop= {'size': label_font_size}, frameon=False,\n",
    ")\n",
    "ax.set_xlabel('$\\\\theta$', fontsize=label_font_size)\n",
    "ax.set_ylabel('QFI norm along $v=(1,1,1,1)$', fontsize=label_font_size)\n",
    "ax.set_ylim([-1, 9])\n",
    "ax.tick_params(labelsize=label_font_size)"
Q
Quleaf 已提交
664
   ]
Q
Quleaf 已提交
665 666 667
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
668
   "metadata": {},
Q
Quleaf 已提交
669 670
   "source": [
    "We can see that the outputs are consistent with the analytical results."
Q
Quleaf 已提交
671
   ]
Q
Quleaf 已提交
672 673 674
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
675
   "metadata": {},
Q
Quleaf 已提交
676 677 678 679
   "source": [
    "### Calculate the effective quantum dimension\n",
    "\n",
    "With Paddle Quantum, one can obtain the effective quantum dimension (EQD) by simply using the method `get_eff_qdim()`. For example, the EQD of the hardware-efficient ansatz shown above can be calculated as follows."
Q
Quleaf 已提交
680
   ]
Q
Quleaf 已提交
681 682 683
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
684 685
   "execution_count": 25,
   "metadata": {},
Q
Quleaf 已提交
686 687 688
   "outputs": [
    {
     "name": "stdout",
Q
Quleaf 已提交
689
     "output_type": "stream",
Q
Quleaf 已提交
690
     "text": [
Q
Quleaf 已提交
691
      "--Ry(3.567)----*----Ry(2.500)--\n",
Q
Quleaf 已提交
692
      "               |               \n",
Q
Quleaf 已提交
693
      "--Ry(2.784)----x----Ry(2.298)--\n",
Q
Quleaf 已提交
694 695 696 697 698 699 700
      "                               \n",
      "The number of parameters is 4.\n",
      "The EQD is 3. \n",
      "\n"
     ]
    }
   ],
Q
Quleaf 已提交
701 702 703 704 705 706 707
   "source": [
    "cir = circuit_hardeff_2qubit()\n",
    "qf = QuantumFisher(cir)\n",
    "print(cir)\n",
    "print(f'The number of parameters is {len(cir.param.tolist())}.')\n",
    "print(f'The EQD is {qf.get_eff_qdim()}. \\n')"
   ]
Q
Quleaf 已提交
708 709 710
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
711
   "metadata": {},
Q
Quleaf 已提交
712 713 714 715
   "source": [
    "In this example, the EQD is smaller than the number of parameters, which can be easily seen from the fact that the two $R_y$ gates on the control wire can be merged without changing anything. This inefficiency can be fixed by simply replacing one of the $R_y$ gates with a $R_x$ gate, and then the EQD will increase by one.\n",
    "\n",
    "If we continue to add gates to the circuit, can we make the EQD grow indefinitely? The answer is clearly no. Provided $n$ qubits, an obvious upper bound can be given by the real number degrees of freedom in a general quantum state, which is equal to $2\\cdot 2^n-2$. The minus two reflect the two constraints of normalization and global phase independence. This can be verified by the following example."
Q
Quleaf 已提交
716
   ]
Q
Quleaf 已提交
717 718 719
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
720 721
   "execution_count": 26,
   "metadata": {},
Q
Quleaf 已提交
722 723 724
   "outputs": [
    {
     "name": "stdout",
Q
Quleaf 已提交
725
     "output_type": "stream",
Q
Quleaf 已提交
726
     "text": [
Q
Quleaf 已提交
727
      "--Ry(2.514)----Rx(3.037)----*----Ry(5.264)----Rx(0.932)--\n",
Q
Quleaf 已提交
728
      "                            |                            \n",
Q
Quleaf 已提交
729
      "--Ry(5.648)----Rx(5.991)----x----Ry(4.027)----Rx(2.537)--\n",
Q
Quleaf 已提交
730 731 732 733 734 735 736
      "                                                         \n",
      "The number of parameters is 8.\n",
      "The EQD is 6. \n",
      "\n"
     ]
    }
   ],
Q
Quleaf 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
   "source": [
    "def circuit_hardeff_overparam():\n",
    "    cir = Circuit(2)\n",
    "    cir.ry()\n",
    "    cir.rx()\n",
    "    cir.cnot([0, 1])\n",
    "    cir.ry()\n",
    "    cir.rx()\n",
    "\n",
    "    return cir\n",
    "\n",
    "\n",
    "cir = circuit_hardeff_overparam()\n",
    "qf = QuantumFisher(cir)\n",
    "print(cir)\n",
    "print(f'The number of parameters is {len(cir.param.tolist())}.')\n",
    "print(f'The EQD is {qf.get_eff_qdim()}. \\n')"
   ]
Q
Quleaf 已提交
755 756 757
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
758
   "metadata": {},
Q
Quleaf 已提交
759 760 761
   "source": [
    "### Calculate the CFIM and effective dimension\n",
    "\n",
Q
Quleaf 已提交
762 763
    "Here we exploit a brief example to show how to calculate the effective dimension defined in Eq.(16) with respect to a quantum neural network with Paddle Quantum."
   ]
Q
Quleaf 已提交
764 765 766
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
767
   "metadata": {},
Q
Quleaf 已提交
768
   "source": [
Q
Quleaf 已提交
769 770
    "Define our quantum neural network along with the loss function using PaddlePaddle."
   ]
Q
Quleaf 已提交
771 772 773
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
774 775 776
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
Q
Quleaf 已提交
777 778
   "source": [
    "import paddle.nn as nn\n",
Q
Quleaf 已提交
779 780 781
    "from paddle_quantum.gate import IQPEncoding, ComplexEntangledLayer, RX\n",
    "from paddle_quantum.hamiltonian import Hamiltonian\n",
    "from paddle_quantum.state import zero_state\n",
Q
Quleaf 已提交
782 783 784 785
    "\n",
    "class QuantumNeuralNetwork(nn.Layer):\n",
    "    def __init__(self, num_qubits, depth, encoding):\n",
    "        super().__init__()\n",
Q
Quleaf 已提交
786 787 788 789 790 791 792 793
    "        self.num_qubits, self.encoding = num_qubits, encoding\n",
    "        self.S = [[i, i + 1] for i in range(num_qubits - 1)]\n",
    "        self.init_state = zero_state(num_qubits)\n",
    "        \n",
    "        if encoding == 'IQP':\n",
    "            self.complex_layer = nn.LayerList([ComplexEntangledLayer(num_qubits=num_qubits, depth=depth)])\n",
    "        elif encoding == 're-uploading':\n",
    "            self.complex_layers = nn.LayerList([ComplexEntangledLayer(num_qubits=num_qubits) for _ in range(depth + 1)])\n",
Q
Quleaf 已提交
794 795 796 797 798
    "        else:\n",
    "            raise RuntimeError('Non-existent encoding method')\n",
    "\n",
    "    def forward(self, x):\n",
    "        if not paddle.is_tensor(x):\n",
Q
Quleaf 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    "            x = paddle.to_tensor(x, dtype='float32')\n",
    "\n",
    "        state = self.init_state\n",
    "        if self.encoding == 'IQP':\n",
    "            state = IQPEncoding(x, qubits_idx=self.S)(state)\n",
    "            state = self.complex_layer[0](state)\n",
    "        else:\n",
    "            for i in range(depth):\n",
    "                state = self.complex_layers[i](state)\n",
    "                for j in range(num_qubits):\n",
    "                    state = RX(j, param=x[j].item())(state)\n",
    "            state = self.complex_layers[depth](state)\n",
    "\n",
    "        return state.expec_val(Hamiltonian([[1.0, 'z0']])) * 0.5 + 0.5"
   ]
Q
Quleaf 已提交
814 815 816
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
817
   "metadata": {},
Q
Quleaf 已提交
818 819
   "source": [
    "Finally, define a CFIM calculator and calculate the effective dimension corresponding to different size of training samples."
Q
Quleaf 已提交
820
   ]
Q
Quleaf 已提交
821 822 823
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
824 825 826 827 828 829 830 831 832 833 834
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "running in get_gradient: 100%|##################################| 1000/1000 [00:47<00:00, 20.99it/s]\n"
     ]
    }
   ],
Q
Quleaf 已提交
835
   "source": [
Q
Quleaf 已提交
836 837
    "from paddle_quantum import set_backend\n",
    "\n",
Q
Quleaf 已提交
838 839 840 841 842
    "# Configure model parameters\n",
    "num_qubits = 4\n",
    "depth = 2\n",
    "num_inputs = 100\n",
    "num_thetas = 10\n",
Q
Quleaf 已提交
843
    "set_backend('state_vector')\n",
Q
Quleaf 已提交
844 845 846 847 848 849 850 851 852 853 854 855
    "# Define the CFIM calculator\n",
    "cfim = ClassicalFisher(model=QuantumNeuralNetwork,\n",
    "                       num_thetas=num_thetas,\n",
    "                       num_inputs=num_inputs,\n",
    "                       num_qubits=num_qubits,\n",
    "                       depth=depth,\n",
    "                       encoding='IQP')\n",
    "# Compute the normalized classical Fisher information\n",
    "fim, _ = cfim.get_normalized_cfisher()\n",
    "# Compute the effective dimension for different size of samples\n",
    "n = [5000, 8000, 10000, 40000, 60000, 100000, 150000, 200000, 500000, 1000000]\n",
    "effdim = cfim.get_eff_dim(fim, n)"
Q
Quleaf 已提交
856
   ]
Q
Quleaf 已提交
857 858 859
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
860
   "metadata": {},
Q
Quleaf 已提交
861 862
   "source": [
    "Plot the ratio of the effective dimension over number of parameters vs. sample size."
Q
Quleaf 已提交
863
   ]
Q
Quleaf 已提交
864 865 866
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
867 868
   "execution_count": 29,
   "metadata": {},
Q
Quleaf 已提交
869 870 871
   "outputs": [
    {
     "name": "stdout",
Q
Quleaf 已提交
872
     "output_type": "stream",
Q
Quleaf 已提交
873 874 875 876 877 878
     "text": [
      "the number of parameters:24\n"
     ]
    },
    {
     "data": {
Q
Quleaf 已提交
879
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAF7CAYAAADc5v+BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABNzElEQVR4nO3dd5xcZdn/8c83ZbPpIT0BliSEJNJLlF4CBBF9FEFRERUVeIQfWHjsYkNsPIiCDVER4VFBihUQFANIJ0HphEAa6dn07GY3W67fH+dsmAy72bObmZ0t3/frNa+ZOec+575mCLvX3lURgZmZmVlP16vUAZiZmZl1Bk6KzMzMzHBSZGZmZgY4KTIzMzMDnBSZmZmZAU6KzMzMzADoU+oAOruRI0fGhAkTSh2GmZmZFcCcOXMqI2JUc+ecFLViwoQJzJ49u9RhmJmZWQFIWtTSOXefmZmZmeGkyMzMzAxwUmRmZmYGOCkyMzMzA5wUmZmZmQFOiszMzMwAJ0VmZmZmwE4kRZImSyovZDBmZmZmpZIpKZL0LUkfSl9L0t+Bl4Dlkg4tZoBmZmZmHSFrS9H7gbnp67cABwKHATcA3yl8WGZmZmYdK+s2H2OAJenrU4DfR8TjktYC3gPDzMzMurysLUVrgD3S1ycB96av+wAqdFBmZmbW82ysqWPuik3MmruK1ZtqO7z+rC1FtwG/lfQSMBy4Oz1+IPByEeIyMzOzbmTL1gaWbdjC8vU1256Xb9jCsg01LF+/heUbathcW7+t/I/PPJi37j+uQ2PMmhRdDCwkaS36bERUpcfHAT8tQlxmZmbWRdTWN7ByQ22S7GzYwrI04UkSoOT1+uq61103clA/xg8rZ9KogRw5eSTjh5Uzbmh/xg8rZ68xgzv8c7SaFEnqC3wT+HFELMo9FxHfL1ZgZmZmVnr1DY2s2lS7XbKzLenZUMOy9TVUbn59V9ewAX2TBGdoOYfsMWxbspMc68+Yof3o16d3CT5Ry1pNiiKiTtIFwE86IB4zMzPrII2NQWVV7WtdWc10aa3aVEtDY2x33aB+fRg3tJxxw/qz97ghjBvan3HDyhmfPo8bWs6AsqydUZ1H1ojvBo4HritiLGZmZlYgEcH66rpmx+80dWmt3FDL1obG7a7r16cX44f1Z9zQco7Y87UurdykZ0h53xJ9quLKmhTdC3xL0v7AHKAq92RE3F7owMzMzKxlm2rq0u6rpEUnN9lpGsxcU7d9wtO3txgzJEluDq7YZbsurXFDyxk/rD+7DOiL1DMnlmdNin6UPn+8mXMBZO4UTLviPkMySPs54JMR8a8Wyl4PfKiZU9URMTCn3LHAlcA+wDLg8oi4pr31mpmZldKWrQ05Y3bSpCdvAPOmnJlaAL0EoweXM25YOW8YN4Tjp41m3LBkTE/T88hB/ejVq2cmPFlkSooioiAbx0p6D3AVcAHwYPp8l6S9I2JxM5d8Avh83rGHgAdy7jkRuJOka+8s4CjgJ5JWR8Rt7azXzMysKLbWN7Jy42vJznbdW+nzumZnapUxbmh/JowYyBF7jtw2pqcp6RkzuB99enuf952hiGi9VKEqkx4Dno6Ic3OOzQNujYgvZLj+SJKk5siIeDg99l3gtIjYK6fcL4B9IuLwna13+vTpMXu2F+02M7PWNTQGqzbV5E1J335MT+XmWvJ/9Q7t33db91Xuc1P31pgh5ZT37VwztboqSXMiYnpz5zK1FCnpXDwf+H/ARGDfiJgv6fPA/Ij4fYZ7lAGHAFfknboHOCJLHMC5wHNNCVHq8PQeue4GPpQuJ6AC1GtmZj1cY2OwpmprM1PSXxvTs7KZmVoDy3ozLk1ypo0dkjdLK0l6uuJMre4o63+FTwCfBb7L9hvALgUuBFpNioCRJGOPVuYdXwmc2NrFkoYCZwD5LTtjgX80c88+aZ1qa72SzgPOA6ioqGgtNDMz6+JeN1Nr42tT0puSnhUbapqdqdXUonPYniO2JTu5Sc+Q8j49duByV5M1KfoYcG5E3CHpspzjT5IMbu4IZ5Hs1XZjsSuKiGuBayHpPit2fWZmVlytzdRavqGGLXUN213Tp1c6U2tYOQfuPoxx+6XJTk731vCBZU54upGsSdEewLPNHK8D+me8RyXQAIzJOz4GWJHh+nOB2yJibd7xFS3csz6tUztZr5mZdWI1dQ2vDVrOOFNLgtGD+zFuaH+mjRvMjGmjXzemZ+SgfvT2TK0eJWtSNB84GFiUd/wU4PksN4iIrZLmADOBW3JOzSTZcLZFkt4EHAB8spnTjwDvzDs2E5gdEXXp9e2q18zMSqu9M7VGDCxj3LBy9hgxkMMnjdg2pqcp6RkzpJy+nqllebImRVcAP5I0gKTl5XBJHyAZZ/SRNtR3JXCjpMdJptZ/DBgPXAMg6QaAiPhg3nXnAfMi4r5m7nkNcKGkHwA/A44Ezgbel7VeMzPreO2dqTWkvM+25ObAimHJlPScsTxjh3qmlrVP1nWKfiWpD/AtYADJuJ5lwMcj4uaslUXEzZJGAJeQLKL4LHBKzkazrxvVLGkw8F7g0hbuuUDSKcD3SWbINcV1W06Z1uo1M7MCau9MrQFlvbe16EwdO3j7TUTT54H9PFPLiqPN6xRJGgn0iohVxQmpc/E6RWZm24sINmypa3bz0B3N1CrbNlPr9VPSm3ZOH9LfM7WsuAqxTtE/SRZIXB8RlTnHhwB/jIjjCxOqmZmV2uba+tdmZ63PS3rS7q38mVq9e4mxQ5KE54Ddh/GWfctzVlxOEqARnqllnVzWNsjjgLJmjpcDRxcsGjMzK6qauobtp6Q3s4noppodzNQaO5gZU0dvW5unaRzPqMGeqWVd3w6TIkkH57zdX1LudPjewJtJFnA0M7MSq2toZMWGmtdNSc8d07O2auvrrmuaqVUxYgCHTRrumVrWY7XWUjQbiPSRv5UGwBbgokIHZWZm22toDFZvqm12SnpTi8/qVmZqHbC7Z2qZ7UhrSdFEkin484E3Aatzzm0FVkVEQ3MXmplZNhHpTK1tU9Kbxu+8NpZn5cYa6nc0U2vqqNfN1Bo7tD+DPFPLLLMd/t+SM2Xd7aZmZu0QEWzcUp8kO3mrLC/b0LT6cg1b61ueqXXoxOGeqWXWATL/CSHpLcD/AyYBb46IVyWdAyyIiHuLFaCZWWdWVVvf4vidpunp1Vtbnqm1/27DOHkfz9Qy6wyyTsl/P8nqz78ATgD6pqd6k6xq7aTIzLqdmroGVuRvLZG3Js/GZmZqjRrUj3HD+jNlzGCOnTJ6W+uOZ2qZdW5ZW4o+C5wbETelrUNNHqWFlabNzLqChZVVPLVkfbM7p69pZqbW8IFljBtazm67DOBNE4dv16XVNFOrrI9HHJh1RVmTor1INl7NtxkYUrhwzMyKq7a+gccXrOWfL67ivrmrWVBZte3c4PI+27qv9ts1nak1rP+253GeqWXWrWVNipYBU4D8vcKOAV4paERmZgW2bP0W7pu7mllzV/HQy5VUb22gX59eHL7nCD585AQOnTiCXXfxTC2zni7rT4Brgatzus52l3Q0cDnwtWIEZmbWXvUNjTy5eD2z5q5i1oureHHFJgB2Hdaf0w/ejeOnjeawSSPoX+ZWHzN7TaakKCIulzQU+DvJ1h6zgFrgioj4cRHjMzPLZM3mWu5/aTX/fHEVD7y0mo019fTpJaZP2IUvnjKNGVNHM3n0IM/oMrMWZW4rjogvSfomsDfJukXPR8TmokVmZrYDjY3Bs8s2MOvFpFvsqSXriYCRg/rx5n3Gcvy00Ry510iGlPdt/WZmZrQhKQKIiGqSrT/MzDrcxpo6HpxXuW2QdOXmWiQ4cPdhfOrEKcyYOpp9xg+hl6e7m1k7ZF2nqB9wATADGE3eCtcR8abCh2ZmPV1EMG/VZma9uIp/vriKOYvWUd8YDO3fl2OmjOL4aaM4Zq9RjBjUr9Shmlk3kLWl6OfA24A/Ac+TbBBrZlZwW7Y28Mj8pDVo1ourWbp+CwBvGDeE846ZxIxpozlo92H08a7tZlZgWZOitwPviIj7ixmMmfVMi9dUM2tu0hr0yPw1bK1vZEBZb46cPJILj5/Mcelmp2ZmxZQ1KVoFVBYzEDPrObbWNzJ7YbKA4qy5q3hldbKA4qSRAznr0D2YMW0Ub5o4nH59PGXezDpO1qToi8C3JJ0dEeuKGZCZdU8rN9ZwX9oa9OC8Sqq2NlDWuxeHThrOWYftwYypo5kwcmCpwzSzHixrUnQP8N/AKkkrgLrckxExqdCBmVnX1tAY/OfV9cxKW4OeW7YRgHFDy3nHQbty/NTRHDF5BAPKvIq0mXUOWX8a3UCyPtEPgJV4oLWZNWNd1VYemJcsoHj/S6tZX11H717ikIpd+NzJ05gxbRRTxwz2Aopm1illTYpmAsdHxGPFDMbMupaI4LllG7lv7ipmzV3NvxevozFgxMAyjp82muOnjeboyaMYOsALKJpZ55c1KVpMsq2HmfVwm2vreXBe5bZusVWbkh8N++82lIuO34sZ00az/65DvYCimXU5WZOiTwGXS7ogIl4uZkBm1rlEBK+srkpbg1bx+IK11DUEg8v7cMxeo5gxbTTHThnFqMFeQNHMurasSdEtQD9grqRaoD73ZEQMyVqhpAuAzwDjgOeAT0bEv3ZQvgy4BPgAMJ5kTNMVEXF1er4v8AXgQ8CuwFzgcxHxt5x7fA34at6tV0bE2Kxxm/UkNXUNPDp/TdoatJrFa6sBmDpmMB85aiLHTx3NwXvsQl8voGhm3UjWpOjCQlQm6T3AVSRbhjyYPt8lae+IWNzCZTcBuwHnAfOAMUDuKm6XAR8EzgFeAN4M/EHSERHx75xyc4Hjct437PQHMutGlqyrZtbc1cx6cRUPv1JJTV0j5X17ceSeIznvmEkcN3UUu+0yoNRhmpkVTaakKCJ+XaD6Lgauj4ifp+8vknQycD5Ja892JJ0EnADsGRFNi0cuzCv2AeA7EXFH+v6nkk4E/gc4K6dcfUSsKMzHMOv66hoambNo3baxQS+t3AxAxfABvPeNFcyYNppDJw6nvK8XUDSznqHNC4RIGguU5R7bQStP7nVlwCHAFXmn7gGOaOGyU4EngIslfRDYAtwFfDEiNqdl+gE1eddtAY7KOzZJ0jKSAeOPpfeY31rcZt3Jqk013D93NbPmruJfL1Wyqbaevr3FoRNHcMb03ZkxbTSTRg70lHkz65EyJUWShgJXA2eQlxClsvwpOTIttzLv+ErgxBaumUSS3NQCpwPDgB+SjC16V1rmbuCTku4j6V47ATgtL6bHgLOBF4HRJGOUHpa0T0Ssya9U0nkk3XVUVFRk+GhmnVNjY/D00g3888VV3Dd3FU8v2QDAmCH9eOv+45gxbTRHTh7JoH5eQNHMLOtPwiuAA0habm4HPkIyqPkTJN1UxdKLZKHIMyNiA4CkC4G7JY2JiJVpDD8Hnk/LvgL8Ko0RgIi4K/emkh4F5pMMzr4yv9KIuBa4FmD69OleqNK6lA3VdTwwLxkbdP9Lq1lTtZVegoMrduEzb57KcVNHsfe4IW4NMjPLkzUpegvwvoj4l6QGYE5E3CxpOcn2H7dmuEclyeDmMXnHxwAtjfVZDixtSohSL6TPFSQzyFYDp0oqB0YAy4DvkCQ9zYqIzZKeA/bKELdZpxYRvLhiE7PmruK+F1czZ/E6GhqDXQb05dgpyZT5Y/YaxS4Dm2vkNTOzJlmTomHAovT1BpLk42XgEeAXWW4QEVslzSFZHfuWnFMzgdtauOwh4N2SBuWMIZqSPi/KLRgRNcDSdIr+6cDvW4olTaCmAbOyxG7W2VTV1vPwK2u2dYst35AMq9t31yFccNyeHDd1NAfuPozeXkDRzCyzrEnRKyTjexaTtNS8V9LjJGN31rahviuBG9NrHwI+RjI+6BoASTcARMQH0/K/Bb4M/Cpda2gYyZT+WyNiVXrNoSRdef9Jn79G0u12eVOlkq4A/pLGPzq950CgULPqzIpuQWXVtplij81fy9aGRgb168NRk0fyqRNHc+zUUYwZUl7qMM3MuqysSdH1wP7AfSRdU38lWbuoF8mYnkzSLrcRJAOdxwHPAqdERFOrT0Ve+c3p9PofksxCWwf8Efh8TrFykrWKJgGbgTuBD0TE+pwyuwG/IxnsvRp4FDgsp16zTqe2voHHF6xNW4NWs6CyCoDJowfxoSP2YMa00UzfYzhlfbyAoplZISii7eOIJVUA04F5EfFMwaPqRKZPnx6zZ88udRjWQyxbv4X70inzD71cSfXWBvr16cXhe47g+GmjOW7KaCpGeAFFM7P2kjQnIqY3d67VlqJ0jM6DwAcjYi5sW5eo1bWJzGzH6hsaeXLxembNXcWsF1fx4opNAOw6rD+nH7wbx08bzWGTRtC/zAsompkVW6tJUUTUSZpIMt3dzHbSms213P/Sav754ioeeGk1G2vq6dNLTJ+wC188ZRozpo5m8uhBnjJvZtbBso4p+jVwLslGrmbWBo2NwbPLNjDrxaRb7Kkl64mAkYP68eZ9xnL8tNEcuddIhpT3LXWoZmY9WtakaCDwfkkzgTlAVe7JiPh4oQMz68o21tTx4LzKbYOkKzfXIsGBuw/jUydOYcbU0ewzfgi9PGXezKzTyJoUvQF4Mn09Ke+cu9Wsx4sI5q3avG3K/OyF66hvDIb278sxU0Zx/LRRHLPXKEYM6lfqUM3MrAWZkqKImFHsQMy6mi1bG3hkftIaNOvF1SxdvwWAN4wbwnnHTGLGtNEctPsw+vT2lHkzs67Au0CatcHiNdXMmruKf764ikfmr2FrfSMDynpz5OSRXHj8ZI6bOopxQ/uXOkwzM2uHzEmRpBnA+0gWWNxuE6WIOL7AcZl1ClvrG5m9MFlAcdbcVbyyOhlON2nkQM46dA9mTBvFmyYOp18fT5k3M+vqMiVFks4m2YrjD8BxwJ9I9iCbCPxfkWIzK4mVG2u4L20NenBeJVVbGyjr3YtDJw3nrMP2YMbU0UwYObDUYZqZWYFlbSn6NHBhRPxC0ibgCxExX9KPSLbWMOuyGhqD/7y6ftsg6eeWbQRg3NBy3nHQrhw/dTRHTB7BgDL3NpuZdWdZf8pPAv6Rvq4FBqWvf0SyH9rnm7nGrNNaV7WVB+YlCyje/9Jq1lfX0buXOKRiFz538jRmTBvF1DGDvYCimVkPkjUpWgMMTl8vBfYFngZGAB5Vap1eRPD88o1pa9Bq/r14HY0BIwaWcfy00Rw/bTRHTx7F0AFeQNHMrKfKmhT9CzgJeAb4PXB1upDjCcDfixSb2U5paAzufWEl976wivteWsXKjbUA7L/bUC46fi9mTBvN/rsO9QKKZmYGZE+KLgTK09ffBuqBI0kSpMuKEJfZTnl6yXq+9IdneWbpBgaX9+GYvUYxY9pojp0yilGDvYCimZm9XtbFG9fmvG4Evlu0iMx2woYtdXzvnrnc+OgiRg7qx1XvPZBT9htHXy+gaGZmrWjLOkXlwJnA3umh54HfRcSWYgRm1hYRwZ+fWsY3/voCa6tq+dDhE7j4pCneZNXMzDLLuk7RwcBfgAEk44oAPgJ8U9JbI+LJFi82K7JXVm/mK396lodeXsMBuw3lV2e/kf12G1rqsMzMrIvJ2lJ0LfAQ8OGIqAKQNBC4Lj03vTjhmbWspq6BH896mZ/dP59+fXvxjXfsw5mH7kFvD5w2M7N2yJoU7QN8sCkhAoiIKkmXArOLEpnZDsyau4qv/uk5Fq+t5tQDx/PFt76B0YPLW7/QzMysBVmToheB8STjiHKNA14qaERmO7B8wxYu/cvz3PXsCiaNGshvzzmUIyaPLHVYZmbWDWRNii4hWZvoUuDR9Nhh6fHPSxreVDB3pppZodQ3NHL9wwv5/t9for4x+PRJUzj3mEneiNXMzAoma1L0l/T5t0Ckr5sGbvwp530A/i1lBTVn0Tou+eOzvLB8I8dNHcWlb9+XihEDSh2WmZl1M1mTohlFjcKsGeurt/Ldv73I7x5/lbFDyvnp+w/m5H3Hej8yMzMriqyLN95f7EDMmkQEt85ZwrfvepENW+o456iJfHLmFAb18y71ZmZWPP4tY53KSys3cckfnuXxhWs5uGIY33znfrxh3JBSh2VmZj2AkyLrFKq31nPVvfP45b8WMKi8D985bT/OmL67N2s1M7MO0+EbQkm6QNICSTWS5kg6upXyZZIuTa+plbRY0sdzzveV9BVJr6T3fErSyTtbr3Wcfzy/kplXPsDP7p/POw/alXsvPpb3vqnCCZGZmXWoFluKJB0DPBwR9YWqTNJ7gKuAC4AH0+e7JO0dEYtbuOwmYDfgPGAeMAbon3P+MuCDwDnAC8CbgT9IOiIi/r0T9VqRRQTf/8c8rr53HlPGDOL3/304b5o4vPULzczMikAR0fwJqQEYFxGrJM0H3hgRa3aqMukx4OmIODfn2Dzg1oj4QjPlTwJuAfaMiMoW7rkM+G5EXJVz7DZgS0Sc1Z56c02fPj1mz/ai3YXW2Bh87S/PccMji3j3IbvxrdP28072ZmZWdJLmRESz25Pt6LfQOmBi+npCK2WzBFEGHALck3fqHuCIFi47FXgCuFjSEknzJF0taVBOmX5ATd51W4CjdqJeK6Kt9Y188ub/cMMjizjvmElc/q79nRCZmVnJ7Wig9W3A/ZKWkyzKODttPXqdiJiUoa6RJAs7rsw7vhI4sYVrJpEkN7XA6cAw4IckW468Ky1zN/BJSfeRdK+dAJzGa4tItrleSeeRdNdRUVHR2ueyNqjeWs/5//ck97+0ms+dPI3zj9uz1CGZmZkBO06KPgb8GdgLuBL4FbCpI4LK0YskITszIjYASLoQuFvSmIhYCXwC+DnJvmwBvJLG+pH2VhoR1wLXQtJ9tlOfwLbZUF3HR379BP9evI5vn7Yf73uTE04zM+s8WkyKIhlsdAeApAOA70XEziRFlUADyUDpXGOAFS1csxxY2pQQpV5InyuAlRGxGjhVUjkwAlgGfAeYvxP1WoGt2ljDB375OAsqq/jxmQfzlv3GlTokMzOz7WQayBERH46ITZLKJe0raZ80CcksIrYCc4CZeadmAg+3cNlDwPi8MURT0udFefeviYilJIne6aR7srWzXiugRWuqOP2ah3l1XTXXnf1GJ0RmZtYpZUqKJPWR9L8kg6+fAp4B1km6XFLfNtR3JXC2pHMkvUHSVSTjg65J67lB0g055X8LrAF+lSZiR5JMrb81Ilal1xwq6TRJk9K1h/6Wfq7Ls9ZrxfP8so2c/tNH2FxTz2/PPYyj9hpZ6pDMzMyalXVF68uB95GMM3owPXY08G2SBOTTWW4SETdLGgFcAowDngVOiYimVp+KvPKbJZ1IMrj6CZKk7I/A53OKlZOsVTQJ2AzcCXwgIta3oV4rgicWruUj1z/BoH59uOm8w5k8enCpQzIzM2tRi+sUbVdIWgF8JCLuzDv+VuAXEdFt+0O8TlH7zHpxFef/Zg7jh/bnxnMOZddh/Vu/yMzMrMh2tE5R1paioSSzuvK9QjJN3mybP/57KZ++5SmmjRvMrz/8JkYM6lfqkMzMzFqVdcW8p4CPN3P8E8B/ChaNdXnXP7SAT978H6ZP2IXfnXuYEyIzM+sysrYUfRa4Mx3f82h67DCSwcpvKUZg1rVEBD/4xzyuunceJ+09hqvfdxDlfXu3fqGZmVknkXVK/gMkU+FvBQalj1uAqRHx4I6ute6vsTH42p+f46p75/HuQ3bjJ+8/2AmRmZl1OVlbioiIZcCXihiLdUF1DY38z++f4s9PLePcoyfyxVPegKRSh2VmZtZmmZMis3xbtjZw/m/mcN/c1Xz25Kmcf+yeTojMzKzLclJk7eJ9zMzMrLtxUmRttmpjDR+87nHmr67iR2cezCnetsPMzLqBTEmRpAFATUQ0Fjke6+QWr6nmrF8+RuXmWq47+43etsPMzLqNVmefSeoNbACmFT8c68xeWL6R0695mI01dd7HzMzMup1Wk6KIaCDZkb6s+OFYZzV74VrO+Nkj9Ja45b8P58Ddh5U6JDMzs4LKuqL1N4DvSHLTQA/08qrNnPXLxxg1qB+3nn84e43xxq5mZtb9ZB1o/WlgIrBU0hKgKvdkROxf6MCsc2hsDL54+zP069Obm847jNFDyksdkpmZWVFkTYpuLWoU1mndPPtVHl+4lstP398JkZmZdWuZkqKI+HqxA7HOZ9XGGr515wscNmk4756+W6nDMTMzK6qsY4qQVC7pXZI+J2lYemxPScOLFp2V1Nf/+jy19Y186537eaVqMzPr9rKuUzQZ+AfJRrDDSDaDXQ+cn74/pyjRWcnc+8JK7nh6Of8zcwqTRg0qdThmZmZFl7Wl6AfAPcAYYEvO8T8DMwock5VYVW09X/7js+w1ehD/feyepQ7HzMysQ2QdaH0EcFhENOR1oywGxhc8Kiup793zEss21HDb+YdT1idzD6uZmVmX1pbfeH2bOVZBstq1dRNPvbqe6x9ewFmHVXDIHh4uZmZmPUfWpOge4OKc9yFpCPB14I6CR2UlUd/QyBduf4aRg/rx2ZO9q4uZmfUsWbvPLgZmSZoLlAM3A5OBlcAZRYrNOth1Dy3g+eUbueasgxlS3lzDoJmZWfeVdZ2iZZIOBN4HHEzSwnQt8JuI2LKja61reHVtNVf+/SVm7j2GN+8zttThmJmZdbisLUWkyc916cO6kYjgS398lt4Sl75jH69JZGZmPVJbFm88WNINkmanjxslHVzM4Kxj/PmpZTzw0mo+e/I0xg3tX+pwzMzMSiJTUiTp/cATwDjgzvQxBnhc0lnFC8+KbV3VVi79y/McuPswzjpsj1KHY2ZmVjJZW4q+CXw5ImZGxFfSx0nAl4HL2lKhpAskLZBUI2mOpKNbKV8m6dL0mlpJiyV9PK/MJyS9KGmLpCWSfixpUM75r0mKvMeKtsTdXX3rzhfYsKWOb5+2H717udvMzMx6rqxjikYBv2/m+C0kiVEmkt4DXAVcADyYPt8lae+IWNzCZTcBuwHnAfNIWqi29fFIOhO4nGSrkX8Bk4BfksyS+2jOfeYCx+W8b8gad3f18MuV3DJnCecftydvGDek1OGYmZmVVNakaBZJQvFy3vHjgPvbUN/FwPUR8fP0/UWSTibZQ+0L+YUlnQScAOwZEZXp4YV5xY4AHo2IG5vOS7oBOD2vXH1EuHUoVVPXwBf/8Ax7jBjAJ07Yq9ThmJmZlVyLSZGk03Le3gV8W9J04NH02GHAacDXslQkqQw4BLgi79Q9JIlNc04lGct0saQPkuy7dhfwxYjYnJZ5EPiApMMi4lFJFcDbScY95ZokaRlQCzyW3mN+lti7ox/982UWrqnm/z56KOV9e5c6HDMzs5LbUUvRrc0cOy995Poh8JMMdY0EepMs+JhrJXBiC9dMAo4iSWROB4al9Y0H3gUQETdJGgE8oGQueR/gRuBzOfd5DDgbeBEYDVwCPCxpn4hYk1+ppG2fs6KiIsNH61rmrtjENfe/wmkH78pRe40sdThmZmadQotJUUR0hp1AewEBnBkRGwAkXQjcLWlMRKyUdCzJuKYLSJKfySTjlr4OfAUgIu7KvamkR4H5wIeAK/MrjYhrSRanZPr06VGcj1YajY3B529/msHlfbjkrXuXOhwzM7NOI/PijQVQSTK4eUze8TFAS2N9lgNLmxKi1AvpcwVJK9NlwO8i4hfp8WckDQR+IenSiKjPv2lEbJb0HNDjBtP85rFF/Hvxeq484wCGDywrdThmZmadRuakSNJBwAyS7qftWpEi4rOtXR8RWyXNAWaSzFprMhO4rYXLHgLeLWlQzhiiKenzovR5AK+fSdYAtDi/XFI5MI1kAHmPsWJDDd/921yOmjySdx60a6nDMTMz61QyJUWSPgt8hyQRWUnSpdWkLd1LVwI3SnqcJOH5GMn4oGvSem4AiIgPpuV/S9I19itJXyMZU3QVcGtErErL/IVkIPZsXus++wbw16ZWIklXpOUWkyR1XwYGAr9uQ+xd3lf//Cx1DY188537eisPMzOzPFlbij4FnB8RP9uZyiLi5nRQ9CUkq2M/C5wSEU2tPhV55TdLOpFkcPUTwDrgj8Dnc4pdRpKYfYNkPaNKkgToSzlldgN+RzLYezXJDLrDcurt9v727Arufm4lnzt5GnuMGFjqcMzMzDodRbTe0CNpJXBkROSvU9TtTZ8+PWbPnl3qMHbKppo6TrzyfnYZUMZfLjqKvr07wxh6MzOzjidpTkRMb+5c1t+OPwU+XLiQrCP9791zWbWplu+cvr8TIjMzsxZk7T77OnCnpH+TdHnV5Z6MiI8UOjArjDmL1nHjo4v40OETOHD3YaUOx8zMrNPKmhR9EzgJeBLYhbYNrrYSqWto5Iu3P8PYIeV8+s1TSx2OmZlZp5Y1KbqAZAHFm4sZjBXWbx5dxNyVm/j5B6czqF9HLkllZmbW9WQdYLIF+HcxA7HCighueuJVDth9GDP3zl8v08zMzPJlTYq+D3xSXtymy3h++UZeXLGJdx3sRRrNzMyyyNqncjRwDPBWSc/z+oHWby90YLZzbn9yKX17i7ftP77UoZiZmXUJWZOiSuD2YgZihVPX0Mif/rOUE6aNYRfvb2ZmZpZJpqQoIrxGURfyr3mrqdy8ldPcdWZmZpaZV/Lrhm57cinDB5Zx3NTRpQ7FzMysy8i6Iewz7GBtoojYv2AR2U7ZUF3H359fyZlvqqCsj3NeMzOzrLKOKbo1731f4EDgSODHhQzIds4dzyxna32ju87MzMzaKOuYoq83d1zSZ4A9ChqR7ZTbnlzCXqMHsd+uQ0sdipmZWZeys/0rtwPvL0QgtvMWVlYxZ9E6Tjt4N7yklJmZWdvsbFJ0DFBdiEBs593+76VI8M6D3HVmZmbWVlkHWv85/xAwDjgIaLZrzTpWY2Nw+5NLOGrySMYOLS91OGZmZl1O1oHWa/LeNwLPAV+MiHsKG5K1xxML17Jk3Rb+56QppQ7FzMysS/Lijd3EbU8uYWBZb968z9hSh2JmZtYleSGbbmDL1gbufGYFb9lvHAPKsjb+mZmZWa6sY4qGA98ETgBGk5dMRcSQwodmWd3z/Ao219Zz+sG7lToUMzOzLitrs8IvSQZVXwssYwerW1vHu+3Jpew6rD+HThxe6lDMzMy6rKxJ0QnAzIh4rJjBWNut3FjDg/NW8/9mTKZXL69NZGZm1l5ZxxStAjYXMxBrnz/+eymN4bWJzMzMdlbWpOhLwKWSBhUzGGubiOC2J5dwUMUwJo3yfxozM7OdkbX77BJgArBK0iKgLvdkROxf4Lgsg+eWbeSllZu57NR9Sx2KmZlZl5c1Kbq1qFFYu9z25BLKevfibfuPK3UoZmZmXV7WxRsLtpWHpAuAz5BsE/Ic8MmI+NcOypeRtFR9ABgPrASuiIirc8p8Ajgf2INk9e0/AZ+LiM05ZdpUb2dX19DIn/+zjBP3Hs2wAWWlDsfMzKzL69CV/iS9B7gKuAB4MH2+S9LeEbG4hctuAnYDzgPmAWOA/jn3PBO4HDgH+BcwiWQJgXLgoztRb6f2wEurWVO1ldMO8tpEZmZmhdDRyx9fDFwfET9P318k6WSSVp4v5BeWdBLJcgB7RkRlenhhXrEjgEcj4sam85JuAE5vb71dwR1PL2f4wDKOnTqq1KGYmZl1Cx22zUfaDXYIkL+B7D0kiU1zTgWeAC6WtETSPElX582CexA4UNJhaT0VwNuBO3ei3k7vpVWb2G/XofTt7Z1azMzMCqEjW4pGAr1JxgTlWgmc2MI1k4CjgFqSlp9hwA9Jxha9CyAibpI0AnhAkkg+043A59pbr6TzSLrrqKioyPThOlJEsGB1FdP38ArWZmZmhbLDZgZJV0o6WlKpmiN6kWwpcmZEPBYRdwMXAqdLGpPGeCzwZZJxQgcDpwHHAe0eHB4R10bE9IiYPmpU5+ueWr25lqqtDUwYMaDUoZiZmXUbrbUU9ScZ6Fwm6Q7gj8DdEbGlHXVVAg0kA6VzjQFWtHDNcmBpRGzIOfZC+lxB0tpzGfC7iPhFevwZSQOBX0i6tJ31dmoLK6sBmDByYIkjMTMz6z522AIUEedHxK7AW4GlJAlIpaQ/S/qIpMzNKBGxFZgDzMw7NRN4uIXLHgLG540hmpI+L0qfB5AkPbkaAO1EvZ3awsoqACaN9CrWZmZmhZKpWywiHo+IL0XEvsABwP3A2cASSQ9K+rSkLJtvXQmcLekcSW+QdBXJ+KBrACTdkM4ca/JbknWHfiVpH0lHkkytvzUiVqVl/gKcJ+m9kiZKmgl8A/hrRNRnqbermV9ZRd/eYvyw8lKHYmZm1m20eaB1RLwMfA/4nqSRJDO93p6evqKVa29OB0VfQrKI4rPAKRHR1OpTkVd+s6QTSQZXPwGsI+nC+3xOsctIxh19g2Q9o0qSROlLbai3S1lYWcXuwwfQxzPPzMzMCkYRUeoYOrXp06fH7NmzSx3Gdk7+wQPsOqw/vzz7jaUOxczMrEuRNCcipjd3zk0NXUxjY7CgsoqJHmRtZmZWUE6KupgVG2uorW/0zDMzM7MCc1LUxTTNPHNLkZmZWWE5KepiFqxxUmRmZlYMmWefSRoAHAiMJi+ZiojbCxuWtWTB6ir69enF2CGejm9mZlZImZKidFr874ARzZwOkr3FrAMsXFPFhBED6dVLpQ7FzMysW8nafXYVcAewW0T0yns4IepACyqrmDDSe56ZmZkVWtakaALwjYhYVsRYrBUNjcHitdVM9PYeZmZmBZc1KXoImFrMQKx1S9dtoa4hmOiWIjMzs4LLOtD6GuAKSeOBZ4C63JMR8WShA7PXa5p5NmGEZ56ZmZkVWtak6Nb0+dpmznmgdQfxGkVmZmbFkzUpmljUKCyTBZVVDCzrzajB/UodipmZWbeTKSnqqrvJdzfJzLOBSJ6Ob2ZmVmiZV7SWtL+kGyTNlvSEpF9L2reYwdn2Fq6p8p5nZmZmRZIpKZL0duBJYHfgLuBvQAXwb0n/VbzwrEldQyNL1m1hogdZm5mZFUXWMUWXAd+MiK/mHpR0aXruL4UOzLb36tpqGhrDg6zNzMyKJGv32RTgxmaO34jXL+oQC9KZZ+4+MzMzK46sSdEq4JBmjh8CrCxcONaSBZ6Ob2ZmVlRZu89+DvxM0mTg4fTYkcCngf8tRmC2vYVrqhjavy+7DOhb6lDMzMy6pbaMKdoM/A/wjfTYMuCrwNVFiMvyeDq+mZlZcWVdpyiA7wPflzQ4PbapmIHZ9hZWVvPGCbuUOgwzM7NuK/M6RU0iYpMToo5VU9fAsg1bPMjazMysiFpsKZL0NHBsRKyT9AzJHmfNioj9ixGcJRavrSbCg6zNzMyKaUfdZ7cBtenrW3dQzops/mrPPDMzMyu2FpOiiPh6c6+t4y1c4zWKzMzMii3rNh+9JPXKeT9W0jmSjmhrhZIukLRAUo2kOZKObqV8maRL02tqJS2W9PGc8/dJimYez+WUObuFMuVtjb8UFlZWMWJgGUPKPR3fzMysWLJOyb+DZL+zqyQNAmYDA4FBkj4aETdkuYmk9wBXARcAD6bPd0naOyIWt3DZTcBuwHnAPGAM0D/n/GlAWc77fsAzwO/z7lMN7Jl7ICJqssRdagsqq9x1ZmZmVmRZk6LpwGfT16cBG4GJwPtJFnDMlBQBFwPXR8TP0/cXSToZOB/4Qn5hSScBJwB7RkRlenhhbpmIWJt3zfuBAcB1ebeLiFiRMc5OZUFlFcdMGVXqMMzMzLq1rFPyBwHr09cnAX+IiDrgn+S1vrREUhnJtiD35J26B2ipG+5U4AngYklLJM2TdHXaWtWSc4G/RcSrecf7S1qU3uevkg7KEnepVdXWs2pTrVuKzMzMiixrUrQYOFLSQODNwN/T48NJuqWyGAn05vV7pa0ExrZwzSTgKOAA4HTgQuBk4PrmCkuaAhxLsi1JrrnAR4B3AO8DaoCHJO3Vwn3OkzRb0uzVq1fv+FMV2bZB1iOcFJmZmRVT1u6zK4EbSbb6WAQ8kB4/hmT8TrH0Ilkf6cyI2AAg6ULgbkljIiI/wToXWE4yBmqbiHgEeKTpvaSHgf8AFwEfJ09EXAtcCzB9+vQW12fqCAsrk5zTLUVmZmbFlXWbj59Jmg1UAH+PiMb01CvAlzPWVQk0kAyUzjUGaGmsz3JgaVNClHohfa4gp9Up7Z77EPDziKjfUSAR0ZB+nmZbijqTBZWbAZgwckCJIzEzM+veMm/zERFzIuIPEbE559gdEfFQxuu3AnOAmXmnZgIPt3DZQ8D4vDFEU9LnRXllTyXpovtla7Eo2VV1f5Kkq1NbUFnNmCH9GFCWtVHPzMzM2iPzb1pJh5LMBBtNXjIVEa/rgmrBlcCNkh4nSXg+BowHrknruCG93wfT8r8laYn6laSvAcNIpvTfGhGr8u59HnBvRMxvJvavAo+STOkfQtJltj/JrLdObeEaT8c3MzPrCJmSIkmfBi4HXgaWsf0+aJnH3ETEzZJGAJcA44BngVMioqnVpyKv/GZJJwI/JJmFtg74I/D5vPgmAccD722h6mEkY4TGAhuAfwPHRMTjWWMvlYWVVZy0T36Po5mZmRVa1paiTwAfj4gf7WyFEfET4CctnDuumWNzSZYB2NE957ODrsCI+BTwqTYF2gls2FLHmqqtnnlmZmbWAbKOKRoC3FnMQOz1FlZ6zzMzM7OOkjUp+h3J+kDWgZrWKJrkpMjMzKzosnafvQp8XdKRwNNAXe7JiLiy0IEZzF9dhQS7D/d0fDMzs2LLmhSdQ7Jw4xG8fkuOIJlVZgW2cE0V44f2p7xv71KHYmZm1u1lXbxxYrEDsddbWOnp+GZmZh0l8+KNTSSNkdTm66xtIoIFTorMzMw6TKbkRlJfSZdL2gQsBSakx78r6YIixtdjra3aysaaes88MzMz6yBZW3y+CvwXcBZQm3P8ceDsAsdkvDbzbKL3PDMzM+sQWQdavw/4SETcL6kx5/izvLYXmRXQgspqACaOHNRKSTMzMyuErC1F43n9BqyQJFXeqbQIFlZW0buX2G2X/qUOxczMrEfImhQ9BxzTzPEzSHa+twJbUFnF7rv0p29vj2k3MzPrCFlbeb4O/J+k3YHewLslTQPOBN5arOB6sgWVVR5kbWZm1oEyNUNExF9IWoVOAhpJBl7vBfxXRPyjeOH1TBHBwjWejm9mZtaRMo8Hioi7gbuLGIulVm+qpXprg5MiMzOzDtTmQdKSyslrYYqI6oJFZMyvTKbjTxjhpMjMzKyjZF28cQ9Jf5K0EagCNuU9rIAWVjatUeSkyMzMrKNkbSn6P6AcuAhYSbIJrBXJgjVVlPXuxfhhno5vZmbWUbImRQcBb4yIF4oZjCUWVlZRMWIAvXup1KGYmZn1GFkXwXkKGFXMQOw1CyqrPJ7IzMysg2VtKToPuFrS1SRbe9TlnoyIxYUOrKdqbAwWranm2CnOQc3MzDpS1qSoFzAG+APbjydS+r53gePqsZZvrKG2vtF7npmZmXWwrEnRr4FVwOfwQOuiWrA6nY4/ckCJIzEzM+tZsiZF04ADI+KlYgZjycwz8HR8MzOzjpZ1oPXjwMRiBmKJhZVV9O/bmzGDy0sdipmZWY+StaXop8APJH0PeIbXD7R+stCB9VQLK6vYY8QAenk6vpmZWYfKmhT9Ln2+tplzHmhdQAsqq5g6dnCpwzAzM+txsnafTdzBY1JbKpR0gaQFkmokzZF0dCvlyyRdml5TK2mxpI/nnL9PUjTzeC7vPqdLej69x/OS3tmWuDtCfUMji9dWM8HjiczMzDpcppaiiFhUiMokvQe4CrgAeDB9vkvS3jtY6+gmYDeStZLmkSwNkLv/xWlAWc77fiRdfL/Pqfdw4Gbgq8Dt6TW3SDoyIh4rwEcriKXrt1DfGB5kbWZmVgItJkWSTgP+EhF16esWRcTtGeu7GLg+In6evr9I0snA+cAXmonhJOAEYM+IqEwPL8yre23eNe8HBgDX5Rz+JDArIr6Zvv+mpBnp8fdljL3oFngjWDMzs5LZUUvRrcBYkvWJbt1BuUxjiiSVAYcAV+Sdugc4ooXLTgWeAC6W9EFgC3AX8MWI2NzCNecCf4uIV3OOHQ78MK/c3cCFrcXdkZqSIm/xYWZm1vFaTIoioldzr3fCSJLkaWXe8ZXAiS1cMwk4CqgFTgeGkSQ344F35ReWNAU4liSZyjW2hXrHNleppPNIuuuoqKhoIbTCW1hZxaB+fRg5qKz1wmZmZlZQWWeflUovkpaoMyNiA4CkC4G7JY2JiPxE51xgOXDHzlQaEdeSzrSbPn16h63evWBNNRNHDkTydHwzM7OOtqMxRR/MepOIuCFDsUqggWSgdK4xwIoWrlkOLG1KiFIvpM8V5LT+pN1zHwJ+HhH1efdZ0cZ6S2JhZRUH7D6s1GGYmZn1SDtqKfpx3vsyoC/QmL7vRbKIYy3QalIUEVslzQFmArfknJoJ3NbCZQ8B75Y0KGcM0ZT0OX9G3KkkXXS/bOY+j6T1/G9evQ+3FndH2VrfyJJ11Zx64PhSh2JmZtYjtThWKCIGNz2A9wJPA0cD5enjaOA/wJltqO9K4GxJ50h6g6SrSMYHXQMg6QZJuQnWb4E1wK8k7SPpSJIp/bdGxKq8e58H3BsR85up9yrgeEmflzRN0heAGcAP2hB7US1eW01j4DWKzMzMSiTrmKIrgI9ExCM5xx6S9EngeuCvWW4SETdLGgFcAowDngVOyVkHqSKv/GZJJ5IMrn4CWAf8Efh8bjlJk4DjSZK35up9WNJ7gcuAS4FXgPd0pjWKFno6vpmZWUllTYomAFXNHK8mL5FpTUT8BPhJC+eOa+bYXOCkVu45n1ZW546IW9nx0gIltXCNkyIzM7NSyjrV/jHgakm7Nh1IX38feLQYgfU08yurGDagL8MGeDq+mZlZKWRNij4KjAAWSlooaSHJytKjSabB205aWFnlViIzM7MSyrr32SuS9ieZsTUtPfwC8I+I6LB1fLqzhZVVHDZpRKnDMDMz67EyL96YJj/3pA8roC1bG1i2ocYzz8zMzEqoENt32E5atDbd88xJkZmZWck4KeoEmqbjT3JSZGZmVjJOijqBBZXVgFuKzMzMSslJUSewoHIzIwf1Y1C/zr4/r5mZWfeVOSmSVC7pXZI+J2lYemxPScOLFl0PsbCymokjB5Q6DDMzsx4tU9OEpMnA34HBwDCSDV3XA+en788pSnQ9xII1VcyYOqrUYZiZmfVoWVuKfkCSFI0BtuQc/zPJxqrWTptr61m9qdbjiczMzEos6yCWI4DDIqJBUu7xxSS73Fs7bdsIdoSTIjMzs1Jqy0Drvs0cqwA2FCiWHmlBpdcoMjMz6wyyJkX3ABfnvA9JQ4CvA3cUPKoeZMWGGgB226V/iSMxMzPr2bJ2n10MzJI0FygHbgYmAyuBM4oUW4+wsaaOXsLT8c3MzEos64awyyQdCLwPOJikhela4DcRsWVH19qObaqpZ1C/PuSN1TIzM7MOlnVK/siIqASuSx9WIBtr6hhc3txwLTMzM+tIWccULZP0V0nvkVRe1Ih6mE019Qwud9eZmZlZqWVNit4GVJJ0ma2UdL2kE+Q+n522qaaOIW4pMjMzK7lMSVFE3BMRZ5Ms3ngesAtwJ/CqpP8tXnjdn1uKzMzMOoc2bQgbETURcXNEvAM4EFjN9lP1rY2cFJmZmXUObUqKJA2UdJaku4CnSPZCu6wokfUQmzzQ2szMrFPIOvvsrcD7gbeT7H32e+DSiHikiLF1exHhliIzM7NOIutv41uAv5CsU3RXRNQXL6Seo6aukfrGcEuRmZlZJ5A1KRoTEZuKGkkPtKmmDsAtRWZmZp1Ai7+NJQ2PiLXp276ShrdUNqectcHGmqTBzUmRmZlZ6e1ooPVqSaPT15UkM83yH03HM5N0gaQFkmokzZF0dCvlyyRdml5TK2mxpI/nlRki6WpJy9IyL0s6I+f81yRF3mNFW+IuhqaWIq9TZGZmVno7aqI4Hlib8zp2tjJJ7wGuAi4AHkyf75K0d0QsbuGym4DdSNZHmkeyVtK2LeUl9QX+nsZ6BrAkLV+bd5+5wHE57xt28uPstE1uKTIzM+s0WvxtHBH357y+r0D1XQxcHxE/T99fJOlk4HzgC/mFJZ0EnADsme69BrAwr9iHgVHA0RGxtYUyAPURUfLWoVyvJUVuKTIzMyu1TOsUSWrI6UrLPT5CUqYWF0llwCHAPXmn7gGOaOGyU4EngIslLZE0L+0mG5RX5iHgh5JWSHo+7S7LzzQmpd1rCyTdJGlSlriLqao2SYoG9utd4kjMzMws6+KNLe1x1g/Y2sK5fCOB3sDKvOMrgbEtXDMJOAo4ADgduBA4Gbg+r8y7gb7AW4EvAx8Dvp1T5jHg7PTac9P6HpY0orlKJZ0nabak2atXt2nIVJtUb02SogFl7j4zMzMrtR3+NpbUtIVHAB+TtDnndG/gaODFIsUGSdIWwJkRsSGN6ULgbkljImJlWmYVcG5ENABz0mTn+5I+E4m78j7Xo8B84EPAlfmVRsS1JJvfMn369J0eS9WS6rqkkW1AmVuKzMzMSq21JoqL0mcB57D94OStJGN3Ppaxrsr0+jF5x8cALY31WQ4sbUqIUi+kzxUkrUzLgbo0IcotM4Ckdep1TT0RsVnSc8BeGWMvii1bG+gl6NenTbutmJmZWRHs8LdxREyMiInA/cABTe/Tx9SIeHNEPJalonQQ9BxgZt6pmcDDLVz2EDA+bwzRlPR5UU6ZyZJ65ZWpJknEXkdSOTCNJKEqmaraBgaU9UFqqXfSzMzMOkrWJoqTSfY8246k8nQAdVZXAmdLOkfSGyRdBYwHrknvd4OkG3LK/xZYA/xK0j6SjiSZ0n9rRKxKy/wUGA5cJWmqpDcDXwd+EhGR3vcKScdKmijpUOBWYCDw6zbEXnBb6urp764zMzOzTiHrCN/fk7QW5Y+/+RjJ2j+nZrlJRNycjve5BBgHPAucEhFNrT4VeeU3SzoR+CHJLLR1wB+Bz+eUeTWdun8l8B+SrrjrgMtybrUb8Dte6057FDgsp96SqN7awEAnRWZmZp1C1qToSOBLzRz/O/DFtlQYET8BftLCueOaOTYXOKmVez5Ky9P6iYj3tiXGjlJV20B/zzwzMzPrFLJ2nw0A6ps53ggMLlw4PcuWunrPPDMzM+sksiZFTwPva+b4mSRdYNYO1VsbnBSZmZl1Eln7bi4F/iRpMvDP9NgJJIsmvrMYgfUEW7Y2MHpwv1KHYWZmZmRsKYqIO4H/AvYArk4fFcDbI+KvxQuve6vaWu/VrM3MzDqJzL+RI+JvwN+KGEuPs8XdZ2ZmZp1G5qWU0zWJ3iXps5KGpcf2lDS8aNF1cx5TZGZm1nlkailKxxL9AxgEDCNZ/HA9cH76/pyiRNeNNTYG1Vs9Jd/MzKyzyNpS9APgHpJ9ynJXtv4zMKPAMfUINfXeDNbMzKwzydpMcQTJCtANeft0LSbZpsPaqHprkhR5RWszM7POoS3bs/dt5lgFsKGZ49aK6tokKXL3mZmZWeeQNSm6B7g4531IGkKy8eodBY+qB6iuSxYId/eZmZlZ55C1meJiYJakuUA5cDMwGVgJnFGk2Lq1pu4zJ0VmZmadQ6akKCKWSTqQZKuPg0lamK4FfhMRW3Z0rTVvy7akyN1nZmZmnUGLv5ElzQfeGBFrJH0FuCIirgOu67DourGqWnefmZmZdSY7GlM0DhiQvv4qyRpFViBb6tx9ZmZm1pnsqO/m38B1kh4EBHxa0ubmCkbEpcUIrjurdveZmZlZp7Kj38gfBi4DTgWCZEPY+mbKBeCkqI2aus/6u6XIzMysU2gxKYqIucC7ASQ1AsdGxKqOCqy72+LZZ2ZmZp1Ki2OKJM2XNCJ9+3Wg2a4za5/qugbKeveib++2rJ9pZmZmxZJ1oPVX8EDrgqqurXfXmZmZWSfigdYlUr21wV1nZmZmnYgHWpdIdZ2TIjMzs87EA61LZMvWBk/HNzMz60SybvPh0cAFNnXsYPYYMaD1gmZmZtYhMjdVSHoLcCEwCTgpIl6VdA6wICLuLVaA3dXnTp5W6hDMzMwsR6YWIEnvB34PvARMAPqmp3oDn21LhZIukLRAUo2kOZKObqV8maRL02tqJS2W9PG8MkMkXS1pWVrmZUln7Ey9ZmZm1rNk7Rb7LHBuRHyK7QdbPwocmLUySe8BrgK+BRwEPAzcJaliB5fdBJwMnAdMJRnn9HTOPfsCfwf2As5Iy5wNLNjJes3MzKwHydp9thfwSDPHNwND2lDfxcD1EfHz9P1Fkk4Gzge+kF9Y0knACcCeEVGZHl6YV+zDwCjg6IjY2kKZNtVrZmZmPU/WlqJlwJRmjh8DvJLlBpLKgEOAe/JO3QMc0cJlpwJPABdLWiJpXtpNNiivzEPADyWtkPS8pK+lLUjtrdfMzMx6mKxJ0bXA1ZKOTN/vLulDwOXATzPeYyTJGKSVecdXAmNbuGYScBRwAHA6yUDvk4Hr88q8m2Sc01uBLwMfA77d3nolnSdptqTZq1evbu1zmZmZWTeQdUr+5ZKGkozdKQdmAbXAFRHx4yLG14tkccgzI2IDgKQLgbsljYmIlWmZVSRjnhqAOemebd+X9Jn2VBoR15IkgkyfPj0K8DnMzMysk8s8JT8iviTpm8DeJInI8xHRlk1iK4EGYEze8THAihauWQ4sbUqIUi+kzxUkrT3Lgbo0IcotM4Cklag99ZqZmVkP06ZFGSOiOiJmR8TjbUyISAdBzwFm5p2aSTIbrDkPAePzxhA1jW1alFNmsqReeWWqgcp21mtmZmY9TEevVH0lcLakcyS9QdJVwHjgGgBJN0i6Iaf8b4E1wK8k7ZOOaboKuDVny5GfAsOBqyRNlfRm4OvATyIistRrZmZm1qGbb0XEzel4n0uAccCzwCkR0dTqU5FXfrOkE4EfksxCWwf8Efh8TplX06n7VwL/IekSu45kM9us9ZqZmVkPp9caU6w506dPj9mzZ5c6DDMzMysASXMiYnpz57zRq5mZmRlOiszMzMwAd5+1StJqXpvpVihNSwVYx/D33XH8XXcsf98dy993xyrW971HRIxq7oSTohKQNLul/kwrPH/fHcffdcfy992x/H13rFJ83+4+MzMzM8NJkZmZmRngpKhUri11AD2Mv++O4++6Y/n77lj+vjtWh3/fHlNkZmZmhluKzMzMzAAnRWZmZmaAk6KikHSBpAWSaiTNkXR0K+WPTcvVSJov6WMdFWtX15bvWtJpku6RtFrSJkmPSXp7R8bb1bX133bOdUdJqpf0bLFj7E7a8bOkTNKl6TW1khZL+nhHxdvVteP7PlPSfyRVS1oh6f8kje2oeLsqScdI+rOkpZJC0tkZrtlP0v2StqTXfUWSCh2bk6ICk/Qe4CrgW8BBwMPAXZIqWig/EbgzLXcQ8G3gh5JO75iIu662ftfAscA/gbem5e8E/pD1F3tP147vu+m6XYAbgHuLHmQ30s7v+ybgZOA8YCrwbuDpIofaLbTjZ/eRwI3Ar4F9gFOBvYHfdES8Xdwgko3ZPwFsaa2wpCHA34GVwBvT6z4DXFzowDzQusAkPQY8HRHn5hybB9waEV9opvx3gdMiYq+cY78A9omIwzsi5q6qrd91C/d4HPhXRPxPkcLsNtr7fUu6HXgKEPCuiNi36MF2A+34WXIScAuwZ0R41eU2asf3/WngoojYI+fYh4EfRsSgjoi5O5C0GbgwIq7fQZnzge8CYyJiS3rsEuB8YLcoYCLjlqICklQGHALck3fqHuCIFi47vJnydwPTJfUtbITdRzu/6+YMBtYVKq7uqr3ft6QLgDHAZcWLrvtp5/d9KvAEcLGkJZLmSbpakn9Bt6Kd3/dDwDhJ/6XESOC9JC3QVliHk/zxmtuqdDcwHphQyIqcFBXWSKA3SRNfrpVAS/3MY1so3ye9nzWvPd/1diT9P2A3kiZw27E2f9+S9gO+CpwVEQ3FDa/bac+/70nAUcABwOnAhSRdadcXJ8Rupc3fd0Q8QpIE/QbYCqwmaQ39UPHC7LFa+j3ZdK5gnBRZj5SO2fpf4MyIKPSGvz2epH7AzcCnI2JBqePpIXoBQfJv+rGIuJskMTpd0pjShtb9SNob+CHwDZJWppNJfkH/rJRx2c7pU+oAuplKoIGkuyDXGGBFC9esaKF8Pd6NeUfa810DIOldJAN/PxgRfylOeN1OW7/vccAbgF9J+lV6rBcgSfXAKRGR31Vhr2nPv+/lwNKI2JBz7IX0uYLX/6Vtr2nP9/0F4PGI+N/0/dOSqoB/SfpiRCwpTqg9Uku/J5vOFYxbigooIrYCc4CZeadmksxkaM4jLZSfHRF1hY2w+2jnd42kM0i6y86OiFuLF2H30o7veymwH3BgzuMa4OX0dYv/jazd/74fAsbnjSGakj67NXQH2vl9DyBJpHI1vffv1sJ6BDhaUnnOsZnAMmBhQWuKCD8K+ADeQ9K/fA7JX8pXAZuBPdLzNwA35JSfCFQBP0jLn5Nef3qpP0tnf7Tju34vUEcynXNszmN4qT9LV3i09ftu5vqvAc+W+nN0lUc7/n0PAl4lmYG2D3AkybTnW0r9WbrCox3f99npz5PzScZzHUky0H1OqT9LZ3+k/1YPTB/VwFfS1xXp+W8D9+aUH0rSInQTsC9wGrAR+J+Cx1bqL6c7PoALSLLXWpK/Po7JOXcfcF9e+WOBJ9PyC4CPlfozdJVHW77r9H0087ivo+Puqo+2/tvOu9ZJUZG/b5K1ie5Jf9EsBX4MDC715+gqj3Z83xcBz6Xf93KSQde7lfpzdPYHcFwLP4uvT89fDyzMu2Y/4AGgJv2uv0q6rFAhH16nyMzMzAz3e5qZmZkBTorMzMzMACdFZmZmZoCTIjMzMzPASZGZmZkZ4KTIzMzMughJ10laJenZjOXPkPS8pOck/ba18k6KzKxHkzRBUkiaXsQ6rpf012Ld36wHuZ5kn7lWSdqLZDuWIyNiH+CTrV3jvc/MzIrvEyQ7qJvZToiIByRNyD0maU+ShUpHkSykeW5EvAicC/w4Ital165q7f5uKTIzK7KI2BAR60sdh1k3dS1wUUQcAnwa+El6fAowRdJDkh6V1GoLk5MiM+sQko5JfzBtlrRB0uOS9k3PjZD0O0lLJG1J+/8/nHf9fZJ+Kul7ktZKWi3pE5L6SfqxpPWSFkv6QM41TV1jZ0p6UFKNpBclndRKrHtLukPSpnT8wu8kjW3lmq9IWiSpVtIKSTfknNvWfSbpuDSm/Md9OeWPkHS/pGpJS9PPPaRNX7hZD5BugHwEcIuk/wA/A8alp/sAe5FsK/I+4OeShu3ofk6KzKzoJPUB/gQ8CBwAHEqyCXLTruLlJPv/vY1kM9OrgJ9JOiHvVu8HNqXXfye9xx+Bl4DpwK+BX0gal3fd5cDVJJtO/h34k6RdW4h1HMkeS88CbwJOJNnA8k+Smv2ZKel0kr9QLyD5Ifw24PEWvo6HSX5oNz2mA+tJ9tZC0n4k+5f9meS7Oi2N+7oW7mfWk/UC1kfEgTmPN6TnlgB/joi6iFhA8nNirx3dzHufmVnRSRoOrAGOi4j7M15zE7A5Is5J398H9IuIw9P3AlYBj0TE29NjfYEq4MyIuDUde7AAuCQivpmW6QW8CPw+Ii7JKfPGiJgt6VKSgZkn5MSyC7AWODQiXpfsSLoY+G9g34ioa+b89cDIiHhb3vH+wL+AxcDpERFpC1NdRHw0p9yBwL+BMVnGRZh1Z+n/s3+NiKaW5oeB70fELenPhf0j4qm0u+x9EfEhSSNJ/h86MCLWtHRvtxSZWdFFxFqSWSN3p91SF0uqaDovqbekL0l6WtIaSZtJWkgq8m71dM49gyQpeibnWB2wDhidd90jOWUagceAvVsI9xDgmLSbb3May6vpuT1buOYWktauBZJ+Kendkvq1UBbYltRdD/QGPhCv/YV6CHBWXv0PtVK/WY8g6Xck/z9PTbvbP0rSgvxRSU8BzwHvSIvfDayR9DwwC/jMjhIi8OwzM+sgEfFhST8gmU77duCbkk6NiLtJup7+h2SW1jPAZuBbvD65yW+FiRaO7cwffL2AO9KY8q1s7oKIeFXSVOAEku627wFflXRoRFS1UM9XgGNIWqhyy/QCfgF8v5lrlmb7CGbdU0S8r4VTrxtEnf6hcXH6yMRJkZl1mIh4CngK+K6ku4APkfw1dxTwl4i4Eba1okwhGWtTCIcB/8y595uAW1so+yRwBrCoua6wlkREDUkydYek7wArgCNJxgdtR9K7gM8CMyJiSTP17xMRL2et28wKw91nZlZ0kiZK+k46q2oPSTOA/YHn0yIvASdIOkrSNOBHwMQChnC+pHelrTk/APYAftpC2R8DQ4GbJR0qaZKkEyVdK2lwC5/vbEnnSNpP0kTgwyQtWPOaKbsvyYDwLwKLJY1NH8PTIt8F3iTpGkkHSZos6W2SfrYTn9/MMnBSZGYdoZqk5ecWkgTo18BvSBIAgMtIZmvdRTLzqyo9XyifJ2lCf4qkmf2dzbTQABARy0haeBqBv5GMUfgxUJs+mrMe+CjJoOlngdOB09IZL/mmAwNIkrPlOY/b0/qfJulWmwDcn8b8bVroujOzwvHsMzPrtvJnlpU4HDPr5NxSZGZmZoaTIjMzMzPA3WdmZmZmgFuKzMzMzAAnRWZmZmaAkyIzMzMzwEmRmZmZGeCkyMzMzAxwUmRmZmYGwP8H6bpv3nsTY+AAAAAASUVORK5CYII=",
Q
Quleaf 已提交
880 881
      "text/plain": [
       "<Figure size 648x432 with 1 Axes>"
Q
Quleaf 已提交
882
      ]
Q
Quleaf 已提交
883 884 885
     },
     "metadata": {
      "needs_background": "light"
Q
Quleaf 已提交
886 887
     },
     "output_type": "display_data"
Q
Quleaf 已提交
888 889
    }
   ],
Q
Quleaf 已提交
890 891 892 893 894 895 896 897 898 899
   "source": [
    "fig = plt.figure(figsize=(9, 6))\n",
    "ax = fig.add_subplot(111)\n",
    "print('the number of parameters: %s' % cfim.num_params)\n",
    "ax.plot(n, np.array(effdim) / cfim.num_params)\n",
    "label_font_size = 14\n",
    "ax.set_xlabel('sample size', fontsize=label_font_size)\n",
    "ax.set_ylabel('effective dimension / number of parameters', fontsize=label_font_size)\n",
    "ax.tick_params(labelsize=label_font_size)"
   ]
Q
Quleaf 已提交
900 901 902
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
903
   "metadata": {},
Q
Quleaf 已提交
904 905 906 907
   "source": [
    "## Conclusion\n",
    "\n",
    "This tutorial briefly introduces the concept of classical and quantum Fisher information and their relationship from a geometric point of view. Then, we illustrates their applications in quantum machine learning by taking effective dimension as an example. Finally, we show how to actually perform calculations of these quantities with Paddle Quantum."
Q
Quleaf 已提交
908
   ]
Q
Quleaf 已提交
909 910 911
  },
  {
   "cell_type": "markdown",
Q
Quleaf 已提交
912
   "metadata": {},
Q
Quleaf 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
   "source": [
    "_______\n",
    "\n",
    "## References\n",
    "\n",
    "[1] Meyer, Johannes Jakob. \"Fisher information in noisy intermediate-scale quantum applications.\" [arXiv preprint arXiv:2103.15191 (2021).](https://arxiv.org/abs/2103.15191)\n",
    "\n",
    "[2] Haug, Tobias, Kishor Bharti, and M. S. Kim. \"Capacity and quantum geometry of parametrized quantum circuits.\" [arXiv preprint arXiv:2102.01659 (2021).](https://arxiv.org/abs/2102.01659)\n",
    "\n",
    "[3] Stokes, James, et al. \"Quantum natural gradient.\" [Quantum 4 (2020): 269.](https://quantum-journal.org/papers/q-2020-05-25-269/)\n",
    "\n",
    "[4] Mari, Andrea, Thomas R. Bromley, and Nathan Killoran. \"Estimating the gradient and higher-order derivatives on quantum hardware.\" [Physical Review A 103.1 (2021): 012405.](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.012405)\n",
    "\n",
    "[5] Datta, Nilanjana, and Felix Leditzky. \"A limit of the quantum Rényi divergence.\" [Journal of Physics A: Mathematical and Theoretical 47.4 (2014): 045304.](https://iopscience.iop.org/article/10.1088/1751-8113/47/4/045304)\n",
    "\n",
    "[6] Abbas, Amira, et al. \"The power of quantum neural networks.\" [Nature Computational Science 1.6 (2021): 403-409.](https://www.nature.com/articles/s43588-021-00084-1)"
Q
Quleaf 已提交
929
   ]
Q
Quleaf 已提交
930 931 932
  }
 ],
 "metadata": {
Q
Quleaf 已提交
933 934 935
  "interpreter": {
   "hash": "2ab84abaf8d5bbc8765aba8eb82d11e7069f2ff20e8f79b8a9cdeccefd2ac4da"
  },
Q
Quleaf 已提交
936
  "kernelspec": {
Q
Quleaf 已提交
937
   "display_name": "Python 3.8.13 ('pq_new')",
Q
Quleaf 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Q
Quleaf 已提交
951
   "version": "3.8.13"
Q
Quleaf 已提交
952 953 954 955
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
Q
Quleaf 已提交
956
}